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Skeletonization of Three-Dimensional Object
Using Generalized Potential Field

Jen-Hui Chuang, Member, IEEE, Chi-Hao Tsai, and Min-Chi Ko

Abstract—The medial axis transform (MAT) is a skeletal representation of an object which has been shown to be useful in
interrogation, animation, finite element mesh generation, path planning, and feature recognition. In this paper, the potential-based
skeletonization approach for 2D MAT [1], which identifies object skeleton as potential valleys using a Newtonian potential model in
place of the distance function, is generalized to three dimensions. The generalized potential functions given in [2], which decay faster
with distance than the Newtonian potential, is used for the 3D case. The efficiency of the proposed approach results from the fact that
these functions and their gradients can be obtained in closed forms for polyhedral surfaces. According to the simulation results, the
skeletons obtained with the proposed approach are closely related to the corresponding MAT skeletons. While the medial axis
(surface) is 2D in general for a 3D object, the potential valleys, being one-dimensional, form a more realistic skeleton. Other desirable
attributes of the algorithm include stability against perturbations of the object boundary, the flexibility to obtain partial skeleton directly,

and low time complexity.

Index Terms—3D skeletonization, medial axis transform, potential field, distance function, 3D thinning.

1 INTRODUCTION

HE skeleton of an object, as defined by Blum [3], is the

locus of the centers of all its interior maximal circles
(2D) or spheres (3D). Together with the associated radius
function, which is the radius of the maximal ball around
any given point on the skeleton, we can represent the object
with less information than the object itself. Such a technique
can be applied in document encoding [4] and shape
representation (or description) [5], [6]. Some other applica-
tions of the skeleton can be found in robot path planning
[7], feature recognition [8], automatic mesh generation [9],
[10], and finite element modeling [11].

Commonly, such representations can be derived first by
computing a distance transform which yields the shortest
distance from each interior point of a region to its border or,
equivalently, by identifying at each point the largest
possible size of the primitive of a given shape such that it
is entirely contained in a region to be represented. The
representation is then derived by identifying the primitives
having locally maximal sizes. Such approaches are straight-
forward, but computationally expensive since the distance
computation must be performed at every point of a region.

This paper presents a new concept of obtaining the
skeleton of 3D polyhedral regions in a computationally
efficient manner. The efficiency of the approach results
from the use of an intermediate, analog representation of
the given shape information—the potential field. The use of
potential field representation helps avoid the expensive task
of computing the distance transform at each pixel/voxel
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and the computation is limited approximately to the
locations of the locally maximal primitives. The computa-
tion of the potential field itself can be performed efficiently
if the shape information is given in a compact form, e.g., the
polyhedral representation of the surface. Such a compact
description may be directly available as a part of the
specification of the given object shape or it may be derived
from the given object data such as its surface or volume
descriptions.

1.1 The 2D MAT

In the 2D space, the medial axis transform (MAT), or
skeleton, of a shape is defined in terms of the medial axis
(MA), which is the loci of those points which are equidistant
from at least two points on the region border [3]. Thus, the
medial axis is composed of the centers of “locally maximal”
discs, defined as discs that are as large as they can be
without crossing the region border, but are not contained in
any other locally maximal discs. The medial axis and the
radii of the maximal discs associated with each axis point
together define the MAT representation. Fig. 1 shows the
MAT skeleton for a rectangular region.

A number of algorithms developed to obtain the skeleton
of a digital image region explicitly compute the distance
transform for each point inside the region [12], [13], [14],
[15], [16], [17]. Then, the definition of the locally maximal
discs is used in a straightforward way to identify centers of
such discs and, thus, the skeleton. The propagation and
extinction of the fire in the grass fire model are directly used
to obtain the skeleton in [18]. An algorithm for determining
skeletons of polygonal regions based on the same propaga-
tion process is presented in [19]. While the computing time
is said to be roughly proportional to the number of edges of
the polygon, the algorithm is complicated to program. It is
shown in [20] that the skeletonization problem is linearly
reducible to the construction of generalized Voronoi
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Fig. 1. A rectangle and its medial axis. The dashed curves give three
maximal discs.

diagram. O(n log n) algorithms are presented in [20] and
[21] for the construction of the skeleton of a simple polygon
which has n border segments. In [22], an algorithm with
computing time proportional to the number of image pixels
is developed for the derivation of various skeletons, each
constrained by a given set of anchor points.

In [1], a potential-based skeletonization approach is
proposed. Instead of using the shortest distance to the
region border, a scalar function—the potential is used for
computational efficiency. According to the potential model,
the region border is assumed to be charged and the valleys
of the resulting potential field are used to estimate the MA.
The magnitude of the potential field is infinity at the region
border and decreases with increasing distance from the
border points. The points along potential valleys (or
trajectories of 1D potential minima) are closely related to
branches of the MA. An algorithm, which will be reviewed
later, is developed in [1] to identify these skeletal features
using the repulsive force due to the potential field.

Because the force direction depends upon all border
points, not just the nearest ones, the potential valley is
continuous and its location is spatially smooth and
insensitive to perturbations of the region border. Further-
more, instead of deriving the complete axis first, then
performing the required pruning, the approach can gen-
erate part of the MA directly.

1.2 Review of 3D Object Skeletonization
Approaches

The problem of 3D skeletonization is more complicated
than the 2D case due to the extra degree of freedom in point
location. Most of the 3D algorithms have concentrated on
discrete and approximate approaches to determine the MA
or its related sets. One of the few continuous approaches is
developed in [23], where some simple, but frequently
encountered shape elements of the skeleton are discussed.
The synthesis of these elements leads to the formation of the
skeleton of CSG objects.

In [24], a 3D algorithm is proposed which uses a
polyhedral approximation of a smooth object boundary to
generate a connected graph of convex polygons approx-
imating the MA of the original object. In [25], a continuous
approximation to the skeleton in both the planar and the 3D
case is obtained by first discretizing the object boundary. A
discrete-point Voronoi diagram is then derived efficiently
for the set of points. Finally, portions of the skeleton which
result from the effects of quantization are pruned away. In
[26], the definition of a Voronoi diagram is extended to
arbitrary set-theoretic solid models and a method for
approximating such diagrams using recursive subdivision
is demonstrated.
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Fig. 2. The classification of MA points.

In [27], rather than computing the generalized Voronoi
diagram directly, its dual, the abstract Delaunay triangula-
tion, is computed in the skeletonization. Two approaches
are proposed in the paper: One is based on a representative
point set on the boundary of the object and the other is
based on the set of all the vertices, edges, and faces of the
object and does not require any discretization of the object.
In [28], an approach which also applies the technique of the
Delaunay triangulation to derive the medial surface of a 3D
object is proposed. The approach first uses the triangulation
technique to find the maximum spheres that touch the
border of the object at multiple locations. The MA of the
object is then obtained from locations of the loci of centers of
these spheres. An approach which uses polyballs to
approximate continuous shapes and skeletons either in 2D
or 3D space is presented in [29].

One other skeletonization approach is based on the
thinning process, which erodes an object while preserving
its connectivity until only its skeleton is left. Although many
2D thinning algorithms have been proposed, 3D thinning is
much more difficult. A 2-step thinning algorithm is
proposed in [30], which takes a 3D digital picture as its
input and generates the medial surface (skeleton) of an
object in the first step. If necessary, the algorithm can
generate the medial axes of the object in the second step
using the medial surface. Some template matching-based
thinning algorithms are proposed in [31] and [32] to derive
the medial surfaces and (1D) skeletons, respectively, of a 3D
object.

In [33], definitions are given to enumerate all the
possibilities that may appear in the MA of polyhedrons.
Fig. 2 shows the classification of MA points. In general, an
exact representation of the MA of a solid consists of
trimmed quadric surfaces. These surfaces (sheets) intersect
with one another and the solid’s surface in the rims and
seams which form the boundaries of the sheets. For the
discrete implementation presented in [33], a simple differ-
ential equation tracing technique is adopted to trace a seam
with fixed tracing stepsize to generate a polygonal approx-
imation of the seam curve. Finally, a sheet location process
is performed to generate the complete representation of the
MA. The major bottleneck of this algorithm is in the seam
tracing phase. The amount of time required in this phase is
a function of the number of steps taken along each seam, s,
and the number of boundary entities n. In the worst case,
each seam will be traced in O(ns) time.
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Fig. 3. Newtonian potential-based skeletonization: (a) the potential function, (b) the streamline representation of the force fields, and (c) the derived

skeleton.

1.3 Organization of the Paper

The potential-based 2D MAT algorithm discussed in
Section 1.1 is reviewed in more detail in Section 2, wherein
an object skeleton is traced out through force following
using the repulsive force due to the Newtonian potential
model. Section 3 reviews the generalized potential functions
presented in [2], which will be used in place of the
Newtonian potential for the 3D case. These functions decay
faster than the Newtonian potential function with distance
than as inverse of distance. The efficiency of the proposed
approach results from the fact that these potential functions
and their gradients in three dimensions can be derived in
closed form. Section 4 presents the potential-based 3D
skeletonization algorithm and some implementation details.
Sections 5 and 6 present simulation results and some
discussions, respectively. The conclusions are given in
Section 7.

2 A POTENTIAL-BASED 2D MAT ALGORITHM

In this section, we will review a potential-based algorithm
developed in [1] for the computation of the MA for a 2D
polygonal region. The algorithm assumes that the potential
due to a border point of the region is Newtonian, i.e., it is
inversely proportional to the distance from that point. In
Fig. 3a, the potential function is shown for the interior of a
rectangular region.! Due to the similarity of their defini-
tions, the potential and the distance functions have similar
spatial structures, e.g., peaks, valleys, and ridges. Fig. 3b
shows force fields for the region shown in Fig. 3a. The force
vector at a point is indicated by drawing an arrow. The
arrows, or streamlines, merge along “valleys” (1D potential
minima) and “converge” at points that are 2D potential
minima. Clearly, the potential valleys are closely related to
the corresponding MAT skeletons.

In general, a MAT skeleton consists of potential valleys
and isolated 2D potential minima (or a single 2D mini-
mum). For polygonal regions, all convex corners are end

1. In Fig. 3a, brighter pixels correspond to lower potential values. The
brightness is made to vary logarithmically with potential value.

points of the medial axis. The basic computation of the
MAT skeleton, starting with one of the interior points near
these corners called seed point is described in the following
algorithm:

Algorithm MAT_Newtonian_Polygon

Step 1: Follow the direction of the force to traverse the
skeleton until a zero force is obtained, i.e., a po-
tential minimum is reached.
Repeat Step 1 for each of the seed points.
End the skeleton computation if there is only
one potential minimum.
Derive additional skeleton branches by identi-
fying potential valleys connecting neighboring
potential minima.

Step 2:
Step 3:

Step 4:

Fig. 3c shows skeleton branches obtained with Steps 1
and 2 for the region shown in Fig. 3a. Similarity between the
potential skeleton and the corresponding MA can be
observed by comparing Fig. 3c and Fig. 1.

3 GENERALIZED POTENTIAL FIELDS IN THE 3D
SPACE

In [1], the Newtonian potential is used in place of the
distance function for skeletonization of 2D objects. It is
shown that the potential valley is closely related to medial
axis and can be obtained with simple force following
process, as reviewed in the previous section. One basic
requirement for such an approach to be feasible is that the
potential will diverge at the object’s border; therefore, a
collision between a point charge and the charged border
without considering the dynamics is not possible. In this
paper, the above idea of skeletonization is extended to the
3D space.

In [2], a potential-based modeling of 3D workspace for
collision avoidance is proposed. It is shown that the
Newtonian potential, being harmonic in the 3D space,
cannot prevent a point charge from running into an object
surface which is uniformly charged. This is because the
value of such a potential function is finite at the
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Fig. 4. A polygonal surface S in the 3D space.

continuously charged surface. Subsequently, generalized
potential models are developed to assure collision avoid-
ance between 3D objects. The potential function is inversely
proportional to the distance between two point charges to
the power of an integer and the potential and, thus, its
gradient due to polyhedral surfaces can be calculated
analytically. In this paper, these results will be used in the
generalization of the potential-based skeletonization ap-
proach from 2D to 3D. A preliminary investigation of such a
generalization can be found in [34].

Consider a planar surface S in the 3D space, as shown in
Fig. 4; the direction of its boundary, AS, is determined with
respect to its surface normal, 1, by the right hand rule,
i x 1 =n, where @ and 1 are along the (outward) normal
and tangential directions of AS, respectively. For the
generalized potential function, the potential value at r is

defined as:
ds
— > 1
/S e M2 (1)

where R=|r' —r|, 1’ € S, and integer m is the order of the
potential function. The basic procedure to evaluate the
potential at r is similar to that outlined in [35] for the
evaluation of the Newtonian potential (m = 1) and can be
summarized as follows:

1.  Write the integrand of the potential integral over S
as surface divergence of some vector function.
2. Transform the integral into the one over AS based
on the surface divergence theorem.
3. Evaluate the integral as the sum of line integrals over
edges of AS.
It is shown in [2] that, for m = 3, the repulsive force
exerted on a point charge due to (1) can be found
analytically by summing up the gradients of

1 Tz
y /22 + P2+ 22 ’
evaluated at the two ends of each edge of S, where z, y, and

2 are measured along 1, —ii and f, respectively, for each
edge. The gradient of

2)

1
D(z,y,2) = ;tanf

a
- 3

. 3)
is then included in the final force calculation for nonzero
angular extent « of the projection of r on S, rg. For example,
a = 2r if rg is inside S, a = 7 if rg is on an edge of S.
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In general, the force exerted on a point due to polyhedral
object surfaces, which will be used in the proposed 3D
skeletonization approach discussed next, can be obtained
by summing up the forces due to individual polygonal
object faces. Finally, it is also shown in [2], for m = 3, that
the generalized potential will diverge for a point charge
located on the surface of a polyhedral object, i.e., the
aforementioned basic requirement for the proposed skele-
tonization approach is satisfied.

4 THE 3D SKELETONIZATION ALGORITHM

In this section, an algorithm is developed for deriving the
skeleton of a polyhedral region based on the potential
model described in the previous section. Instead of
generating object skeleton similar to the medial surface,
which is two-dimensional in general, the algorithm yields a
more realistic object skeleton consisting of curved segments.
This 3D skeletonization algorithm is in fact a rather
straightforward extension of its 2D version reviewed earlier
in Section 2.

41 The Algorithm

With the boundary of a polyhedron charged according to
the generalized potential model described in the previous
section, the basic requirement for skeletonization, i.e., the
potential will diverge at boundaries of polyhedral objects, is
guaranteed. Inside the object boundary, the potential valley
corresponds to 3D locations where the potential has locally
minimal value in the 2D subspace perpendicular to the
gradient direction. The proposed approach obtained the
object skeleton by, starting from a selected end point,
traversing the corresponding potential valleys until a
potential minimum is reached. The efficiency of the
approach results from 1) the associated computations are
limited to points in the vicinities of one-dimensional
skeleton branches and 2) the potential gradient, in the form
of repulsive force, used in the approach is analytically
tractable, as discussed in the previous section. Although the
approach will work in theory with generalized potential
functions with different orders, only the one of third order
(m = 3) is considered in this paper for brevity.

The basic concept of the potential-based skeletonization
approach for a polyhedral object is a rather straightforward
generalization of the 2D one. In fact, the general procedures
of the following skeletonization algorithm, starting with one
of the interior points near convex corners of the polyhedron,
also called seed point, are identical (literally) to their 2D
counterparts:

Algorithm MAT_Generalized_Polyhedron
Step 1: Follow the direction of the force to traverse the
skeleton (potential valley) until a zero force is
obtained, i.e., a potential minimum is reached.

Step 2: Repeat Step 1 for each of the seed points.

Step 3: End the skeleton computation if there is only
one potential minimum.

Step 4: Derive additional skeleton branches by identi-

fying potential valleys connecting neighboring
potential minima.



CHUANG ET AL.: SKELETONIZATION OF THREE-DIMENSIONAL OBJECT USING GENERALIZED POTENTIAL FIELD

é

(b)

Fig. 5. (a) Skeleton branches obtained by force following using 10 seed
points. (b) Complete skeleton obtained by connecting neighboring
potential minima according to the procedure given in Section 4.1.

In Step 1, the force following is performed inside the
polyhedral boundary. For a closed polyhedron, there exists
at least one potential minimum since the potential and,
thus, the force field will diverge at its surface [2]. In Step 4,
the line segment connecting a pair of neighboring potential
minima is chosen as an initial estimate of the potential
valley connecting them. (A pair of potential minima are
considered as the neighboring ones if such a line segment
does not intersect any existing skeleton branch or the object
boundary.) The estimate of a potential valley is then refined
for selected point samples along the line segment. For each
point sample, the refinement is carried out with a 2D search
for the potential minimum in the plane perpendicular to the
above line using the projection of the force field in the
plane. (A similar 1D search is needed for Step 4 of
MAT_Newtonian_Polygon reviewed in Section 2.)

Although a convex corner of an object, as in the 2D case,
corresponds to an end point of the skeleton, it is not selected
as a seed point for the above algorithm. This is because the
potential, and thus its gradient, will diverge at the object
surface so that the force following does not make sense. In the
rest of the paper, whenever it is said that a convex corner is
chosen as a seed point for MAT_Generalized_Polyhedron, it
does not refer to the corner itself. Instead, the seed point
corresponds to an interior point of the object which is very
close to that corner.

Fig. 5a shows an L-shaped object and the intermediate
skeletonization results after the execution of Steps 1 and 2 of
MAT_Generalized_Polyhedron for 10 seed points. The 10 po-
tential valleys merge into three, which end at three different
potential minima. It is not hard to show that there are two
pairs of neighboring potential minima. Fig. 5b shows the
complete object skeleton after the potential valleys connect-
ing these two pairs of potential minima are derived by
Step 4 of MAT_Generalized_Polyhedron.

In the above example, discrete estimates are obtained for
point samples along the object skeleton which include
1) skeleton branches between end points of the skeleton and
potential minima and 2) those between neighboring
potential minima. Details of a discrete implementation of
MAT_Generalized_Polyhedron, which include the force fol-
lowing for 1) and the identification of potential valleys for
2), will be given in the following section.
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4.2 Computer Implementation

In this section, computer implementation of MAT_Gener-
alized_Polyhedron for efficient skeletonization of 3D objects is
presented.

4.2.1 Force Following

For the discrete implementation of the first two steps of
MAT_Generalized_Polyhedron, the force following is per-
formed with a finite step size. Each time after the force
exerted on a seed point is calculated using the analytic
results obtained in Section 3, the point is moved one step
along the force direction. For examples considered in this
papet, the step size is chosen to be about 1/100 of the object
length.” Since the location of potential minimum can not be
found exactly with such a simple approach, only an
approximation of its location is obtained. In the computer
implementation, the location of a potential minimum is
assumed to be found if a further movement of the seed
point along the force direction will result in a reverse in the
force direction. In particular, the program will determine if
the directions of the two forces are different by more than
90°. In general, there is a trade-off between the preciseness
in estimating the location of a potential valley (and a
potential minimum) and the step size adopted for the force
following and, thus, the computation time.

In MAT_Generalized_Polyhedron, the required computa-
tion for the force following is further reduced by stopping
the process if, before a potential minimum is reached, the
seed point has reached a previously derived skeleton
branch. The idea is that once this happens, subsequent
force following process will just have the associated
skeleton branch merge® with the skeleton branch found
earlier and, thus, end with the same potential minimum. In
Fig. 5a, only three of the 10 seed points are moved to reach
the three potential minima, respectively, while force
following for the rest seed points ends when a merge of
skeleton branches occurs.

4.2.2 Connecting Neighboring Potential Minima

If only a single potential minimum is obtained from the
above force following procedure, the complete skeleton is
generated; otherwise, potential valleys between neighbor-
ing potential minima need to be derived to form the
complete skeleton. To estimate the locations of such
potential valleys, we first connect each pair of neighboring
minima with a virtual line segment. Equally spaced point
samples are then selected along the line segment as initial
estimates of point samples along the associated skeleton
branch. For examples considered in this paper, the spacing
is chosen to be comparable to the step size chosen in the
previous subsection. These estimates are then refined by

2. This step size is arbitrarily chosen to give an appearance of continuity
and smoothness of the skeleton.

3. To test the merge of skeleton branches, the smallest rectangloid
containing the 3D object is decomposed into cubes of dimension
comparable to the sampling spacing (the above step size for force following)
of the skeleton. A status bit is associated with each of the cubes indicating
whether a skeleton point is contained in that cube or not. For each new
skeleton point generated with the proposed algorithm, the status bit
associated with the cube containing that point is checked to see if a merge in
skeleton branches occurs. The complexity of such a test is very low.
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Fig. 6. (a) A cube and its MA representation reproduced from [33].
(b) The skeleton derived by the potential-based method.

(a) (b)

Fig. 7. (a) A rectangloid and its MA representation. (b) The skeleton
derived by the potential-based method.

finding a 2D potential minimum for each of these samples,
as discussed next.

For each initial estimate of skeleton samples, a minimum
potential location is searched in the 2D subspace perpendi-
cular to the virtual line segment. The result corresponds to a
point located at the potential valley and is regarded as the
final estimate of a skeleton point. The search is carried out
along two orthogonal directions, alternately, each with a
1D binary search using the projection of the repulsive force
along one of the directions. (One search direction is chosen
to be along the projection of the force experienced by the
initial estimate in the 2D subspace.) Each binary search ends
when the minimum is located with a predetermined
accuracy equal to 1/10 of the sampling spacing of initial
estimates of skeleton points on the virtual line segment. The
search for a particular skeleton point on the skeleton branch
under consideration ends when two consecutive
1D searches result in an insignificant difference, which is
also chosen to be 1/10 of the above sampling spacing, in the
estimated location of the skeleton point. Fig. 5b shows the
complete object skeleton after two additional skeleton
branches are derived to connect the three potential minima
obtained in Fig. 5a.

5 SIMULATION RESULTS

In this section, some 3D skeletonization examples based on
the proposed approach will be presented. In contrast to the
two-dimensional medial axis (surface), the skeleton ob-
tained with MAT_Generalized_Polyhedron for a 3D object is
intrinsically one-dimensional. These examples show that an
object skeleton thus obtained is closely related to the
network of vertices and edges forming the boundary of
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Fig. 8. (a) A dodecahedron and its skeleton. (b) An icosahedron and its
skeleton.

Fig. 9. (a) A tetrahedron and its skeleton. (b) A triangular prism and its
skeleton.

junction point

seam-end point

seam

(@) (b)

Fig. 10. (a) A rectangular hexahedron and its MA representation. (b) The
skeleton derived by the potential-based method.

the MA. (In some cases, they are identical.) On the other
hand, there are some interesting examples in which, for
some sheets of the MA, parts of the skeleton branches
obtained with the proposed approach are not the boundary,
but the (1D) skeleton of those sheets.

For a cubic object, the seam of its MA derived in [33] and
the skeleton obtained with MAT_Generalized_Polyhedron are
shown in Figs. 6a and 6b, respectively. In this case, the MA
has 12 sheets and the two representations are equivalent.
Fig. 7 shows similar results for a rectangloid obtained by
elongating the cube shown in Fig. 6 along one of the edge
directions. The two skeletonization results, shown in Fig. 7a
and Fig. 7b, are quite similar. The latter is an approximation
of the former, but is spatially more smooth near the two
junction points. It is easy to see that, for regular polyhedra,
e.g., those shown in Fig. 8, the two representations will be
identical. Fig. 9 shows more skeletonization results.

In Fig. 10, the MA and the skeleton obtained with the
proposed approach are shown for an 8 x 6 x 3 rectangular
box. The two representations are quite similar except for a
sheet of MA, which is illustrated in Fig. 10a as a shaded
rectangle. This rectangle corresponds to the sheet which is
located in the interior of the box and is thus bounded by
seams only. For such a sheet, the skeleton branches
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Fig. 11. (@) An echelon hexahedron and its skeleton. (b) A decahedron

and its skeleton.
<Z S

(b)

Fig. 12. (a) An L-shaped polyhedron and its MA representation. (b) The
skeleton derived by the potential-based method.

obtained with MAT_Generalized_Polyhedron, as shown in
Fig. 10b, do not correspond to its boundary (seams).
Instead, these branches correspond to the (1D) skeleton of
that sheet (cf. the one shown in Fig. 1). The skeleton shown
in Fig. 10b, being one-dimensional, can in fact be regarded
as a more realistic skeletal representation of the box.* Fig. 11
shows two similar examples in which internal sheets of MA
are represented by 1D skeletons.

Fig. 12 shows the skeletonization results similar to Fig. 5b.
Due to the small change in shape for one arm of the
L-shaped object, an internal sheet of MA is formed, as
illustrated as the shaded area in Fig. 12a. Again, the
potential-based skeleton shown in Fig. 12b gives the
1D skeleton of that sheet. Since there are multiple potential
minima, Step 4 of MAT_Generalized_Polyhedron is performed
to connect them. Fig. 13 shows an example in which six
potential minima are generated by force following. The
complete skeleton is obtained by connecting the potential
valleys between three pairs of neighboring minima.

For an object having multiply connected faces, these
faces have to be subdivided into simply connected regions.
This is because the analytic results for the force fields given
in Section 3 are derived only for simply connected
polygons. Fig. 14a shows an object whose top and bottom
faces are multiply connected. Fig. 14b shows one way of
subdividing these faces into simply connected polygons.
The skeletonization result for such an object is shown in

4. Such a representation will be more desirable than the MA if the
application of the skeletonization results in path planning is of interest.
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Fig. 13. A 3D polyhedron with three long rectangular polyhedra crossed

over.
(@) (b)

Fig. 14. (a) A rectangloid with a square hole drilled through it. (b) A
subdivision of multiply connected faces into simply connected ones.

Fig. 15a. There are four pairs of neighboring potential
minima which are connected to form a loop of four skeleton
branches. For a cube with a cubic cavity in it, as shown in
Fig. 15b, all faces are simply connected and, thus, can be
used directly in calculating the force fields for force
following. The derived skeleton branches can be regarded
as the boundary of 18 surface patches which are topologi-
cally very similar to the corresponding MA. (For an
approximation of the MA, please see [33].)

6 DiscussiON
6.1 Stability and Flexibility
Unlike other skeletonization approaches, which may be
very sensitive to perturbations of the object boundary, i.e.,
the number of skeleton branches need to be dealt with will
change dramatically, the proposed approach is relatively
insensitive to such noises and may deal with the same
number of skeleton branches (seeds) if the selection of seeds
is not affected by the noise. In addition, the skeleton derived
according to the potential model for an object with noisy
boundary can be very similar to that obtained from the
noise-free case. This is because the potential function (and,
thus, the resultant force fields) in the 3D space inside the
object boundary is obtained by superposing the repulsive
potential due to all boundary elements, which tends to
average out the noise. Fig. 16a shows a polyhedron with six
noise-free faces and its skeleton and Fig. 16b shows similar
results obtained for a noisy boundary which has a total of
832 faces with 1 percent position error added to its vertices.
One can see that the potential-based skeletons obtained for
these two objects are very similar. (The skeleton shown in
Fig. 16b is shown again by itself in Fig. 16c to make easy the
comparison.)

In the above example, same number of seed points are
manually selected for both objects. In Fig. 16b, the selected
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(b)

Fig. 15. (a) The skeleton derived for the object shown in Fig. 14. (b) A
cube with a small cubic cavity in it and its skeleton.

eSS ESSar:
TAVANAVAVAYAN

(©

Fig. 16. (a) A rectangloid and its skeleton. (b) A similar rectangloid with
832 faces and its skeleton. (c) The skeleton shown in (b).

points are located near the six vertices of highest curvatures.
In general, the proposed approach can be very flexible in the
sense that, instead of using all convex vertices, the skeleto-
nization can be performed for only a subset of them. The seed
points can either be determined automatically according to
some geometric features such as curvature (see [36]) or
manually by identifying (the end points of) the skeleton
branches of interest. Thus, there is no need to go through the
expensive processes of generating the complete skeleton and
then trimming away the unwanted skeleton branches.

6.2 Complexity

The proposed skeletonization approach is not only easy to
implement, the associated algorithm is also of low time
complexity because the generalized potential field is
analytically tractable. Suppose a polyhedron has n faces.
For each step of the force following process, the time
complexity for calculating the repulsive force exerted on a
point sample on the skeleton due to those faces is O(n).
Thus, for obtaining m' point samples of object skeleton
through force following, the time complexity is O(nm/).
Similarly, it is not hard to show that if m/’ points are needed
in connecting the potential minima obtained from the force
following process, the time complexity for finding these m’’
samples of the object skeleton is O(nm'). Thus, the time
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TABLE 1
Computation Time for the Skeletonization of a Rectangloid
with a Noisy Boundary for Different Numbers (ns)
of Surface Patches

n CPU time(sec)
6* 1.03
52 5.83
208 21.92
832 87.09
1126 143.08
3328 354.51
4846 499.05
13312 1409.93
20086 2115.60

complexity for finding the complete object skeleton is
O(nm), where m =m’ +m" is equal to the total number
of point samples of the skeleton. Therefore, for fixed
number of skeleton branches (seed points), the time
complexity for deriving the object skeleton is approximately
a linear function of the total number of object faces. Table 1
shows the computation time for deriving the skeleton of a
rectangloid with a noisy boundary, for different numbers
(ns) of surface patches. For the rectangloid shown in
Fig. 16a, the skeletonizaton takes about 1 second (cf.
101 seconds for obtaining the MA of a similar object in
[33]) on an Ultra Sparc I. Fig. 17 shows that the computation
time is indeed very close to a linear function of n.

Typically, the CPU time for computing the skeleton of a
discrete 3D object, i.e., for 3D thinning, is proportional to
the number of object “voxels” if they are processed
sequentially. In [30], [31], and [32], parallel algorithms are
proposed. However, no indication of computation time is
provided in the literature.

6.3 Connectedness of the Skeleton

The proposed approach traverses a skeleton branch by
following the negation of the potential gradient according
to Steps 1 and 2 of MAT_Generalized_Polyhedron until a
potential minimum is reached. Since the underlying
potential valley is spatially smooth, the derived skeleton
samples can be connected directly to form a reasonable,
piecewise linear approximation of the corresponding
skeleton branch if the spacing between these samples is
sufficiently small. Thus, for a given set of seed points (end

CPU time
2000
1500
1000

500

5000 10000 15000 20000

number of faces

Fig. 17. The CPU time shown in Table 1 plotted as a function of the
number of surface patches of the object.
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Fig. 18. The skeleton branch connecting the two potential minima
obtained for a bean-shaped object.

points of the object skeleton), the problem of connectedness
of the skeleton is reduced to a simpler one which is only
concerned with the connectedness of the potential minima
obtained from those seeds. While a simplified connecting
procedure, which uses a line segment as an initial guess of
the potential valley between two neighboring minima, is
adopted in Section 4.2. with reasonable object skeletons
generated, an object skeleton thus obtained may still be
unconnected, i.e., having unconnected potential minima, for
more complex situations.

For example, Fig. 18 shows the skeleton branch connect-
ing the two potential minima obtained for a bean-shaped
object. The aforementioned, simplified procedure will omit
this skeleton branch since the line segment connecting the
two minima intersects the object boundary. One way of
generating an initial guess of a skeleton branch for this more
complex situation is to adopt the visibility graph method”
(see [37] for a comprehensive review). For the two potential
minima shown in Fig. 18, a visibility graph connecting them
(and one of the nonconvex object vertices) consists of two
line segments. Although the graph will not cross the
boundary of the object, it may consist of some boundary
points, e.g., the above object vertex, wherein the potential
will diverge. Thus, a modified graph obtained by replacing
the object vertex with a nearby interior object point is used
as the initial guess in the derivation of the skeleton branch
shown in Fig. 18.

Although the connectedness of the object skeleton with
respect to the derived potential minima can be tested easily
and the skeleton branch between any two unconnected
minima can be derived based on the above visibility graph-
based method, a systematic way of identifying pairs of
unconnected minima which require further connecting
process is beyond the scope of this paper.® On the other
hand, extraneous links between the minima may also be
considered by the simplified connecting procedure as initial
guesses of skeleton branches connecting them. Fig. 19a
shows four potential minima obtained for an elongated
object by Steps 1 and 2 of MAT_Generalized_Polyhedron.
Although the six line segments connecting the four
potential minima are used as initial guesses of the skeleton

5. In the 2D space, the approach generates the shortest path between two
points among polygonal obstacles. The path consists of polygonal lines
running through vertices of the obstacles and is thus semifree. In the 3D
space, the visibility graph method can still be applied, but the generated
path may not be the shortest one (which is all right as an initial guess for the
proposed skeletonization approach).

6. For example, suppose MAT_Generalized_Polyhedron generates two sets
of connected potential minima, but with no skeleton branch existing
between the two. The identification of a pair (or pairs) of potential minima,
each from a different set, to be connected in order to resolve the
connectedness problem is not straightforward in general.
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(@) (b)

Fig. 19. (a) Four potential minima obtained for an elongated object. (b) A
single skeleton branch connecting all four minima.

branches connecting the minima, the final results corre-
spond to a single skeleton branch connecting all four
minima, as shown in Fig. 19b. Thus, the connecting process
does not seem to result in an erroneous topology of the
skeleton in this case. More discussions on topological
relationships between an object and its skeleton will be
given in the following section.

6.4 Shape Representation and Reconstruction

In [1], it is shown that, in the 2D space, the potential-based
object skeleton will converge to the classical medial axis if
the order of the potential is allowed to increase indefinitely.
In the 3D situation, however, since the proposed method
generates 1D skeleton while the medial surface is a two-
dimensional, the latter cannot be approximated by the
former in general. On the other hand, since the medial
surface is formulated based on the concept of minimum
distance, an 1D subset of the surface can be approximated
by the potential-based object skeleton for sufficiently large
order of the potential function. In particular, except for the
skeletonization results obtained for the internal sheet of the
medial surface, the skeleton obtained with MAT_Generali-
zed_Polyhedron can be made arbitrarily close to the
corresponding seams of the medial surface. For example,
if a skeleton sample obtained with MAT_Generalized_Poly-
hedron is used as an initial estimate of a seam point, a better
estimate can be obtained in the plane perpendicular to the
direction of the skeleton branch by looking for the potential
minimum due to a higher order potential function. This is
due to the fact that, as the order of the potential increases,
the potential function will depend more on the nearest
boundary points, therefore, the potential minimum in the
plane will be closer to the corresponding seam point—the
center of a locally maximal ball.”

As for the object skeleton obtained in the internal sheet
area, the former will not be the skeleton of the latter except
for some special cases. For example, the internal sheet
shown in Fig. 10 is equidistant to two parallel object faces
and the rest of the object faces are perpendicular to the two
faces; therefore, the skeletonization in such a sheet region
degenerates to a 2D one since all influences in the third
dimension are cancelled out. Similar results can be found in
Fig. 12. In Fig. 11a, the internal sheet is also equidistant to
two parallel object faces, but the rest of the object faces are
not perpendicular to the two faces. However, since the
object has square top and bottom faces and is symmetrical
with respect to the vertical line connecting centers of the
two faces, the object skeleton obtained in the internal sheet
area corresponds to the skeleton of that sheet. On the other
hand, Fig. 11b shows a more general situation where the

7. A vigorous proof of such a claim can be carried out in a way similar to
that given in [1] for the 2D case and is omitted for brevity.
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Fig. 20. A GC axis of a retangular hexahedron.

object skeleton will not converge to the MA of the internal
sheet, even for a potential function of arbitrarily high order.

In addition to the differences between the skeleton derived
with the proposed approach and the medial surface as
skeletal representations of a 3D object, the two representa-
tions are also different with regard to shape reconstruction. In
theory, a 3D object can be reconstructed from its medial
surface by the union of the maximal balls centered at every
point of the surface, as presented in [38]. However, it is easy to
see that using the 1D skeleton in place of the medial surface in
the above approach will not result in an acceptable shape
reconstruction in general. On the other hand, shape recon-
struction with the 1D skeleton will be more similar to that
associated with the generalized cylinder (GC), another
popular shape descriptor [39]. In the following, we will
briefly describe the GC-based representation and reconstruc-
tion and possible ways of achieving similar goals based on the
proposed skeletonization approach.

The GC representation consists of a space curve, or axis,
and a cross-section function defined on this axis. The shape
of a simple object can be obtained by sweeping the cross-
section along a single GC axis. Fig. 20 shows a GC of a very
simple form with the axis being a line segment. If the
sweeping is performed with the line segment perpendicular
to the cross-section, the two will intersect at the centroid of
the latter with the latter being a rectangle of fixed size. For
n discrete axis samples, an object can be reconstructed
approximately with a sweeping process which corresponds
to a linear interpolation from the n cross-sections. A
desirable accuracy of the approximation can be achieved
by using sufficiently large n.

We will now use the above example to demonstrate one
possible way of obtaining the GC axis based on the
proposed potential model.® Assuming the two ends
(cross-sections) of the GC shown in Fig. 20 are given in
advance, the GC axis can simply be obtained by identifying
the potential valley connecting the centroids of them. (The
axis samples in Fig. 20 are in fact obtained with
MAT_Generalized_Polyhedron with the two centroids as
seeds.) Because the proposed potential model is used in
finding both of them, the GC axis thus obtained and the
object skeleton shown in Fig. 10b coincide except at
locations near the two ends of the GC.

The main difference between the GC axis and the object
skeleton in reflecting the object topology can be described
most conveniently by considering prismatic objects (see
Figs. 7b and 9b for examples). While the axis and the
cross-section of GC will simply be the principal axis and the

8. A systematic way of deriving the GC axis for more general cases is
currently under investigation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 11,

NOVEMBER 2000

cross-section of a prism, respectively,” the object skeleton
obtained with the proposed approach is more complex near
the two end cross-sections of the GC where the topology of the
skeleton is governed by the shape of the end cross-sections
through the selection of seeds (which are convex vertices of
the cross-sections in our case). In general, for an object
consisting of elongated parts (see Figs. 12 and 13 for
examples), both representations will reflect similar topologi-
cal (skeletal) properties of each part of the object, except for
the above differences and, in turn, those of the whole object.
The same also holds for solids assembled by full tori (see
Fig. 15a for a simple torus of rectangular cross-sections).

For an object having comparable dimensions in all
directions, e.g., the regular polyhedra, its skeleton will
convey little information regarding the principal direction
of its elongation. As for objects having cavities, consider the
object with one cavity shown in Fig. 15b. A disturbance in
the object skeleton, compared with that shown in Fig. 6b,
can be observed. The disturbance corresponds to a cube of
skeleton branches surrounding the cavity. More research is
needed for a systematic way of obtaining topological
properties of an object from its skeletal representations.

7 CONCLUSION

In this paper, we have presented a generalized potential-
based algorithm for efficient computation of the skeleton of
a 3D object. The skeletonization algorithm is a direct
extension of the 2D approach presented in [1], where
potential valleys are used to estimate the medial axis. The
potential captures the information about the distance of an
interior point from different portions of object surface into a
single scalar function. The closed-form expression of the
potential gradient is used to improve the accuracy and
efficiency in locating the potential valleys. The potential
valleys are continuous, spatially smooth, and insensitive to
perturbations of the object boundary. Moreover, the
proposed skeletonization approach offers the flexibility that
the algorithm can generate part of the skeleton without the
need to derive the complete skeleton first. Unlike medial
surfaces, an object skeleton obtained with the proposed
approach consists of 1D curves. Such a skeletal representa-
tion of an object will be more useful in applications such as
path planning. The algorithm can also be used as a 3D
thinning algorithm.
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