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Abstract

The embedded zerotree wavelet (EZW) algorithm, introduced by J.M. Shapiro and extented by A. Said and W.A.
Pearlman, has proven to be a computationally simple and e$cient method for image compression. In the current study,
we propose a novel algorithm to improve the performance of EZW coding. The proposed method, called enhanced
zerotree coding (EZC), is based on two new techniques: adaptive multi-subband decomposition (AMSD) and band #ag
scheme (BFS). The purpose of AMSD is to change the statistics of transformed coe$cients so that the coding
performance in peak signal-to-noise ratio (PSNR) can be elevated at a lower bit rate. In addition, BFS is used to reduce
execution time in "nding zerotrees. In BFS the tree depths are controlled, therefore, many unnecessary comparison
operations can be skipped. Experimental results show that the proposed algorithm improves the performance of EZW
coding and requires low computational complexity. In addition, the property of embedded coding is preserved, which
enables a progressive transmission. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Transform coding is a well-known and widely
used technique in image compression. The purpose
of the transformation is to produce decorrelated
coe$cients and remove redundancy. In the past
decade, the discrete cosine transform (DCT) has
been the most popular because it provides an al-
most optimal performance and can be imple-
mented at a reasonable cost. However, discrete
wavelet transform (DWT) has been widely used

recently because of its ability to solve the blocking
e!ect introduced by DCT and its suitability in
multi-resolution analysis. Moreover, in a pyr-
amidal decomposition scheme, DWT also yields
some degree of the self-similarity across di!erent
scales, which is helpful in image compression.

By taking advantage of DWT, the embedded
zerotree wavelet (EZW) coding algorithm, intro-
duced by Shapiro [12], has shown that the EZW
was not only competitive in its performance with
the most complex techniques but also extremely
fast in execution. In addition, it also has several
other merits: it requires no pre-stored tables, no
training, and produces fully embedded codes, i.e.,
codes corresponding to a lower rate R bits always
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forms the "rst R bits of those codes with a higher
rate. With embedded coding, it is possible to stop
the decoding process at any point of the com-
pressed "le, and to allow coding/decoding to the
exact desired rate or distortion.

Said and Pearlman extended EZW by presenting
a di!erent implementation called set partitioning in
hierarchical trees (SPIHT) [11]. The performance
of SPIHT not only surpasses the original EZW in
both the peak signal-to-noise ratio (PSNR) and the
execution time, but also shows that SPIHT is
almost the best coder in related studies. Because
EZW-like coder can provide an e$cient coding for
still images and visual textures, the MPEG-4 stan-
dard also uses it in the visual texture mode [7]. In
addition, EZW-like coder can also provide spatial
and quality scalabilities, which are the desired func-
tionalities of the MPEG-4 standard [3,5,13]. An-
other extended version of EZW, called zerotree
wavelet video coder, is applied to video coding [9].

EZW's excellent performance is based on three
concepts [11]: (1) partial ordering of the trans-
formed coe$cients by magnitude, (2) ordered bit
plane transmission, and (3) exploitation of self-sim-
ilarity across di!erent scales of an image wavelet
transformation. Because the distribution of the
magnitudes of transformed coe$cients will a!ect
EZW coding, one method to improve the EZW
coding performance is to change the statistics of the
magnitudes. Demirciler and Freeman [4] suggested
a "xed type of multi-bandwidth wavelet decompo-
sition for all images. They applied distinct wavelet
functions to the decomposition of di!erent scales
and performed better than the original EZW. How-
ever, for di!erent images, an adaptive type of de-
composition is more e!ective than a "xed type. To
obtain a better transforming e$ciency, some re-
searchers proposed adaptive types of wavelet de-
composition, such as the wavelet packet [10] and
the space-frequency decomposition [16,6]. How-
ever, these methods are generally based on a rate-
distortion sense, and therefore high computational
complexity is required to "nd the optimal operat-
ing point in the rate-distortion curve. In
addition, they could not give their best perfor-
mance with a single embedded "le, and they re-
quired, for each rate, the optimization of a certain
parameter.

To retain all the merits of EZW coding, we pres-
ent another adaptive type of wavelet decomposi-
tion. The proposed method, called adaptive multi-
subband decomposition (AMSD), is a type of
wavelet packet, but it has a lower computational
complexity. The idea of AMSD arises from the
observation in Mallat's work [8]. In that work, he
used a two-dimensional (2-D) DWT to decompose
an image with a rectangular region, and produced
two vertical bars in the band HL and two horizon-
tal bars in the band LH. The "rst letter of HL or
LH denotes that the image is either "ltered by
a lowpass "lter (L) or a highpass "lter (H) in the
horizontal orientation. Meanwhile, the second let-
ter is the state of the vertical orientation. The coe$-
cients in the bars are of high correlation. Therefore,
if an image consists of many rectangular regions,
we expect to further remove the correlation of the
coe$cients in the bars by using one-dimensional
(1-D) DWT to decompose the band HL in the
vertical orientation, and the band LH in the hori-
zontal orientation. This idea is instinctive but later
we will show that the determination for the
decomposition is based on the feature of EZW
coding.

In addition to AMSD scheme, we also propose
a band #ag scheme (BFS) to speed up a zerotree
coding. Generally, a tree consists of all the nodes
with a parent}child relationship. A node (i.e. trans-
formed coe$cient) C(i, j) is considered insigni"cant
with respect to a given threshold ¹

n
, if DC(i, j)D(¹

n
.

Otherwise, it is signi"cant. For convenience, we
de"ne a signi"cant test as

S
Tn

(C(i, j))"G
1 if DC(i, j)D*¹

n
,

0 otherwise.
(1)

A tree is called a zerotree if all its nodes are insigni-
"cant. To "nd out a zerotree, the regular approach
is to perform (1) for each node of the tree from root
to leaf nodes in breadth-"rst approach. If one re-
sults in 1, the tree is not a zerotree and the sub-
sequent tests can be waived. Otherwise, the tree is
a zerotree and we will not get the answer until the
last test is performed. In fact, we can use BFS to
omit many unnecessary tests. Observing the aver-
age magnitude of transformed coe$cients in each
band, we "nd that the magnitudes generally decay
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Fig. 1. Block diagram of enhanced zerotree coding.

Fig. 2. Pyramidal wavelet decomposition and parent}child
dependency for tree structures.

from the coarsest scale to the "nest scale. Therefore,
for some given thresholds it is possible for all the
nodes, located on the bands of "ner scale, to be
insigni"cant. For these bands, we can temporarily
disable them for coding to save running time. Later,
we will show that, by using BFS, we can speed up
a zerotree coding without increasing computa-
tional complexity.

Fig. 1 illustrates the block diagram of our pro-
posed enhanced zerotree coding (EZC). The coding
algorithm of EZC is based on SPIHT [11]. The
di!erence is that EZC is supplemented with AMSD
and BFS. It is worth mentioning that the use of
AMSD does not change the parent}child depend-
ency of tree structure, and, by using BFS, it only
changes the number of nodes to be tested. Thus, it
is easy to apply the algorithm of SPIHT to EZC.
Notably, the entropy coding used herein is an
adaptive arithmetic coding referring to Witten
et al. [15]. For simplicity, the following sections
explain the designs of AMSD and BFS in binary bit
plane excluding the entropy coding. We want to
emphasize that the proposed coder preserves the
property of the embedded coding. In other words,
the transmitted codes or compressed "le is com-
pletely embedded, so that a single "le for an image
at a given bit rate can be truncated at various
points and decoded to give a series of reconstructed
images at lower bit rates.

The organization of this paper is listed as follows.
Section 2 brie#y introduces the zerotree algorithm
of SPIHT. For more details refer to [11]. Section 3
discusses the design of AMSD. Section 4 describes
BFS and how to store the signi"cant information
of each band for decoding. Section 5 gives some
experimental results to show the e$ciency of
proposed EZC algorithm. The performance is
compared with SPIHT. The conclusions are re-
ported in Section 6.

2. Brief review of SPIHT

Fig. 2 illustrates a typical three-scale pyramidal
decomposition of an image. The image is generated
by three stages of two-dimensional (2-D) DWT [1].
The notations LL

i
, HL

i
, LH

i
and HH

i
denote the

output channels from the ith stage. The parent}
child dependency for tree structures is also demon-
strated. In Fig. 2, except the nodes located on bands
HL

1
, LH

1
and HH

1
, each node has four children

nodes. The nodes in LL
3

are isolated, and they will
be coded independently.

We call a node (i.e. transformed coe$cient) C(i, j)
at a coarse scale a parent. All nodes at the next "ner
scale with the same spatial location, and of similar
orientation are called children, this set denoted
O(i, j). More precisely, O(i, j)"MC(2i, 2j), C(2i, 2j#
1), C(2i#1, 2j), C(2i#1, 2j#1)N. All nodes at all
"ner scales with the same spatial location, and
of similar orientation are called descendents,
denoted D(i, j). A set ¸(i, j) is de"ned as
¸(i, j)"D(i, j)!O(i, j), and the set H is the group of
coordinates of all the tree roots (HL

3
, LH

3
and

HH
3

in Fig. 2). We also refer to a set as signi"cant if
one of its nodes is tested by (1) and the result is 1. If
D(i, j) is signi"cant, then it is partitioned into O(i, j)
and ¸(i, j). If not, it is a zerotree of type A. If ¸(i, j) is
signi"cant, then it is partitioned into MD(2i, 2j),
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Fig. 3. An example of adaptive multi-subband decomposition.
Herein, the bands LH

i
for all i are further decomposed at once

by using 1-D DWT.

D(2i, 2j#1), D(2i#1, 2j), D(2i#1, 2j#1)N. Other-
wise, it is a zerotree of type B. If we encounter
a zerotree, we code such tree as a zerotree symbol,
and avoid to code all its nodes. The nodes are
scanned by the order of importance. It is performed
so that no child is scanned before its parent. There-
fore, one starts scanning the nodes C(i, j) for (i, j)3H
and the sets D(i, j) for (i, j)3H. The result of signi"-
cant test for a node or for a set is coded. In addition,
for each node C(i, j), if it is signi"cant, its sign bit is
also coded.

The process begins with deciding the maximal
value of n of threshold ¹

n
. In a uniform successive

approximation quantization (USAQ), the value of
n can be obtained by using

n" log
2

max
(i,j)

MDC(i, j)DN , (2)

where xxy is to truncate x near to zero. Then the
following two passes, the sorting pass and re"ne-
ment pass, are used for every n value. In the sorting
pass, we scan C(i, j), D(i, j) and ¸(i, j) in the scanning
order described above, extract signi"cant nodes,
and put them into a list of signi"cant pixels (LSP).
In the re"nement pass, however, another bit of
precision is added to the magnitudes of nodes in the
LSP. We decrease n by one, i.e., cut the threshold in
half, and use these two passes for each n in the order
of the re"nement pass "rst until some terminating
condition is met, such as that the bit budget is
exhausted.

3. Adaptive multi-subband decomposition

The purpose of AMSD is to further decompose
the bands LH

i
and HL

i
as shown in Fig. 2. We use

only 1-D DWT to the horizontal orientation of
the bands LH

i
, and to the vertical orientation of the

bands HL
i
. To preserve self-similarity across di!er-

ent scales, we take all the bands LH
i
into consid-

eration. This means, if LH
1

is decomposed, all the
bands LH

i
for i'1 are decomposed as well. Like-

wise, all the bands HL
i

are considered together.
Fig. 3 illustrates such decomposition. In this illus-
tration, all the bands LH

i
are further decomposed

at once by using 1-D DWT. Notably, we limit the

times of the 1-D decomposition at the same ori-
entation to two. In addition, the parent}child de-
pendency of a tree structure remains unchanged no
matter how many times the 1-D decomposition is
performed.

The algorithm for AMSD is as follows. First of
all, check the LH

1
subband, and partition the en-

tire region of LH
1

subband into many nonoverlap-
ped microblocks, where each microblock M

k
is of

size 2]2 and is composed with four nodes. Calcu-
late the number of bits N

k
for each M

k
by using

N
k
"4 log

2
max
(i,j)|Mk

DC(i, j)D . (3)

Let N
0-$

"+
k
N

k
. Next, decompose LH

1
into low-

frequency containing subband LH
1
(L

1
) and high-

frequency with subband LH
1
(H

1
). Calculate the

number of bits NI
k

for each MI
k

by using a similar
formula as (3), where MI

k
locates at the same place

as M
k

but the magnitudes of the nodes it contains
have been changed. Let N

/%8
"+

k
NI

k
. Finally, if

N
/%8

'N
0-$

, recover to the state of the band LH
1

and exit. Otherwise, check the subband LH
1
(L

1
) by

using this algorithm. Notably, when LH
1
(L

1
) is

checked, the number of microblocks is reduced to
half of the original. Assuming that decomposing
LH

1
(L

1
) generates LH

1
(L

2
) and LH

1
(H

2
), we will
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Fig. 4. Example of band #ag scheme. The shadow regions representing these subbands are disabled for coding with respect
to the current threshold (a) for ¹

n
; (b) for ¹

n~1
"¹

n
/2. The parent}child dependency of bands is also displayed in (a). In (b) the solid

arrows indicate how far the tree depth goes.

exit this algorithm before decomposing LH
1
(L

2
).

Since the 1-D decomposition is done at most two
times, we can use 2 bits to record how many times
the decomposition occurs. Likewise, this algorithm
is applied to the HL

1
subband.

Now, we will explain why we use (3) to calculate
the number of bits cost for M

k
. Consider a D(i, j)

with (i, j) located on LH
2
. Then the nodes of O(i, j)

are located on LH
1
. Assuming that D(i, j) is signi"-

cant (not a zerotree) and corresponds to the current
threshold, it will be partitioned into O(i, j) (i.e. four
single nodes) according to the algorithm of SPIHT.
For each node, if it is insigni"cant, it will be moved
to a list of insigni"cant pixels (LIP). Otherwise, it
will be moved to LSP. To identify the state of each
node, one bit should be sent out even if the node is
insigni"cant. At the next threshold, one bit is sent
out for each node in LIP to denote whether it is
signi"cant or not, and one bit is sent out for each
node in LSP to re"ne its magnitude. Hence, once
one of the four nodes is signi"cant, the other
three nodes will cost the same number of bits as the
signi"cant one. This accounts for why we use (3) to
calculate the number of bits cost for M

k
.

By using the proposed algorithm, a di!erent
image may produce a di!erent decomposition on

the bands HL
i
and LH

i
for all i, which accounts for

why the proposed decomposition is an adaptive
multi-subband decomposition.

4. Band 6ag scheme

BFS is used to reduce the time spent on zerotree
searching. In BFS, each band=

k
is associated with

a #ag F
k

to denote its state (enabled or disabled). If
F
k

is true, =
k

is enabled for encoding and decod-
ing. Otherwise,=

k
is disabled.

The algorithm of BFS in encoding is as follows.
Firstly, set F

k
for all k to be false and evaluate the

band information B
k

for each =
k

by using

B
k
" log

2
max
(i,j)|Wk

DC(i, j)D . (4)

Next, calculate the modi"ed band information BI
k
.

If =
k
}=

l
has a parent-child relationship (for

example=
4
}=

5
and=

0
}=

10
in Fig. 4(a)), then let

BI
k
"max(B

k
, B

l
). In addition, let BI

k
"B

k
if

=
k

has no child (=
3
,=

6
,=

9
and =

12
in

Fig. 4(a)). Now, the values of BI
k
's are descending

from the coarsest scale to the "nest scale. Therefore,
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Fig. 5. De"nition of encoding time ¹
E
. ¹

I
: input time; ¹

T
: transform time; ¹

Z
: zerotree-encoding time; ¹

O
: output time.

¹
E
"¹

I
#¹

T
#¹

Z
#¹

O
.

for all k (excluding k"0), we can di!erentially code
BI
k

by using the relation of parent}child depend-
ency of bands. Finally, for each threshold
¹

n
(¹

n
"2n), set F

k
to be true if BI

k
*n where n is

the index of the threshold ¹
n
. Notably, the value of

n is descended in USAQ. Thus, if F
k

is true at
current threshold, the state of F

k
keeps unchanged

at the following thresholds.
Fig. 4 illustrates an example of BFS. The shadow

regions representing these bands are disabled with
respect to the current threshold. In this example,
only the bands=

0
,=

1
and=

10
are enabled at ¹

n
(Fig. 4(a)), and so are the bands=

2
, =

3
,=

4
,=

7
and=

11
at ¹

n~1
(Fig. 4(b)). For larger value of n,

more bands are disabled and it results in a shorter
tree depth. This can help us save running time if we
encounter zerotrees. For example, if a D(i, j) has
coordinate (i, j) located on =

1
and is a zerotree

(of type A), by disabling=
2

and=
3

(as shown in
Fig. 3(b)) we can save 20 tests of (1), four for the
nodes in=

2
and 16 for the nodes in=

3
, for this

zerotree. In Fig. 4(a) we also indicate the par-
ent}child dependency of bands. In addition, the
arrow in Fig. 4(b) denotes how far the tree depth
goes.

Note that we use BI
k

to serve as band enabled
information instead of B

k
. This arrangement is

made for two purposes. First, if some subbands
violate the decaying spectrum, we can avert the
case of a tree with many coe$cients in the disabled
subbands. Second, since the value of BI

k
is descend-

ing from the coarsest scale to the "nest scale, they
can be di!erentially encoded to save bits.

In addition, it is worth mentioning that by evalu-
ating B

k
, it does not increase computational load

because "nding the maximal value of n of ¹
n

is the
"rst step of EZW-like coding, and the value of n can
be obtained by using n"max

k
MB

k
N.

The algorithm of BFS in decoding is quite
simple. Begin with setting F

k
to be false for all k and

decoding the values BI
k

for all k. Then for each ¹
n
,

set F
k

to be true if BI
k
*n.

5. Experimental results

Four images, Lena, Barbara, Goldhill and
Mandrill, are used for testing. All the images are
monochrome with size 512]512. Each pixel con-
sists of 8 bits. The image `Lenaa is composed of
large smooth skin areas. The image `Barbaraa con-
sists of many rectangular regions in the background
and the table. The image `Goldhilla is characterized
by occupying houses and farms that are like rect-
angles. As for the image `Mandrilla, it is full of
texture regions and is used to show the power of
AMSD.

The biorthogonal wavelet "lter pair with lengths
9 and 7 is used [1]. Symmetric extension is applied
to the edges of image for "ltering [2]. For
a 512]512 image, we perform six-scale pyramidal
decomposition. The coe$cients in LL

6
subband

are coded independently. To simplify the coding
algorithm, the LL

6
subband is decomposed by

Haar transform and encoded by original EZW
coding.
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Fig. 6. Comparison of performance in PSNR between coding
with and coding without AMSD: (a) for Lena and Barbara
images; (b) for Goldhill and Mandrill images.

The performance of our image coder is measured
by the PSNR, which is de"ned as

PSNR"10 log
10A

2552

MSEBdB. (5)

Herein, MSE represents the mean-squared error
between the original images and reconstructed
ones. We emphasize that the bit rates are calculated
from the actual size of the compressed "les rather
than the entropy estimates.

In the following statements the encoding time
¹

E
is de"ned as the sum of input time ¹

I
(for

reading image), transform time ¹
T
, zerotree-encod-

ing time ¹
Z

(entropy coding included), and output
time ¹

O
(for writing codes). Fig. 5 illustrates this

de"nition. The original encoding time ¹
W

is the
result of coding without AMSD and without
BFS. At bit rate 0.5 bpp, for Lena image ¹

W
is

about 3.56 s (¹
I
#¹

O
"0.27 s, ¹

T
"0.77 s and

¹
Z
"2.52 s).
Fig. 6 shows the e$ciency of AMSD. The results

of coding with AMSD in PSNR outperform those
of coding without AMSD over a wide range of
bit-rates. Especially, the improvement is obvious
for lower bit-rates. At the bit-rate 0.5 bits per pixel
(bpp), adding AMSD will elevate the PSNR by
0.5 dB for Barbara, 0.22 dB for Goldhill, 0.07 dB
for Lena, and 0.11 dB for Mandrill. The di!erence
is caused because the Barbara and Goldhill images
occupy a lot of rectangular regions. To reveal the
potential of AMSD, we also test a special image,
with pure rectangular structures (see Fig. 7(a)). The
experimental results are shown in Fig. 7(b). On
average, 1.46 dB improvement can be obtained. We
emphasize that AMSD is not optimal for all bit-
rates, but it performs better than the original (no
AMSD) at lower bit-rate because it forces more the
magnitudes of coe$cients near to zero. The cost of
adding AMSD to further decompose the HL

i
and

LH
i

subbands is about 0.7 s, corresponding to
19.7% (0.7/3.56) of ¹

W
. The running time is cal-

culated by an IBM-compatible PC with AMD K6-
166 MHz CPU, 32 MB RAM, and the platform
WinNT 4.0.

Fig. 8 illustrates the comparison in ¹
E

between
coding with and coding without BFS. On average,
by the use of BFS, the encoding time can be re-

duced by 1.4 s, corresponding to 39.3% (1.4/3.56) of
¹

W
. The results of the running time can be further

reduced if we develop the algorithm by using the
optimal codes. The reason BFS can speed up
a zerotree coding is that many unnecessary tests of
(1) are omitted. For the Barbara image, at the
threshold ¹

10
(i.e. 1024) the number of tests re-

quired for searching zerotrees with BFS and that
without BFS are 648 and 1,572,744, respectively.
Consequently the number of saved tests is 99.9%
(1,572,096/1,572,744) of the number of tests without
BFS. When at the threshold ¹

6
(i.e. 64), the number

of tests required for searching zerotrees with BFS
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Fig. 7. The potential of AMSD: (a) an image with pure rectan-
gular structures; (b) the comparison of performance in PSNR
between coding with and coding without AMSD.

Fig. 8. Comparison of performance in encoding time between
coding with and coding without BFS. The solid line denotes the
results of coding with BFS, while dashed-dot line is the results
without BFS. Left-top for Lena; right-top for Barbara; left-
bottom for Goldhill; right-bottom for Mandrill.

and that without BFS are separately 286,005 and
2,629,173, corresponding to that the number of
saved tests is 89.1% of the number of tests without
BFS. If threshold ¹

n
is small enough, all the bands

are enabled, leading to that the number of saved
tests stops increasing and that the percentage re-
duces. However, for general applications the im-
provement of using BFS is still signi"cant because
the coder stops at a threshold ¹

n
for n*2. For

the Barbara image, the percentage is 67.2% at the
threshold ¹

2
. Notably, in these applications the

reconstructed image shows good visual quality and
no subject di!erence from the original one.

Notably, the use of BFS will not reduce decoding
time because the purpose of BFS is to skip many

unnecessary comparisons in "nding zerotrees,
while in decoding algorithm no such comparisons
are needed because a zerotree is known directly
from the decoded bit stream.

As for the bit rate a!ected by BFS, there is very
little. When using BFS, we have to encode the band
enabled information BI

k
and require a few bits.

However, the bene"t here is that we need not en-
code the nodes located on the disabled subbands,
and it can save a few bits. The zerotree symbol
resembles the EOB symbol in JPEG coding, while
BFS tends to group many zerotrees together. Our
experimental results show that the use of BFS can
elevate at most 0.01 dB in PSNR for the four tested
images.

Table 1 tabulates the results of our EZC coder
and SPIHT coder. For a fair comparison, the re-
sults are generated by practically running these two
coders on the four images. The execution "le of
SPIHT coder is acquired from the internet site
mentioned in [11]. The results of SPIHT re-
ported here are using the arithmetic entropy-
coding version. Experimental results show that the
performance of our EZC coder surpasses that of
SPIHT coder over a wide range of bit rates for
di!erent images. This is especially true of the
images Barbara and Goldhill. At bit rate 0.2 bpp,
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Fig. 9. Some test images and their corresponding reconstructed images at bit rate 0.5 bpp with the EZC coder: (a) original Lena;
(b) original Barbara; (c) reconstructed Lena, PSNR" 37.18 dB; (d) reconstructed Barbara, PSNR"32.63 dB.

EZC outperforms SPIHT by 0.61 dB for Barbara
and 0.12 dB for Goldhill. The reason EZC performs
better than SPIHT is that EZC uses AMSD to
further reduce the correlation of all the transformed
coe$cients. Meanwhile the self-similarity across
di!erent scales is preserved, which facilitates
a zerotree coding. It is necessary to point out that
the coding results obtained here for both the coders
are using progressive transmission ability, that is,

the sets of distortion measures are acquired from
the same "le. In other words, the decoder reads the
"rst bytes of the "le up to the desired bit rate,
performing the decoding and inverse transforma-
tion, and then compare the recovered image with
the original. Some original images and their recon-
structed images at bit rate 0.5 bpp (compression
ratio 16) with the EZC coder are shown in Fig. 9.
These reconstructed images show good visual
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Table 1
Comparison of coding performance in PSNR (dB) between our EZC coder and SPIHT coder

Lena Barbara Goldhill Mandrill
Bit-rate
(bpp) SPIHT EZC SPIHT EZC SPIHT EZC SPIHT EZC

0.20 33.15 33.30 27.22 27.83 29.85 29.97 22.70 22.74
0.25 34.11 34.15 28.13 28.72 30.56 30.79 23.27 23.39
0.30 34.94 34.97 29.18 29.77 31.15 31.36 23.77 23.88
0.40 36.23 36.32 30.76 31.38 32.18 32.29 24.66 24.75
0.50 37.21 37.18 32.11 32.63 33.13 33.26 25.65 25.58
0.60 38.01 37.96 33.41 33.94 33.93 34.11 26.51 26.45
0.70 38.73 38.70 34.60 35.06 34.64 34.77 27.20 27.27
0.80 39.33 39.34 35.54 36.05 35.27 35.37 27.85 27.90
0.90 39.87 39.86 36.55 36.87 35.91 35.94 28.50 28.52
1.00 40.41 40.36 37.45 37.73 36.55 36.56 29.17 29.18

Table 2
Comparison of coding performance in PSNR (dB) among P0,
P1 and P2. P0 represents no further partition on LH

i
and HL

i
bands; P1 represents partitioning LH

i
and HL

i
bands once; P2

represents partitioning LH
i
and HL

i
bands twice

Lena Barbara
Bit-rate
(bpp) P0 P1 P2 P0 P1 P2

0.20 33.15 33.23 33.09 27.21 27.68 27.78
0.25 33.99 34.08 33.94 28.14 28.58 28.66
0.30 34.84 34.89 34.73 29.08 29.61 29.69
0.40 36.23 36.27 36.13 30.85 31.28 31.30
0.50 37.11 37.12 37.01 32.13 32.57 32.55
0.60 37.91 37.91 37.80 33.42 33.89 33.85
0.70 38.64 38.63 38.49 34.66 35.04 35.00
0.80 39.30 39.29 39.18 35.63 36.07 35.98
0.90 39.83 39.82 39.72 36.56 36.90 36.78
1.00 40.34 40.31 40.21 37.43 37.76 37.63

quality and no subjective di!erence from the orig-
inal ones.

The coding results of using AMSD are also com-
pared with that of using three "xed types of de-
composition. We label P0 as no further partition on
LH

i
and HL

i
bands, P1 as partitioning all the LH

i
and HL

i
bands once, and P2 as partitioning all the

LH
i
and HL

i
bands twice. The experimental results

for Lena and Barbara are shown in Table 2. In
general, the results of using AMSD are better than
those of the three types. In addition, the adaptive
ability of AMSD can prevent that the coding per-

formance drops. Note that the results in column P0
are slightly di!erent from those obtained by the
internet SPIHT coder (see Table 1) because they
are generated by di!erent implementation.

6. Conclusion

In this paper, we have proposed two new tech-
niques, AMSD and BFS, to enhance a zerotree
coding. AMSD provides a simple and e$cient
method to further partition the low-frequency con-
tained bands, and results in an improved perfor-
mance in the PSNR. At the bit rate 0.5 bpp, adding
AMSD will elevate the PSNR by 0.5 dB for Bar-
bara, 0.22 dB for Goldhill, 0.07 dB for Lena, and
0.11 dB for Mandrill. BFS gives us a way to speed
up a zerotree coding. When using BFS, we can
reduce the encoding time up to 1.4 s or approxim-
ate 39.3% reduction compared to the original en-
coding time. The proposed coder requires no
training, no pre-known statistics of the coded im-
ages, and is simple and rapid in execution. In addi-
tion, the property of embedded coding is preserved
which enables the progressive transmission. The
experimental results are reported and compared
with the results generated by SPIHT. It is shown
that the proposed coder outperforms SPIHT in the
PSNR over a wide range of bit rates. The interested
reader can obtain EZC coder by anonymous ftp to
haeshiuh.cn.nctu.edu.tw with the path pub/EZC.
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It is possible to select distinct wavelet functions
[14] to decompose di!erent subbands. This is the
next topic we will investigate in the near future. No
matter how the wavelet function is selected, the
proposed methods provide a simple way to en-
hance a zerotree coding.
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