Two systolic architectures for multiplication in

GF(2™)

W.C.Tsai and S.-J.Wang

Abstract: Two new systolic architectures are presented for multiplications in the finite field
GF(2™). These two architectures are based on the standard basis representation. In Architecture-I,
the authors attempt to speed up the operation by using a new partitioning scheme for the basic cell
in a straightforward systolic architecture to shorten the clock cycle period. In Architecture-II, they
eliminate the one clock cycle gap between iterations by pairing off the cells of Architecture-I.
They compare their architectures with previously proposed systolic architectures and a semi-
systolic architecture, and show that their Architecture-I offers the highest speed and Architecture-

IT the lowest hardware complexity.

1 Introduction

In recent years, the finite field has been widely used in
various data communication applications such as switching
theory, error correction coding, pseudo-random number
generation and cryptosystems, [1, 2]. A high-speed and
low-complexity design for finite field arithmetic is very
necessary for meeting the demands of wider bandwidths,
better security, and higher portability for personal commu-
nication.

In these applications, the Galois field of order ¢ =p™,
denoted as GF(p™), is usually used, especially in the case
p =2. Addition over GF(2™) can be easily implemented by
bit-wise exclusive-OR without any carry propagation
problem. Multiplication over GF(2"), on the other hand,
is much more complex. In the implementation of multi-
plication over GF(2™), the design may use standard basis,
normal basis, or dual basis representation. In this paper, we
will propose two high-speed and low-complexity systolic
architectures based on standard basis representation (SBR).

For a high-speed multiplier over GF(2"™), several designs
[3-5] adopting the architecture of semi-systolic arrays have
been proposed. However, all these semi-systolic architec-
tures have to broadcast some global signals. It becomes
more difficult to handle the broadcasting problem as the bit
length m becomes larger. On the other hand, due to the
regularity of cells and the locality of connections, a ‘pure’
systolic array, instead of a semi-systolic array, is usually a
more appropriate choice for VLSI implementation [6—13].
These systolic architectures usually decompose multiplica-
tion over GF(2") into a sequence of additions to sum up
partial products, and modular operations to perform SBR
conversion. We may classify these systolic designs into two

© IEE, 2000

IEE Proceedings online no. 20000785

DOI: 10.1049/ip-cdt:20000785

Paper first received 18th January and in revised form 23rd August 2000

The authors are with the Department of Electronics Engineering and
Institute of Electronics, Engineering Building IV, National Chiao Tung
University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, R.O.C.
E-mail: {wctsai,u8211838}@cc.nctu.edu.tw

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

categories according to their computation procedure: (1)
summing first and (2) modulus first. The ‘summing first’
designs perform the addition first and then covert the sum
into SBR form. Within this category, Wang et al. [7]
implemented AB in a straightforward way, Wei [8] imple-
mented AB%> 4+ C, Guo et al. [9] used a high-radix imple-
mentation for computing 4B, and Mekhallalati et al. [10]
slightly modified the systolic architecture in a semi-systolic
array by applying a re-timing process to reduce the initial
delay. Conversely, the ‘modulus first’ designs convert both
the addend and the augend into SBR form first and then
perform the addition. Within this category, Yeh et al. [6]
implemented an architecture to compute 4B + C, Ghafoor
et al. [11] adopted the same architecture to perform the
exponentiation operation, and Hasan et al. [12] arranged
the converted addend and augend in a matrix form so that
all the computations of multiplication, division, and inver-
sion can be treated as matrix operations.

Among all these architectures, Yeh’s design [6] is the
fastest due to its shortest clock period, while one of
Mekhallalati’s designs (Systolic-II) [10] has a superior
performance in the area-time product. In Yeh’s architecture,
the main operation is decomposed into two parallel opera-
tions to shorten the clock period and some flip-flops are
inserted in the architecture to avoid the inherent one-clock-
cycle-gap problem of a bit-by-bit systolic array. However,
the partitioning scheme needs one extra control signal, and
the insertion of flip-flops increases both the area and power
consumption. In Mekhallalati’s design, re-timing is applied
on the connections between the ith cell and the (i + 1)th
cell of a semi-systolic architecture, where 7 is odd, to avoid
the one-clock-cycle-gap problem and to reduce the latency
down to m clock cycles, where m is the degree of the finite
field GF(2™). In this design, a circuit-level optimisation is
also applied on the cells to shorten the clock period.

In this paper, we propose two new architectures, Archi-
tecture-I and Architecture-1II, to further improve the opera-
tion speed and to reduce the area complexity. Architecture-
I effects the partitioning on the general cells in Kung’s
design [14] to shorten the clock period. Architecture-II is
constructed by pairing off the cells in Architecture-I to
reduce the latency. As will be shown in Section 4, the
partitioning of cells makes Architecture-I one of the fastest

375

designs for computing independent multiplications, while
the alliance of partitioning and pairing makes Architecture-
II the fastest design for computing dependent multiplica-
tions. Moreover, Architecture-II has the lowest area-time
complexity no matter whether the computed multiplica-
tions are dependent or independent.

2 Systolic Architecture-l

GF(2™), an extension field of GF(2), contains 2" elements
and a special polynomial F(x). Here, F(x) is a monic,
irreducible polynomial over GF(2) of degree m and can
be expressed as

m—1
F(x)=x"+ Zf,-xi
i=0

=X f X X" fixfy, (D)

where f; is either 0 or 1.
If o is a root of F(x), the set {1, a, o, ..., "'} forms

the standard basis of GF(2™). For any two elements A4(o)
and B(a) € GF(2™), they can be expressed in SBR form as:

m—1
A(o) = Zaioci =a, " " 4a, 0"+ ... +aa+a,
i=0
2
and
m—1)
B(o) = Zbioc’ =b, 0" +b, 0" 24 ...+ ba+ by,
i=0
3)

where «@; and b; are binary numbers.

The multiplication of 4 and B can be computed by
multiplying A(«) with B(a) first and then performing
(modulo F()) to convert the product back to the SBR
form. An algorithm for computing the multiplication
P(0) =A(x) x B(a) over GF(2™) can be expressed as:

Multiplication algorithm over GF(2™) by using
modulus operation
R() = 0;
fori=1tom
Ri(2) = (R~ (o) + Ay
end.
P(o) = R"(a),

iB(2)) (mod F(a));

where a; is the jth coefficient of A(x), Ri(0)= Z ms lr o is
the partlal sum after the ith 1terat10n and
ap_ B = 315 @, b))

The main operatlon Ri(0) = (R~ () + a,,_ ;B(2))
(mod F(a)), of the above algorithm can be rewritten as
Ri(0) = (R~ (o) (mod F(x))) +a,, _;B(x). This is because
a,,_;B(a) is already in SBR form. Hence, the computation
of Ri(«) can be treated as the combination of a modular
operation and an addition. The modular operation
(R~ (2)) (mod F(x)), can be computed by converting
the highest order term of (R'~!(x)x) into the SBR form

376

first, and then adding the converted result with the remain-
ing part of (R'~!(a)a). That is,

(R™ 1(06)01) (mod F(x))

S

r;c lO(k+1 ,

0

=~
Il

m—2

§ z 1 k+1

- ”1* +
1 j i-1_j
2 j?»oz + rj,loc ,

J=0 J=1

m—1

= Z(rin_—llf/ +
=0

At the bit level, the algorithm becomes

r/’j)ocj (with 77! = 0).

Bit-level multiplication algorithm over GF(2™)

Ro(oc)zo; r’il:O, k=1 tom;
fori=1tom

Ry=3" "l

end
P(a) = R" ().

i—1 J.
1]]" D rj—l D am—ibj)a ’

In the above algorithm, the main operation can be
computed bit-by-bit by addlng three operands: r{n 1 f],
riZ1, and a,,_;b;. Because 7'}, the MSB of R~ !(a), is
involved in the computatlon of »\ for all j, it is more
efficient to compute R(x) with thle most significant bit
calculated first. Hence, in the above algorithm, we compute
Ri(a) starting from the MSB toward the LSB. A 2D systolic
architecture [7] for the implementation of this multiplica-
tion algorithm is illustrated in Fig. 1. In this figure, the data
dependency between bits and between iterations is shown.
The cell on the jth column and ith row computes the jth bit
of Ri(«) by computing

”/l = rin_—llj_; @ rj:} 2] am—ibj’ 4)

where 7 -1 is the most significant coefficient of R'~!(x).
By applylng vertical projection on this 2D systolic array,
we get the 1D systolic array as shown in Fig. 2. The timing
sequence of ri ’s is illustrated in Fig. 3. Note that the delay
time between successive iterations is two clock cycles;
there is a one clock cycle gap between !, and rf,_|, a
clock cycle gap between /| and 41! +1 " and so on. This is
due to the inherent characteristics of the (mod F(x))
operation in the multiplication algorithm, as will be
stated in the next paragraph.

In eqn. 4, it can be seen that 71~} is required to compute
r C0n51der we want to compute R(«) bit-by-bit. After the
computatlon of #~1, we need one more clock cycle to
calculate rjlfl before the computation of rj That is to say,
there exists one clock cycle delay between the computation
of the same order coefficient in two adjacent iterations.
Hence, the average computation time of this architecture
for N m-bit multiplications over GF(2™) becomes 2mN
clock cycles: mN cycles to operate plus mN interlaced
clock cycles to wait. To further improve the performance of
the architecture, these idling clock cycles could be utilised
to compute another independent operation without any
time conflict; i.e. this bit-by-bit architecture can achieve
the performance of m clock cycles per operation when
computing independent multiplications.

i—1

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

bit

see

iteration

[N}

j+1

i ° o
) S o iy e oA e
i-1 a_ . m- (XX Mo ro. roiq coeo
M-+ 11— o> o PY / . 1 g™
® o 2 3 e o ® o schedule
¢ o ¢ ¢ o ® o lines
P
) 74 —o—| ° ; ° . e
a, rl eee rl- rl- rl- b
| m-i 7| V_._, 7‘_/, j+1 ° j ° j-1
® o 2K (K 4
¢ ¢ o ¢ o ¢ o
P
i+1 i1 [7 i+1 * i+1 A i+1 [
. LN 3 . . . oo
it T 7.4 o it e T i L T i e

m-1

A

i

Fig. 1 4 2D systolic architecture for multiplication in GF(2™)

In this paper, we propose a new architecture to further
improve the computation speed by partitioning the main
operation of the bit-level algorithm. In eqn. 4, note that f;,
a,_;, and b; could be available in advance. As 7!} is
ready, 74!\ f®a, _,b; can be calculated immediately.

b,

]

fi4bj1

L]

fi+10544

L]

fm-1 bm-1

L]

—o—> ——> —o—» —o—> —o—>
ai —E o> ooe —@— —0—# —O— Fe—> oo
[—@— 0 [—@— [—®— —o—
f.b;
i-1 b
" m
T
qm.j
i i-1
r Mo

Fig. 2 A4 1D systolic architecture for multiplication in GF(2™)

time
i-1 i-1 i-1
"m-1 Mm-2 r.m-3)
i i i
"Tm1 "m2 'm3
i+1 i+1 i+1 .,
"m1 "m2 "m3

Fig. 3 Timing sequence of ¥

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

Hence, the computation of r} can be partitioned into two
simpler operations to shorten the clock period. These two
operations are

i i—1

pj = mflﬁ D amfibj’ (5)

and

i
T

(6)

This partitioned architecture, called Architecture-I, is
shown in Fig. 4 and its 1D systolic architecture is shown
in Fig. 5. Two kinds of simple cells are used to calculate pj
and r}, respectively; the upper layer cells compute p; while
the lower layer cells compute 7;.

The operation of Architecture-I can be expressed in the
following algorithm:

__ i1 i
- rj7] @p]a

r,?:O, fork=0tom—1,
r’il =0, fork=1 to m;
fori=1tom
in parallel
forj=m—1t0
in parallel
p]' = ;,:,Hf; ® amil’bjy
;=i e,
end in parallel
end in parallel
end.

377

bit m-1 m-2 m-3

soe

iteration fm-1Pm-1 fn-2Pm.2 fn-3Pm-3

schedule
llines

T
/ i te— v
| o~ F
i
Pj

Fig. 4 Dependence graph for 2D Architecture-I

m-1 bm-1 fm»2 bm-2 fm-s bm-a

[R B

i1 f b; Pj
" m-
1
amj
i —— |
rJ- -« r j-1
L —
|
i
Pj
Fig. 5 Dependence graph for 1D Architecture-1
time
i-1 i-1 i-1
' m-1 "m-2 "m3
i i i
Pm-1 Pm-2 Pm-3 ..
i i i
"m-1 m-2 "m-3 oo
i+1 i+1
P m-1 P m-2
i+1
" m-1

Fig. 6 Timing sequence of p’s and r¥’s

378

The timing sequence of p;’s and #;’s is shown in Fig. 6. The
delay time between successive iterations is still two clock
cycles, while the clock period has now been shortened due
to the partitioning operation. Note that Architecture-I can
also achieve full utilisation when calculating independent
multiplications over GF(2™). The clock period before
partitioning is the delay of two XOR gates and one AND
gate. After partitioning, the clock period becomes the delay
of one XOR gate and one AND gate. Since the computa-
tion of pj’j and r} can be done in parallel, the average number
of clock cycles per multiplication is not changed. The
detailed comparison of Architecture-I and some other
architectures will be presented later, in Section 4.

3 Systolic Architecture-Il

As mentioned before, even though Architecture-I can
compute a sequence of independent multiplications with
full utilisation, it can only achieve 50% utilisation for a
sequence of dependent multiplications. This is because the
dependence between multiplications precludes the possibi-
lity of interlaced computations. In this case, each cell can
only operate half of the time and has to wait for the other
half due to the one-clock-cycle-gap problem. In this
section, we propose another architecture, Architecture-II,
which is more efficient than Architecture-I when computing
dependent multiplications. In Architecture-1I, we use cell
merging in order to calculate some of the operations before
hand. These pre-computed operations make the removal of
the idling cycles in Architecture-I possible. This removal of
idling cycles can thus increase the computation efficiency
when dealing with dependent multiplications.

As mentioned before, there is a one-clock-cycle-gap
problem in a bit-by-bit architecture. Our Architecture-I is
basically a bit-by-bit architecture, and the one-clock-cycle-
gap problem does exist in that architecture. To avoid this
problem, we merge the cells in Architecture-I in a specific
way, as shown in Fig. 7. In this figure, we group #, r;_,
pj’«“, and p]’ill together, 7;_,, 7} _3, p]’.‘tlz, and pj’ig tqget}(ler,

. and so on. With this arrangement, if r]’-, r};p p]’*l, and

pj’;fll are computed in the kth clock cycle and 7;_,, 7}_3,
pr 12, and pj’il:} are computed in the (k4 1)th clock cycle,
then 7%, pi**, and pi*% can also be calculated in the
(k+ 1th clock cycle. It looks infeasible, at first glance, to
have r;fll calculated in the (k+ 1)th clock cycle, since the
computation of 7™ depends on ri_,. However, assume we
remove the latch between ri_, and rif%; ie., in the
(k+ 1)th clock cycle, rj’tll is to be computed_immediat_el;/
after /_, is computed. Then, all e r]’tll, p}+2, and pj’tl
can be calculated in the (k+ 1)th clock cycle without a
time conflict. Similarly, we remove the latch between rj’:_ 4
and k}tg, the latch between 74 and rj’tls, ..., and so on.
The removal of these latches only forms a local data
propagation and won’t create any global propagation
path. Moreover, after merging the cells, we can remove
half of the latches that have been used to keep a;s, 7, _,’s,
and the control signals. This removal can save a huge
amount of latches (Fig. 8). The area and power consump-
tion of the architecture can thus be greatly reduced after
eliminating these latches.

After merging the cells, the kth general cell of Archi-
tecture-1I in iteration i computes the following four opera-

tions

=11 ©), @
ro =15 @pi, ®)
p}+1 = r;u—l/? ® am—i—lb‘v (9)

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

iteration

bit

m-i-1
i-1
i X
[F-- -\
\; schedule
- - Y : . -) lines
am>l+1 N p . . . i i . //'0'
L g
i+1 /‘ e cwasec s S AREET Seeraat s sCRTTRSE
Am.i+2 S
i+2
-1 f by i
" m1 pj
1
Amj
i L i1
l— rl 7 ' i
L
i
Pj
Fig. 7 2D dependence graph of the merged architecture (Architecture-II)
and 1 — 0, k=0tom—1;
| .
P}: = Fyo1 o1 @ p_i1bj_y, (10) P=0,k=0tom—1;
ko _ .
where j=2k. r21=0, k=0tom;
The operation of Architecture-II can be expressed in the fori=0tom
following algorithm (for m is odd): in parallel
fork=[(m—1)/2]t0 0
bro. b _ _ P —
A f 9 6,00 fa bi2f ;0 J 2k+1,
in parallel
“es W cos /l == l:% @pjls
o A
”,l | =15 ®pi
o)
P = f; @ a,_ b
i+1 '
fob L by Pt =Ty i1 @ dyii by,
oo N end in parallel
rIj A//I/_/ -1 . P
i1 .___@——l e end in parallel
Tom . end.
am.ii] i+
P B Figs. 7 and 8 also show the implementation of this
-//I/-/ algorithm. The upper layer cells compute 7 and i1
L
i1 while the lower layer cells compute p; and Pj— Ll“he
P computatlon sequence is shown in F1g 9. In the MSB
Fig. 8 1D dependence graph of the merged architecture (Architecture-II) cell, ,_, is calculated and then immediately used for the

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000 379

time i i1 I fm-1 bm-1 fm-zle-z fm-i t]’m-s
Mm-1 "m-3 "m-5 oo
i-1 i-1 i-1
Fm-2 Fm-4 ' m-6 oo .
i i i
Pm-1 Pm-3 Pm-s o
i i i
Pm-2 Pm-a Pme cee
m m . i output 1 650014 ;;;:|
[y Fma Fms vee circuit
i i i
r m-2 r m-4 r m-6 eoe b]
i+1 i+1 i+1
Pm-1 P ms3 Pms coe T
i+1 i+1 i+1 ;
P P Prms e control_in
Fig. 9 Timing sequence ofpf‘ 5 and r;‘ 5 data_out «— -
computation of p;ﬁ | and p;ﬂz, according to eqns. 9 and a i
10. This temporal dependency, which includes one XOR Pj
operation for r;,_; and one AND plus one XOR operation bt b fobo ot b
for pit! or pit!) forms the critical path of Architecture-II. m-17m. 1 m-2 Tm-2m-3 Tm.8 m-4 =m-4
Since there is no one-clock-cycle-gap problem in Archi- J/L'—‘_F\/L J/H_k
tecture-II, we can compute N dependent m-bit multiplica-
tions in mN clock cycles with the clock period being about /F:::
one AND and two XOR gate delay. Conversely, Architec-
. N . output = & —
ture-1 computes N dependent m-bit multiplications in 2mN i ---°°°”Z| |::| 'zl |::| '«__.
clock cycles with a clock period of about one AND and
one XOR gate delay. Therefore, for computing dependent f b; iy bj-1
multiplications, Architecture-II is superior to Architecture- b /I/ 1] i
Li : : : control_in) i A o I j2
in computation speed, area size, and power consumption. i+1 *_'@_7 Y
D . . . r m-1
etailed comparisons of Architecture-II to some other data_out «— E ;
architectures will be presented in the next section. A i
iH1
. s P i
4 Comparisons for multiplication over GF(2™) L
i
r.
. . . . i
In this section, we compare our designs with several b
Sy.StOI.IC arrays for their performanf:e mn computmg multi- Fig. 10 The two new architectures with serial output circuits
plications over GF(2™). For a fair comparison, we add @ Architecture-I
serial output circuits to our architectures, as shown in Fig. b Architecture-IT
10a and b, and add a control signal to reset all flip-flops.
Table 1: Comparisons for computing multiplications
Author Cycles Delay per cell, ns Total ns AT
2
no. of cells area per cell, gate count total area (m* ns)
Yeh et al. [6] m Tond + Teor + Tiazen ™ 1.66 ~1.66m"* 150*
m 34,04+ 2A0; + 10A00n + Amux = 90.5 90.5m
Wang et al. [7] m* Tana + Taxor + Taten ~ 1.84 ~1.84m* 163"
m 3Aun0 -+ Asxor + Amux + 1040, = 88.5 88.5m
Hasan et al. [12] m* Tand + Txor + Tiaten = 1.66 ~1.66m* 163*
m 3Aand + 2Axor + Amux +1 1Alatch =98 98m
Systolic-1b [10] 2m Toana + Tsxor + Tmux + Tjaten ~ 2.65 ~5.3m 182
0.5m 4A 0+ Asxor + TAjaen = 68.5 34.3m
Systolic-Il [10] m Tand + Tsxor + Trmux + Tamux + Tiaten = 3.1 ~3.1m 141
0.5m 5Aand + A5xor + Amux + Admux + gAIatch =91 45.5m
Architecture-| m* Tona + Txor + Tiaten ~ 1.66 ~1.66m* 123*
m 2A 00+ 2Ax0r + Amux + 8Apen =74 74m
Architecture-I| m Tond +2Tor + Tiarecn = 2.12 ~2.12m 101
0.5m 8A g + 8Aor + 2A s + 9A picn = 95.5 47.8m

T,nqg: delay of a two-input AND gate (0.33 ns).

T,or: delay of a two-input XOR gate (0.46 ns).

Tomux: delay of a two-input Multiplex gate (0.45ns).
Tamux: delay of a two-output Demultiplex gate (0.45 ns).

T3xor: delay of a three-input XOR gate (0.64 ns).

Tsxor: delay of a five-input XOR gate (1 ns).

Tiaten: delay of a latch gate (0.87 ns).

* : double if the dependent multiplications are computed.

380

A,nq- area of a two-input AND gate (1.5).

A,or: area of a two-input XOR gate (4).

A ux: area of a two-input Multiplex gate (3).

As,ort area of a three-input XOR gate (6).

As,r: area of a five-input XOR gate (10).

Aient area of a latch gate (7.5).
m is the order of the finite field GF(2™).

Agmux: area of a two-output Demultiplex gate (3).

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

parallel-in [s J[e |[fme | |I|
| b] | bro || | Pma | |: bo
| ; | t I ! e
J L i
3 b .
controller
— i ,
main ..
core
|a—! | 4_ 0
..00011 !] i : i) i
- . o s XX —o—> s
- ° ° g —— |
output 0
! i1 f by
Pj [
control_in

data_out «—

1
ro gﬁ
-
|
i

Pj

Fig. 11 Hardware implementation of ME (mod F(w)) with the Architecture-I structure

The comparisons of the average speed for computing a
sequence of dependent and independent multiplications are
shown in Table 1. In this table, all the bit-by-bit structures
(including [6, 7, 12] and Architecture-I) need 2m clock
cycles per operation for dependent multiplications, and m
clock cycles per operation for independent multiplications.
On the other hand, for most architectures which are not bit-
by-bit structures, like our Architecture-II, and Mekhallala-
ti’s systolic-II design [10], the average time becomes m
clock cycles per operation for both dependent and inde-
pendent multiplications. Note that, however, Mekhallalati’s
systolic-Ib design [10] needs 2m clock cycles per operation
for both dependent and independent multiplications. This

is due to the fact that when this architecture is computing a
multiplication, no other multiplication can be computed in
parallel.

Among the bit-by-bit structures Architecture-I uses
partitioning to shorten the clock period. In Yeh’s design
[6] and Hasan’s design [12], different partition methods are
adopted. On the other hand, for those structures which are
not bit-by-bit architecture, the clock period is lengthened
after merging. In both of Mekhallalati’s designs [10], the
cells are merged via the re-timing process of a semi-
systolic array, and the expanded clock period is shortened
by applying optimisation to the merged cells. In our
Architecture-II, however, the cells are merged from Archi-

parallel-in Lt [fme | [fmo |[fma | i fo
L [Omd[[Pm2] [[Pms|[[Pma S B Y
T g T g T g T g T
controller| 14 _._////’// 1 = .
-!core L, . P e .
...00001 = e e —
> 1 LX) [
1 g ta—| —— «——o—| le— 0
output
i
b rH f bi-1
-1
i | J//
. r] T i-1
control_in iha _\E " e
m-1
1

data_out «— E

am-i-1

Fig. 12 Hardware implementation of ME (mod F(c)) with the Architecture-II structure

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

381

tecture-I, which has applied partitioning on the general
cells in Fig. 1. Due to the finer structure in Architecture-I,
it is easier, and there is more flexibility to carry out the
merging while keeping a balanced pipeline structure.

The timing and area estimation is based on the delay and
gate count information of a TSMC 0.35u cell library. Since
there is no 5-input XOR gate in the library, we estimate its
delay and gate count ourselves. In Table 1 we can see that
the delay in [6, 15] is similar to the delay of Architecture-I.
This is because all these designs have applied partitioning
on their architectures. However, due to their complicated
methods of handling the one-clock-cycle-gap problem,
Yeh’s and Hasan’s designs [6, 15] consume a larger area
than our Architecture-I. Table 1 shows that the computa-
tion speed of our Architecture-Il is the fastest when
calculating independent multiplications. Moreover, as
mentioned before, a large number of latches can be
removed after merging. Therefore, the area size and
power consumption are greatly reduced in Mekhallalati’s
designs and our Architecture-II design. In Table 1, we can
also see that Architecture-I is superior to others in the
speed matter of the computation of independent multi-
plications, while Architecture-Il is more suitable for
computing dependent multiplications.

In Figs. 11 and 12 we illustrate the implementation of
modular exponentiation with Architecture-I and Architec-
ture-II acting as the main cores, respectively. In these
figures, the controllers generate the controlling signals to
collect the results of modular multiplications and to
arrange the inputs of modular multiplications. According
to an HSPICE simulation, the delay for Architecture-I is
1.6ns and the delay for Architecture-Il is 2.3ns. To
calculate exponentiations over GF(2'%), Architecture-I
can achieve 4 Mbit/s and Architecture-II can achieve
2.8 Mbit/s.

5 Conclusion

We have proposed two architectures for increasing the
performance of multiplication over GF(2™). This was
achieved by increasing the pipeline stage to shorten the
clock cycle period, and by pairing off the cells to avoid the
one-clock-cycle-gap problem. Among these two architec-

382

tures, Architecture-I is suitable for calculating independent
multiplications and Architecture-II is suitable for calculat-
ing dependent multiplications. Architecture-II has lower
complexity in area-time. Two architectures are also
proposed to compute exponentiations over GF(2™), based
on our Architecture-I and Architecture-II, respectively. The
architecture using Architecture-I as its main core can
achieve 4 Mbit/s while the architecture using Architec-
ture-II can achieve 2.8 Mbit/s.

6 References

1 MCWILLIAMS, E, and SLOANE, N.: ‘Theory of error correcting
codes’ (North Holland, New York, 1977)

2 DENNING, D.: ‘Cryptography and data security’ (Addison-Wesley,
1982)

3 BANDYOPADHYAY, S., and SENGUPTA, A.: ‘Algorithms for multi-
plication in Galois field for implementation using systolic arrays’, /[EE
Proc. E, Comput. Digit. Tech., 1988, 135, (6), pp. 336-340

4 GUO, J.-H., and WANG, C.-L.: ‘Digit-serial systolic multiplier for
finite fields GF(2™)’, IEE. Proc., Comput. Digit. Tech., 1998, 145, (2),
pp. 143-148

5 JAIN, SXK., SONG, L., and PARHI, K.K.: ‘Efficient semisystolic
architectures for finite-field arithmetic’, [EEE Trans. VLSI Syst.,
1998, 6, (1), pp. 101-113

6 YEH, C.-S., REED, L.S., and TROUNG, T.K.: ‘Systolic multipliers for
finite fields GF(2")’, IEEE Trans. Comput., 1984, ¢-33, pp. 357-360

7 WANG, C.-L,, and LIN, J.-L.: ‘Systolic array implementation of
multipliers for finite fields GF(2")’, IEEE Trans. Circuits Syst., 1991,
38, (7), pp. 796-800

8 WEL S.-W.: “VLSI architectures for computing exponentiations, multi-
plicative inverses, and divisions in GF(2™)’, [EEE Trans. Circuits Syst.
11, Analog Digit. Signal Process., 1997, 44, (10), pp. 847-855

9 GUO, J.-H., and WANG, C.-L.: ‘Systolic array implementation of
Euclid’s algorithm for inversion and division in GF(2"")’. IEEE Inter-
national Symposium on Circuits and Systems, 1996, pp. 481-484

10 MEKHALLALATI, M.C., IBRAHIM, M.K., and ASHUR, A.S.: ‘New
low complexity bidirectional systolic structures for serial multiplication
over the finite field GF(¢™)’, IEE Proc., Circuits Devices Syst., 1998,
145, (1), pp. 55-60

11 GHAFOOR, A., and SINGH, A.: ‘Systolic architecture for finite field
exponentiation’, [EE Proc., Comput. Digit. Tech., 1989, 136, (6) pp.
299997

12 HASAN, M.A., and BHARGAVA, VK.: ‘Bit-serial systolic divider and
multiplier for finite fields GF(2™)’, IEEE Trans. Comput., 1992, 41, (8),
pp- 972-980

13 WANG, C.-L.: ‘A systolic exponentiator for finite field GF(2").
Proceedings of the 34th Midwest Symposium on Circuits and Systems,
1, pp. 279-282

14 KUNG, S.Y.: ‘On supercomputing with systolic/wavefront array
processors’, Proc. IEEE, 1984, pp. 867-884

15 HASAN, M.A., and BHARGAVA, VK.: ‘Division and bit-serial multi-
plication over GF(q™)’, IEE Proc., Comput. Digit. Tech., 1992, 139,
(3), pp. 230-236

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

	Abstract
	1 Introduction
	2 Systolic Architecture-I
	3 Systolic Architecture-II
	4 Comparisons for multiplicatopn over GF(2m)
	5 Conclusion
	6 References

