# Analytic functions for atomic momentum-density distributions and Compton profiles of K and L shells

Y. F. Chen and C. M. Kwei

Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

## C. J. Tung

Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China (Received 11 September 1992; revised manuscript received 29 December 1992)

An analytical expression involving three parameters was proposed for atomic momentum-density distributions of K and L shells. This expression was based on the superposition of hydrogenic closed-shell momentum densities. Parameters in the expression were determined by requiring four of its moments to be equal to the corresponding Hartree-Fock results. An analytical function for the Compton profiles was then derived using the impulse approximation. Excellent agreement was found between the present results and detailed theoretical computations.

PACS number(s): 31.20.Sy, 31.15.+q

## I. INTRODUCTION

The atomic electron-density distribution in momentum space plays an important role in many applications. For instance, this distribution is directly related to Compton profiles, which represent the Doppler broadening of Compton lines due to moving electrons [1]. Moreover, this distribution is needed for the calculation of stopping cross sections, shell corrections, and ionization cross sections by the binary-encounter theory [2,3]. Thus, a study of the momentum-density distribution is important.

In all these applications, a simple analytical function for atomic momentum densities for each shell is desired. This function will help the manipulation of such densities, usually calculated by the Hartree-Fock (HF) approach with data presented in tabulated form, in a very simple way. Although an analytical expression for momentum-space wave functions in the configurational Slater-type orbitals was reported [4] and hence an atomic momentum-density distribution could be derived, this expression involved too many terms and parameters to be of useful applications.

In this work, we propose a simple analytical form involving three parameters for atomic momentum-density distributions of K and L shells. This form is based on the superposition of hydrogenic closed-shell momentum densities. Parameters in the form are determined by requiring the zeroth, first, second, and third moments of these distributions to be equal to the corresponding HF results. The hydrogenic model was previously applied to calculate ionization-generalized oscillator strengths using the sum-rule constrained classical-binary-collision model [5,6]. The present work concerns the construction of analytical functions for the momentum-density distributions and Compton profiles for each shell. To the best of our knowledge, no such function for Compton profiles is available except for the helium atom [7].

#### **II. THEORY**

The momentum-space atomic wave functions are defined as the Fourier transform of coordinate-space atomic wave functions, i.e.,

$$\phi(\mathbf{p}) = \frac{1}{(2\pi)^{3/2}} \int \psi(\mathbf{r}) \exp(-i\mathbf{p}\cdot\mathbf{r}) d\mathbf{r} .$$
 (1)

In the central-field approximation, Eq. (1) reduces to

$$\phi_{nl}(p) = \left[\frac{2}{\pi}\right]^{1/2} \int_0^\infty r^2 R_{nl}(r) j_l(pr) dr , \qquad (2)$$

where  $R_{nl}(r)$  is the radial part of  $\psi(\mathbf{r})$ ,  $j_l(pr)$  is the spherical Bessel function, n is the principal quantum number, and l is the angular-momentum quantum number. The momentum-density distribution for each shell can then be developed using  $\phi_{nl}(p)$ .

The momentum-density distribution for a closed-shell hydrogenic atom is given by [8]

$$I(p) = 4\pi p^2 \rho(p) = \frac{32\zeta^5 p^2}{\pi (\zeta^2 + p^2)^4} , \qquad (3)$$

where  $\rho(p)$  is the normalized momentum-density distribution, i.e.,  $\int 4\pi p^2 \rho(p) dp = 1$ , and  $\xi^2/2 = E$  is the average kinetic energy of electrons in that shell. Note that atomic units are used throughout this paper. Comparing the average kinetic energy of electrons, i.e., the second moment of the momentum-density distribution, obtained using Slater's rules [9] for the hydrogenic closed shell with corresponding HF data [10], we find that the error is within 2% for the K shell and 6% for the L shell for all atoms. To improve the accuracy of Eq. (3), we propose

$$I_{i}(p) = 4\pi p^{2} \rho_{i}(p) = \frac{32}{\pi} \sum_{j=1}^{2} \frac{A_{ij} \xi_{ij}^{5} p^{2}}{(\xi_{ij}^{2} + p^{2})^{4}} \quad (i = K, L)$$
(4)

47 4502

© 1993 The American Physical Society

for the *i*th-shell momentum-density distribution. Here we take  $A_{ij}$  and  $\zeta_{ij}$  as parameters to be determined by requiring several moments of  $I_i(p)$  in Eq. (4) to be equal to the corresponding HF results.

TABLE I. Parameters in Eq. (4) for atomic momentumdensity distribution of K shell.

| Element $(Z)$                         | Ari    | 541    | Ero    | density distribution of L shell.                            |          |
|---------------------------------------|--------|--------|--------|-------------------------------------------------------------|----------|
| $H_{2}$ (2)                           | 0 9525 | 1 4012 | 2.5596 | Element $(Z)$                                               | $A_{L1}$ |
| He(2)                                 | 0.8323 | 1.4913 | 2.5580 | T; (2)                                                      | 0.0500   |
| $\mathbf{D}_{\mathbf{A}}(\mathbf{J})$ | 0.0049 | 2.4701 | 5.9353 | $\mathbf{L}\mathbf{I}$ (3)<br>$\mathbf{P}_{\mathbf{Q}}$ (4) | 0.9390   |
| DC (4)<br>D (5)                       | 0.9042 | 3.4034 | 5.5320 | De (4)<br>D (5)                                             | 0.9397   |
| B (3)                                 | 0.8989 | 4.4190 | 0.5313 | B (3)                                                       | 0.9404   |
| $\mathbf{C}$ (0)                      | 0.8801 | 5.3588 | /.6444 | $\mathbf{C}$ (0)                                            | 0.9414   |
| $\mathbf{N}$ (7)                      | 0.8685 | 0.2866 | 8.7043 | $\mathbf{N}$ (7)                                            | 0.9429   |
| $\mathbf{U}$ (8)                      | 0.8507 | 7.2103 | 9.7528 | $\mathbf{O}$ (8)                                            | 0.9421   |
| F (9)                                 | 0.8240 | 8.1134 | 10.731 | F (9)                                                       | 0.9411   |
| Ne (10)                               | 0.7862 | 8.9904 | 11.644 | Ne (10)                                                     | 0.9401   |
| Na (11)                               | 0.7603 | 9.8862 | 12.630 | Na (11)                                                     | 0.9447   |
| Mg (12)                               | 0.7421 | 10.795 | 13.651 | Mg (12)                                                     | 0.9482   |
| AI (13)                               | 0.7283 | 11.711 | 14.690 | AI (13)                                                     | 0.9512   |
| S1 (14)                               | 0.7170 | 12.632 | 15.736 | S1 (14)                                                     | 0.9534   |
| P (15)                                | 0.7099 | 13.540 | 16.751 | P (15)                                                      | 0.9552   |
| S (16)                                | 0.7066 | 14.501 | 17.878 | S (16)                                                      | 0.9565   |
| Cl (17)                               | 0.6702 | 15.360 | 18.766 | Cl (17)                                                     | 0.9572   |
| Ar (18)                               | 0.6812 | 16.332 | 19.917 | <b>Ar</b> (18)                                              | 0.9589   |
| <b>K</b> (19)                         | 0.6676 | 17.246 | 20.922 | K (19)                                                      | 0.9599   |
| Ca (20)                               | 0.6719 | 18.208 | 22.028 | Ca (20)                                                     | 0.9621   |
| Sc (21)                               | 0.6855 | 19.202 | 23.188 | Sc (21)                                                     | 0.9611   |
| Ti (22)                               | 0.6760 | 20.130 | 24.205 | Ti (22)                                                     | 0.9609   |
| V (23)                                | 0.6134 | 20.891 | 24.915 | V (23)                                                      | 0.9606   |
| Cr (24)                               | 0.6653 | 22.018 | 26.275 | Cr (24)                                                     | 0.9602   |
| Mn (25)                               | 0.6479 | 22.919 | 27.235 | Mn (25)                                                     | 0.9599   |
| Fe (26)                               | 0.6530 | 23.895 | 28.332 | Fe (26)                                                     | 0.9623   |
| Co (27)                               | 0.7137 | 25.063 | 29.843 | Co (27)                                                     | 0.9591   |
| Ni (28)                               | 0.6689 | 25.877 | 30.565 | Ni (28)                                                     | 0.9588   |
| Cu (29)                               | 0.7009 | 26.952 | 31.879 | Cu (29)                                                     | 0.9589   |
| Zn (30)                               | 0.6258 | 27.637 | 32.409 | Zn (30)                                                     | 0.9568   |
| Ga (31)                               | 0.5767 | 28.413 | 33.156 | Ga (31)                                                     | 0.9564   |
| Ge (32)                               | 0.5693 | 29.337 | 34.167 | Ge (32)                                                     | 0.9561   |
| As (33)                               | 0.5767 | 30.330 | 35.255 | As (33)                                                     | 0.9554   |
| Se (34)                               | 0.6294 | 31.508 | 36.645 | Se (34)                                                     | 0.9552   |
| Br (35)                               | 0.6428 | 32.526 | 37.796 | Br (35)                                                     | 0.9540   |
| Kr (36)                               | 0.5949 | 33.283 | 38.522 | Kr (36)                                                     | 0.9546   |
| Rb (37)                               | 0.4484 | 33.519 | 38.749 | <b>Rb</b> (37)                                              | 0.9548   |
| Sr (38)                               | 0.4599 | 34.540 | 39.839 | Sr (38)                                                     | 0.9556   |
| Y (39)                                | 0.4491 | 35.427 | 40.823 | Y (39)                                                      | 0.9546   |
| Zr (40)                               | 0.4464 | 36.360 | 41.846 | Zr (40)                                                     | 0.9546   |
| Nb (41)                               | 0.4450 | 37.303 | 42.873 | Nb (41)                                                     | 0.9544   |
| Mo (42)                               | 0.4420 | 38.237 | 43.892 | Mo (42)                                                     | 0.9544   |
| Tc (43)                               | 0.4248 | 39.082 | 44.833 | Tc (43)                                                     | 0.9541   |
| Ru (44)                               | 0.4444 | 40.163 | 45.969 | Ru (44)                                                     | 0.9543   |
| Rh (45)                               | 0.4359 | 41.061 | 46.956 | Rh (45)                                                     | 0.9543   |
| Pd (46)                               | 0.4233 | 41.922 | 47.925 | Pd (46)                                                     | 0.9544   |
| Ag (47)                               | 0.4441 | 43.029 | 49.063 | Ag (47)                                                     | 0.9541   |
| Cd (48)                               | 0.4537 | 44.037 | 50.158 | Cd (48)                                                     | 0.9548   |
| In (49)                               | 0.5085 | 45.348 | 51.514 | In (49)                                                     | 0.9542   |
| Sn (50)                               | 0.4326 | 45.810 | 52.096 | Sn (50)                                                     | 0.9547   |
| Sb (51)                               | 0.4261 | 46.721 | 53 089 | Sb (51)                                                     | 0.9546   |
| Te (52)                               | 0.4216 | 47,640 | 54.096 | Te (52)                                                     | 0.9547   |
| I (53)                                | 0.4325 | 48.683 | 55 185 | I (53)                                                      | 0.9548   |
| Xe (54)                               | 0.4053 | 49,418 | 56 064 | Xe (54)                                                     | 0.9548   |
|                                       |        |        |        | /                                                           |          |

The mth moment of the ith-shell momentum-density distribution is defined by

$$\langle p^m \rangle_i = \int_0^\infty p^m I_i(p) dp$$
 (5)

Letting m = 0, 1, 2, 3 in Eqs. (4) and (5), we get

TABLE II. Parameters in Eq. (4) for atomic momentum-

| 5K2    | density distributio | density distribution of L snell. |              |              |  |  |  |  |
|--------|---------------------|----------------------------------|--------------|--------------|--|--|--|--|
| 2.5586 | Element (Z)         | $A_{L1}$                         | $\zeta_{L1}$ | $\zeta_{L2}$ |  |  |  |  |
| 3.9533 | Li (3)              | 0.9590                           | 0.3994       | 2.5381       |  |  |  |  |
| 5.3326 | Be (4)              | 0.9397                           | 0.5648       | 3.4130       |  |  |  |  |
| 6.5313 | <b>B</b> (5)        | 0.9404                           | 0.9017       | 4.1177       |  |  |  |  |
| 7.6444 | C (6)               | 0.9414                           | 1.2426       | 4.7817       |  |  |  |  |
| 8.7043 | N (7)               | 0.9429                           | 1.5831       | 5.4258       |  |  |  |  |
| 9.7528 | O (8)               | 0.9421                           | 1.8881       | 6.0270       |  |  |  |  |
| 10.731 | F (9)               | 0.9411                           | 2.2003       | 6.5902       |  |  |  |  |
| 11.644 | Ne (10)             | 0.9401                           | 2.5174       | 7.1266       |  |  |  |  |
| 12.630 | Na (11)             | 0.9447                           | 3.0233       | 8.0953       |  |  |  |  |
| 13.651 | Mg (12)             | 0.9482                           | 3.5191       | 9.0622       |  |  |  |  |
| 14.690 | Al (13)             | 0.9512                           | 4.0133       | 10.023       |  |  |  |  |
| 15.736 | Si (14)             | 0.9534                           | 4.5025       | 10.958       |  |  |  |  |
| 16.751 | P (15)              | 0.9552                           | 4.9895       | 11.884       |  |  |  |  |
| 17.878 | S (16)              | 0.9565                           | 5.4715       | 12.778       |  |  |  |  |
| 18.766 | Cl (17)             | 0.9572                           | 5.9499       | 13.638       |  |  |  |  |
| 19.917 | <b>Ar</b> (18)      | 0.9589                           | 6.4371       | 14.573       |  |  |  |  |
| 20.922 | K (19)              | 0.9599                           | 6.9192       | 15.457       |  |  |  |  |
| 22.028 | Ca (20)             | 0.9621                           | 7.4138       | 16.458       |  |  |  |  |
| 23.188 | Sc (21)             | 0.9611                           | 7.8835       | 17.167       |  |  |  |  |
| 24.205 | Ti (22)             | 0.9609                           | 8.3592       | 17.933       |  |  |  |  |
| 24.915 | V (23)              | 0.9606                           | 8.8346       | 18.694       |  |  |  |  |
| 26.275 | Cr (24)             | 0.9602                           | 9.3077       | 19.435       |  |  |  |  |
| 27.235 | Mn (25)             | 0.9599                           | 9.7816       | 20.181       |  |  |  |  |
| 28.332 | Fe (26)             | 0.9623                           | 10.283       | 21.878       |  |  |  |  |
| 29.843 | Co (27)             | 0.9591                           | 10.724       | 21.647       |  |  |  |  |
| 30.565 | Ni (28)             | 0.9588                           | 11.192       | 22.289       |  |  |  |  |
| 31.879 | Cu (29)             | 0.9589                           | 11.675       | 23.142       |  |  |  |  |
| 32.409 | Zn (30)             | 0.9568                           | 12.128       | 23.665       |  |  |  |  |
| 33.156 | Ga (31)             | 0.9564                           | 12.597       | 24.379       |  |  |  |  |
| 34.167 | Ge (32)             | 0.9561                           | 13.067       | 25.088       |  |  |  |  |
| 35.255 | As (33)             | 0.9554                           | 13.536       | 25.758       |  |  |  |  |
| 36.645 | Se (34)             | 0.9552                           | 14.007       | 26.461       |  |  |  |  |
| 37.796 | Br (35)             | 0.9540                           | 14.473       | 27.033       |  |  |  |  |
| 38.522 | Kr (36)             | 0.9546                           | 14.951       | 27.860       |  |  |  |  |
| 38.749 | <b>Rb</b> (37)      | 0.9548                           | 15.427       | 28.629       |  |  |  |  |
| 9.839  | Sr (38)             | 0.9556                           | 15.911       | 29.487       |  |  |  |  |
| 0.823  | Y (39)              | 0.9546                           | 16.377       | 30.060       |  |  |  |  |
| 1.846  | Zr (40)             | 0.9546                           | 16.854       | 30,783       |  |  |  |  |
| 2.873  | Nb (41)             | 0.9544                           | 17.328       | 31.473       |  |  |  |  |
| 3.892  | Mo (42)             | 0.9544                           | 17.806       | 32.200       |  |  |  |  |
| 4.833  | Tc (43)             | 0.9541                           | 18.281       | 32.868       |  |  |  |  |
| 15.969 | Ru (44)             | 0.9543                           | 18.760       | 33.619       |  |  |  |  |
| 6.956  | Rh (45)             | 0.9543                           | 19.238       | 34.331       |  |  |  |  |
| 7.925  | Pd (46)             | 0.9544                           | 19.718       | 35.054       |  |  |  |  |
| 19.063 | Ag (47)             | 0.9541                           | 20.194       | 35.718       |  |  |  |  |
| 50.158 | Cd (48)             | 0.9548                           | 20.678       | 36.534       |  |  |  |  |
| 51.514 | In (49)             | 0.9542                           | 21.153       | 37.127       |  |  |  |  |
| 2.096  | Sn (50)             | 0.9547                           | 21.637       | 37.921       |  |  |  |  |
| 53.089 | Sb (51)             | 0.9546                           | 22.116       | 38.605       |  |  |  |  |
| 4 096  | Te (52)             | 0 9547                           | 22 597       | 39 324       |  |  |  |  |

23.079

23.561

40.036 40.746 4504

where  $a_0=1$ ,  $a_1=3\pi/8$ ,  $a_2=1$ , and  $a_3=3\pi/16$ . This procedure guarantees the zeroth, first, second, and third moments of Eq. (4) to be equal to those of the HF momentum-density distribution. Note that the zeroth moment in Eq. (6) is simply the normalization condition, i.e.,  $A_{i1}+A_{i2}=1$ . This condition leaves the number of free parameters in Eq. (4) equal to three. The simultaneous equations of Eq. (6) can be solved for  $A_{ij}$  and  $\zeta_{ij}$  using HF data for  $\langle p^m \rangle_i$ . Applying HF data for available atoms with Z up to 54 [10], we have solved these equations for the ground-state K and L shells. Solutions are given in Tables I and II.

Under the impulse approximation [11], the isotropic Compton profile of the *i*th shell,  $J_i(q)$ , is related to the momentum-density distribution as

$$J_i(q) = \frac{Z_i}{2} \int_q^{\infty} \frac{I_i(p)}{p} dp \quad , \tag{7}$$

where  $Z_i$  is the occupation number of electrons per atom in the *i*th shell and *q* is the projection of electron momentum before the collision on the direction of momentum transfer. Substituting Eq. (4) into Eq. (7), we find the analytical expression for Compton profiles as

$$J_i(q) = \frac{8Z_i}{3\pi} \sum_{j=1}^2 \frac{A_{ij} \zeta_{ij}^5}{(\zeta_{ij}^2 + q^2)^3} \quad (i = K, L) .$$
(8)

### **III. RESULTS**

Using Eq. (4) with parameters listed in Tables I and II, we have calculated atomic momentum-density distributions of K and L shells. Figure 1 shows a comparison of



FIG. 1. Plot of the K-shell electron momentum-density distribution for several atoms. Present results (solid curves) are compared to HF data (dashed curves, but coinciding with solid curves within graphic scales) [10]. Atomic units are used.



FIG. 2. Plot of the *L*-shell electron momentum-density distribution for several atoms. Present results (solid curves) are compared to HF data (dashed curves) [10]. Atomic units are used.

our results with the corresponding HF data [10] for the K shell of several atoms. Excellent agreement is found for all atoms. The present results (solid curves) and the HF data (dashed curves, but merging into solid curves within graphic scales) agree so closely with each other that one cannot see any difference from the figure. A similar plot for the L shell is shown in Fig. 2. Again, the agreement is so close that only minute differences can be seen. Fig-



FIG. 3. Plot of the K-shell Compton profile as a function of atomic number for three momentum values. Present results (solid circles) are compared to data calculated using HF wave functions (open circles, but coinciding with solid circles within graphic scales) [12]. The curves are interpolating results showing the dependence of the Compton profile on atomic number. Atomic units are used.



FIG. 4. Plot of the *L*-shell Compton profile as a function of atomic number for three momentum values. Present results (solid circles) are compared to data calculated using HF wave functions (open circles) [12]. The curves are interpolating results showing the dependence of the Compton profile on atomic number. Atomic units are used.

ure 3 is a plot of the K-shell Compton profile as a function of atomic number for several momentum values. No difference can be seen from the figure between the present results (solid circles) and the HF data (open circles, but

- B. G. Williams, Compton Scattering (McGraw-Hill, New York, 1977).
- [2] J. H. McGuire and K. Omidvar, Phys. Rev. A 10, 182 (1974).
- [3] J. R. Sabin and J. Oddershede, Phys. Rev. A 26, 3209 (1982).
- [4] F. F. Komarov and M. M. Temkin, J. Phys. B 9, L255 (1976).
- [5] C. J. Tung, Phys. Rev. A 22, 2550 (1980).
- [6] C. M. Kwei, Y. F. Chen, and C. J. Tung, Phys. Rev. A 45, 4421 (1992).

merging into solid circles within graphic scales) [12]. Note that all calculated results are plotted as discrete points; interpolating curves serve only to indicate the dependence of these results on atomic number. A similar plot of the *L*-shell Compton profile is shown in Fig. 4. Still, only minute differences can be seen.

## **IV. CONCLUSION**

In this work, we have constructed simple analytical expressions for the atomic momentum-density distribution and Compton profile of K and L shells. Although it was not discussed, we have calculated the stopping cross section of K and L shells for protons using Eq. (4) and the stopping-power formula [13]. In all these calculations, we found excellent agreement between the present results and detailed theoretical computations.

An extension of this work to other shells seems plausible. However, the superposition of hydrogenic closedshell momentum densities in Eq. (4) should include more terms. It requires then additional moments in Eq. (5) to be applied. If electrons in the M and higher shells belong to the valence band, a solid-state rather than atomic theory must be employed.

## ACKNOWLEDGMENT

This research was supported by the National Science Council of the Republic of China.

- [7] T. Koga and H. Matsuyama, Phys. Rev. A 45, 5266 (1992).
- [8] V. Fock, Z. Phys. 98, 145 (1935).
- [9] B. B. Robinson, Phys. Rev. 140, A764 (1965).
- [10] E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
- [11] L. Mendelsohn and V. H. Smith, in *Compton Scattering*, edited by B. G. Williams (McGraw-Hill, New York, 1977), p. 102.
- [12] F. Biggs, L. B. Mendelsohn, and J. B. Mann, At. Data Nucl. Data Tables 16, 201 (1975).
- [13] P. Sigmund, Phys. Rev. A 26, 2497 (1982).