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MODEL FOR EVALUATING NETWORKS UNDER CORRELATED

UNCERTAINTY—NETCOR

By Wei-Chih Wang1 and Laura A. Demsetz2

ABSTRACT: Construction activities are often influenced by factors such as weather, labor, and site conditions.
When several activities are influenced by the same factor, their durations may be correlated. If many activities
along a path are correlated, the variability of path duration will increase, possibly increasing the uncertainty of
completing the project by a target date. This paper presents the simulation-based model NETCOR (NETworks
under CORrelated uncertainty) to evaluate schedule networks when activity durations are correlated. Based on
qualitative estimates of the sensitivity of each activity to each factor, uncertainty in an activity’s duration dis-
tribution (grandparent) is distributed to several factor subdistributions (parents). Each subdistribution is broken
down further into a family of distributions (children), with each child corresponding to a factor condition.
Correlation is captured by sampling from the same-condition child distributions for a given iteration of the
simulation. NETCOR integrates the effect due to each factor at the path level. Awareness of the factors to which
a path is sensitive can provide management with a better sense of what to control on each path, particularly on
large projects.
INTRODUCTION

Factors such as weather, labor skills, site conditions, and
management quality can influence the duration of construction
activities. The factors will often influence multiple activities
on a particular project and may cause activity durations to be
correlated (Carr 1979; Woolery and Crandall 1983; Ahuja and
Nandakumar 1985; Levitt and Kunz 1985; Padilla and Carr
1991). For example, if bad weather occurs during concrete
forming, it also is likely to influence other activities taking
place at the same time (but perhaps in different locations) on
the project. Bad weather will increase the duration of each
weather-sensitive activity. Similarly, the duration of each
weather-sensitive activity will decrease when the weather is
good. If this correlation effect occurs for many activities along
a network path, the variability of the path’s duration may be
significantly increased. If the path is critical or near critical,
the variability in its duration will lead to a variability in the
project’s duration. Increased variability in the project’s dura-
tion increases the uncertainty of completing the project by a
target date. Therefore, the correlation effect has the potential
to create an unexpected schedule overrun.

A better understanding of the effects of correlation would
make the schedule a more useful management tool by provid-
ing a better estimate of uncertainty in the project’s duration
and helping to focus attention on the factors that have the
greatest impact on the project’s duration. When a path consists
of several activities that are highly sensitive to the same factor,
the path tends to be highly sensitive to this factor. In current
practice, project managers may informally keep track of the
factors that influence particular paths through the project. Bet-
ter knowledge of the factors to which a path is sensitive and
of the paths that are most sensitive to a particular factor could
give management a better sense of what to control on each
path, especially on large projects.

In the critical-path method (CPM) and probabilistic models
such as program evaluation and review technique (PERT) and
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Monte Carlo simulation, the duration of each activity is en-
tered or evaluated independently of the durations of other ac-
tivities in the network. As they are currently used, these ap-
proaches will not capture the correlation that may exist
between the durations of different activities in a schedule net-
work. This paper presents the simulation-based model
NETCOR (NETworks under CORrelated uncertainty), which
incorporates the effect of correlation in network schedules and
provides factor-sensitivity information to support schedule risk
management. In the next section, previous research on corre-
lation in network schedules is reviewed. The third section pre-
sents the NETCOR model. The effect of correlation for a small
example network is evaluated in the fourth section. Results are
summarized in the final section. The application of NETCOR
to a recent construction project is described in a companion
paper (Wang and Demsetz 2000).

PREVIOUS WORK

Several models have been proposed to treat correlation in
either a project’s duration or cost. These models can be
broadly divided into two groups: indirect and direct elicitation.
Indirect-elicitation models evaluate the effect of correlation
without explicit specification of correlation coefficients. Di-
rect-elicitation models require correlation coefficients as input.

Indirect-Elicitation Models

MUD/DYNASTRAT

Carr (1979) developed the simulation-based MUD (Model
for Uncertainty Determination) to evaluate a project network
under uncertainty. The MUD simulation recognizes that the
durations of activities are correlated when the activities share
the same factors, such as site condition, crew efficiency, and
equipment performance, which are independent of the calendar
date, and the effect of weather, which is dependent on the
calendar date. The MUD simulation was further refined into a
component of the DYNASTRAT (DYNAmic-STRATegy)
model for dynamically allocating resources (Padilla and Carr
1991). In DYNASTRAT, daily progress for an activity is the
product of the work crew’s standard productivity, a weather
correction factor (based on historical data), and duration mod-
ifying factors, which are the combined effect of factors that
are independent of calendar dates. Correlation is introduced by
using the same sample drawn from a shared factor in each
scheduling day. The evaluation of uncertainty is factor based,
and uncertainty is treated as having both favorable and adverse
effects.
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PRODUF

PRODUF (Project Duration Forecast) was developed to
generate more objective duration distributions of activities be-
fore performing conventional Monte Carlo-simulation proce-
dures (Ahuja and Nandakumar 1985). In generating a proba-
bilistic activity duration, single-day progress for an activity is
taken to be the product of terms that adjust for workday loss
due to several factors. In each scheduling day, correlation is
captured by setting workday loss caused by a factor as the
same for all activities that share the factor. PRODUF, a factor-
based model, captures positive correlation resulting from shar-
ing of factors. For most factors, only the adverse effect of
uncertainty is considered. A great deal of historical data would
be required to construct appropriate distributions to describe
the impact of several factors for each activity.

PLATFORM

PLATFORM, a rule-based method developed by Levitt and
Kunz (1985), updates the durations of uncompleted activities
based on the durations of completed activities. Each activity
has associated risk factors that affect its duration. A risk factor
is labeled a ‘‘knight’’ if it is shared by two or more ‘‘short’’
activities (completed activities whose actual durations were
less than expected). Similarly, risk factors associated with two
or more ‘‘long’’ activities (completed activities whose dura-
tions were greater than expected) are considered to be ‘‘vil-
lains.’’ Correlation is captured by reducing the durations of
uncompleted activities associated with a knight and increasing
the durations of uncompleted activities associated with a vil-
lain.

CEV

In the CEV (Conditional Expected Value) model, proposed
by Ranasinghe and Russell (1992), the correlation coefficient
between two variables, x and y, is derived from the conditional
expected value, which is found by asking experts the question
‘‘What is the anticipated value for y when x = F?’’ The out-
come of the elicitation process largely dominates the results
(Ranasinghe and Russell 1992]; therefore, the model requires
excellent quality of inputs. Uncertainty can have both favor-
able and adverse outcomes in the model and is not treated as
being factor based.

Direct-Elicitation Models

Exact Simulation

To conduct an exact simulation analysis incorporating the
effect of correlation, a proper assessment of the joint proba-
bility density function (PDF) for the correlated variables is
need (Touran and Wiser 1992). The only joint PDF for which
a well-organized theory of statistical inference currently exists
is the multivariate normal distribution (Law and Kelton 1991).
If variables are assumed to follow a normal distribution, then
one needs only to have the multivariate normal distribution to
generate correlated variables, given that the correlation coef-
ficients between variables are known (Touran and Wiser 1992).
Due to the difficulty of quantitatively assessing the correlation
coefficient, qualitative estimates may be adopted (Touran
1993).

Quantile Simulation

A facility in commercially available Monte Carlo-simulation
software may be used to capture the effect of correlation when
the correlation coefficient is known (Chau 1995). The sam-
pling procedure increases the probability of sampling the same
JOURNAL OF CONSTRUCTION ENG
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quantiles from two PDFs when the correlation coefficient is
positive. Similarly, when the correlation coefficient is negative,
there will be a higher probability of sampling the nth percen-
tile and 100 2 nth percentile from the two PDFs.

MSRN

In the MSRN (Modified Second Random Number) simula-
tion, the value of the correlation coefficient is again used to
influence the selection of random numbers. For example, Van
Tetterode 91971) modifies the second random number by a
proportion of the difference between the first and second ran-
dom numbers.

Factored Simulation

A stochastic network model dealing with correlated dura-
tions was developed by Woolery and Crandall (1983). In this
model, the duration of an activity consists of a time distribu-
tion for the activity duration under optimal conditions and a
series of time distributions for various problems (factors) that
may lengthen the activity duration. For a given activity, these
problems are assumed to be independent. As an example, the
delays for weather problems and labor and material shortages
are assumed to be independent of each other. However, the
effect of the same problem on multiple activities is assumed
to be correlated. For example, the weather delay of one activ-
ity is assumed to be correlated with the weather delay of an-
other activity. This correlation can be perfect or partial. The
use of a base duration modified by a series of factor-related
distributions is a logical way to evaluate the effect of uncer-
tainty. However, because the base duration of an activity is
assumed to be optimal, uncertainty can only have an adverse
effect.

Summary of Past Work

For a model to be of use as a management tool, the follow-
ing characteristics are desirable. A factor-based approach
should be used to most naturally capture the correlation caused
by the influence of factors on multiple activities. The required
input should be such that it can be reasonably provided by
project management. In particular, the method of introducing
correlation should not require the user to express the extent to
which activities are correlated because this information is not
readily available. Finally, because the effect of uncertainty can
be either adverse of favorable, the model should be capable
of representing both increases and decreases in duration.

Among previously developed correlation-capturing models
with respect to the desired characteristics, all four duration-
focused models (i.e., MUD/DYNASTRAT, PRODUF,
PLATFORM, and factored simulation) assume a positive cor-
relation and adopt a factor-based approach. The indirect-elic-
itation simulation models (i.e., MUD/DYNASTRAT and
PRODUF) require extensive inputs or historical data. Only
PLATFORM meets all desired characteristics. However,
PLATFORM relies on the performance of completed activities
and treats all factors as having the same effects. Therefore, a
new model that can more comprehensively meet the desired
characteristics to capture correlation is desirable. Previous re-
search has not reported on the significance of considering cor-
relation. The work presented here and in a companion paper
(Wang and Demsetz 2000) begins to address this issue.

NETCOR MODEL

General Description of NETCOR Model

This section provides an overview of a simulation-based
model for evaluating NETCOR. In NETCOR, a factor-based
INEERING AND MANAGEMENT / NOVEMBER/DECEMBER 2000 / 459
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FIG. 1. Breakdown of Uncertainty
procedure to indirectly elicit positive correlation is used. This
procedure is facilitated by an activity duration model that dis-
aggregates the effect of uncertainty from a factor. The activity
duration model considers both favorable and adverse effects
of uncertainty. Although the effects of uncertainty for each
factor are qualitatively estimated by the user and evaluated at
the activity level, NETCOR integrates these individual effects
of a factor at the path level.

Breakdown of Uncertainty

In NETCOR, the duration of an activity is considered to be
a random variable. The duration distribution is represented by
a ‘‘grandparent’’ distribution that is a combination of a base
duration and variations due to different factors. The variations
due to a particular factor are represented by a duration sub-
distribution, or ‘‘parent’’ distribution. The base duration is as-
sumed to be deterministic, whereas the parent distribution for
each factor is assumed to be a zero-mean random variable.
This approach, shown schematically in Fig. 1, is appealing,
both intuitively and mathematically. The base duration is
treated as the user’s best guess of an activity’s duration under
the expected factor conditions and is the expected value of the
overall duration distribution (grandparent) for the activity. De-
viations from the expected value due to various factors are
introduced through the parent distributions.

Qualitative Estimates of Uncertainty Sensitivity

The derivation of parent distributions is based on subjective
information. Project planners are asked to qualitatively esti-
mate the level of influence that each factor has on the duration
of each activity. For example, if the duration of an activity
can vary greatly depending on the weather, the activity would
be considered to have a high sensitivity to weather. It is be-
lieved that this approach of qualitative estimates is practical
because the impact of uncertainties is easily expressed in lin-
guistic terms (Chang 1987). There is no inherent restriction on
the number of levels of influence used for each factor. The
examples included in this paper use four levels of influence:
high, medium, low, and no influence.

Factor-Based Correlation

The NETCOR model assumes that the duration of activities
are correlated only through the impact of shared factors. Dif-
ferent factors are assumed to cause independent effects. For
example, assume Activity 1 is sensitive to weather and labor
ONSTRUCTION ENGINEERING AND MANAGEMEN
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FIG. 2. Decomposition of Parent into Child Distributions

and Activity 2 is sensitive to weather and equipment. Only the
weather-related parent distributions are correlated; the varia-
tions caused by labor and equipment are assumed to be in-
dependent.

The NETCOR model captures correlation by drawing du-
ration samples from related portions of the parent distributions
for activities that are sensitive to a given factor. For example,
the upper part of Fig. 2 shows weather conditions classified
as ‘‘better-than-expected,’’ ‘‘expected,’’ and ‘‘worse-than-ex-
pected.’’ Based on these three different weather conditions, the
parent distribution due to weather is disaggregated into three
child distributions (shown in the lower half of Fig. 2): better-
than-expected, expected, and worse-than-expected. When a
simulation is run under better-than-expected weather, sample
durations will be independently drawn from the better-than-
expected weather child of any weather-sensitive activities, and
likewise for expected and worse-than-expected weather con-
ditions. Therefore, better-than-expected weather tends to pro-
duce a shorter duration for each weather-sensitive activity,
whereas worse-than-expected weather tends to produce a
longer duration.

Child distributions may overlap. That is, the duration of an
activity may be the same under both better-than-expected and
T / NOVEMBER/DECEMBER 2000
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FIG. 3. Factor-Sensitive Paths

expected weather conditions or the duration under expected
weather may be shorter than the duration under better-than-
expected weather. An extreme case is when child distributions
are perfectly overlapped; then, the duration samples will al-
ways be drawn from the same child distribution under any
conditions and there will be no correlation. On the other hand,
when an activity is highly sensitive to weather, the child dis-
tributions will be distinct. The use of a child distribution is
appealing because it is anticipated that NETCOR would be
used to capture only the most important factors. Therefore, for
a given set of factor conditions, there should be uncertainty in
the duration. Furthermore, even when two activities are af-
fected by the same factors, they may not be perfectly corre-
lated.

In summary, the core of the NETCOR model is the two-
step breakdown of uncertainty. The first breakdown separates
uncertainty by a factor for each grandparent distribution; that
is, grandparent distribution = base duration 1 parent distri-
butions. The second breakdown separates uncertainty by a
condition for each parent distribution; that is, parent distribu-
tion = family of child distributions. Correlation is introduced
by sampling from the child distribution representing a given
factor condition (such as worse-than-expected weather).

Path Analysis

When several activities along a network path are sensitive
to particular factors, it is likely that the performance of the
path will be dominated by these factors. With knowledge of
factor-sensitive paths, management will have a better sense of
what to control. Consider, for instance, the network shown in
Fig. 3. Suppose the foundation, steel, and concrete paths are
dominated by equipment performance, labor skill, and weather
behavior, respectively. If the (equipment-sensitive) foundation
path is critical, management effort should focus on ensuring
the availability of equipment. If the (labor-sensitive) steel path
is critical, management should focus on the quality and avail-
ability of labor. Controlling those factors that affect perfor-
mance may offer far greater potential for improving perfor-
mance than modifying or changing the work method (Thomas
et al. 1990).

Development of NETCOR

Activity Duration Modeling

A model of the activity duration in which the effect of un-
certainty is broken down by factors may be derived from the
productivity perspective. Productivity is expressed as the
amount of time required to finish a unit of work (Thomas et
al. 1990).

PM = time/quantity (1)

where PM = productivity measure.
In a deterministic environment, the estimated productivity

measure for an activity i, PMi(estimated), can be mathematically
represented in the following form (Thomas et al. 1999):
JOURNAL OF CONSTRUCTION ENG
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PM = PM 1 X (2)i(estimated) i(0) i( j )O
j=1

where = estimated productivity measure for activity iPMi(0)

under estimated outcomes of factors; and = estimatedXi( j )

constant representing the variation in the productivity measure
of activity i with respect to factor j. The value of can beXi( j )

negative, zero, or positive.
In a probabilistic environment, however, (2) should be re-

written

J

PM 9 = PM 9 1 X 9 = PM 9 1 X 9 1 X 9i (estimated) i (0) i(i) i(0) i(1) i(2)O
j=1

1 ??? 1 X 9 1 ??? 1 X 9i( j ) i( J ) (3)

where = random variables.PM9 , X9 1 X9 , . . . , X9i (estimated) i(1) i(2) i( J )

Each realization of represents the increase or decrease inX9i( j )

the productivity measure of activity i due to factor j. Based
on (3), Di, the duration of activity i, may be expressed

D = quantity 3 PM 9i i (estimated)

= quantity 3 (PM 9 1 X 9 1 X 9 1 ? ? ? 1 X 9 )i(0) i(1) i(2) i( J )

J

= d 1 d 1 d 1 ? ? ? 1 d = d 1 di(0) i(1) i(2) i( J ) i(0) i( j )O
j=1 (4)

in which = estimated (or base) duration; and the randomdi(0)

variables = duration parent distributions of activity i duedi( j )

to factor j, j = 1, . . . , J.
Eq. 4 shows the variations in the duration of an activity as

a base duration and a series of parent duration distributions
for various factors that may lengthen or shorten the activity
duration. In NETCOR, the following assumptions are applied
to this activity duration model:

• The value of is assumed to be deterministic. In otherdi(0)

words, the value of is equal to the duration that isdi(0)

estimated under the expected conditions of all factors.
• The expected values of are assumed to be zero; i.e.,di( j )

Each sample of thusm = m = ? ? ? = m = 0. di(1) i(2) i( J ) i( j )

represents a change from the expected duration.
• Values of are assumed to be indepen-d , d , . . . , di(1) i(2) i( J )

dent of each other. That is, for a given activity, the impact
of weather, labor skills, and other factors are assumed to
be independent of each other.

Then, regardless of the type of marginal distribution of
the mean and variance of the duration of activity i ared ,i( j )

(Benjamin and Cornell 1970)

M = m 1 m 1 m 1 ? ? ? = m (5)i i(0) i(1) i(2) i(0)

2 2 2 2 2s = SD 1 SD 1 SD 1 ? ? ? 1 SDi i(0) i(1) i(2) i( J )

2 2 2= SD 1 SD 1 ? ? ? = SDi(1) i(2) i( J ) (6)

in which Mi and si = mean and standard deviation, respec-
tively, for Di (the grandparent duration distribution for activity
i); and and = mean and standard deviation, respec-m SDi( j ) i( j )

tively, for (the parent duration distribution for activity idi( j )

due to factor j ), with = 0.SDi(0)

NETCOR finds Mi and si for activity i and then determines
In the example presented in this paper, the three-pointSD .i( j )

estimates of PERT are used to calculate Mi and si. However,
there is no inherent restriction on the use of other methods
(e.g., the direct assignment of a particular distribution to each
activity) as long as the values of Mi and si can be found.
INEERING AND MANAGEMENT / NOVEMBER/DECEMBER 2000 / 461
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Scale System to Break Down Uncertainty by Factor

Based on qualitative estimates of the uncertainty sensitivity
of activity i to factor j, a scale system is used to distribute the
uncertainty associated with the grandparent distribution to the
parent distributions. That is

J

2 2 2 2 2s = SD = SD 1 SD 1 ? ? ? 1 SD (7a)i i( j ) i(1) i(2) i( J )O
j=1

2s = (w [Q ] 1 w [Q ] 1 ? ? ? 1 w[Q ]) 3 K (7b)i 1 i(1) 2 i(2) i( J ) i

J

2s = w [Q ] 3 K (7c)i j i( j ) iSO D
j=1

2SD = w [Q ] 3 K (7d )i( j ) j i( j ) i

where = qualitative estimate (such as high, medium, low,Qi( j )

or no) of the sensitivity of activity i to factor j ; and w [Q ]j i(j )

= scale for each level of influence. For example, the values of
the estimates of high, medium, low, and no sensitivity for fac-
tor j can be represented by wj[high], wj [medium], wj[low], and
wj[no], respectively. The constant Ki is an adjustment that en-
sures that is preserved. Because is fixed for a given2s w [Q ]i j i( j )

factor j, Ki will be different for each activity. The value of
wj[no] is always zero. When represents a higher level ofQi( j )

influence, the value of is higher. Consequently, aw [Q ]j i( j )

larger portion of the variance will be distributed to a parent
distribution that has a higher sensitivity. The value of

is determined by the user according to the relativew [Q ]j i( j )

importance of the factors. For example, if the user thinks that
Factor 1 causes more uncertainty than other factors, then val-
ues of wj[high], wj[medium], and wj[low] for Factor 1 should
be higher than the corresponding values for other factors.

Breakdown of Uncertainty by Condition

In constructing a family of child distributions to represent
changes in duration due to factor conditions, one goal is to
preserve the mean and variance of the parent distribution. In
other words, the mean and variance of the combination of the
child distributions for a family should be the same as the mean
and variance of the parent distribution. Mathematically, this
relationship can be represented

C

m = p 3 o = 0 (8)i( j ) j(c) i[ j (c)]O
c=1

C

2 2 2SD = p 3 (sd 1 o ) (9)i( j ) j (c) i[ j (c)] i[ j (c)]O
c=1

in which C = number of child distributions; = probabilitypj(c)

of occurrence for child distribution c of factor j ; and oi[ j (c)]

and = mean and standard deviation, respectively, forsdi[ j (c)]

child distribution c of factor j for activity i. Eqs. 8 and 9 are
valid for any type of statistical distribution. Steiner’s theorem
can be directly applied to justify (9) (Kreyszig 1983). Note
that the mean and variance of the combination of a base du-
ration and parent distributions have been preserved for the
grandparent distribution [(5) and (6)].

Properties of Child Distributions

The properties associated with the child distributions should
be selected such that the mean and standard deviation of the
parent distributions are maintained.

Number of Child Distributions. How many child distri-
butions should be used to capture the impact of factor condi-
tions that are different than expected? It seems reasonable to
use an odd number of child distributions; the central child
462 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMEN
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FIG. 5. Child Distributions for Different Mean Placements

FIG. 4. Child Distributions for Different Probabilities of Occur-
rence

distribution will then be associated with the expected condi-
tion. A different number of child distributions may be appro-
priate for different factors. For the networks examined to date,
it has been found that, given other constraints, the number of
child distributions has relatively little impact on correlation
(Wang 1996).

Probability of Occurrence. The probability that each
condition actually occurs may be different. Fig. 4 shows two
of the many possible combinations. On the left, the expected
condition has been assigned a higher probability than either of
the extreme conditions. On the right, each condition has been
assigned the same value.

Mean. The mean of the child distribution for a given con-
dition is the expected deviation from the mean of the parent
distribution when the activity is performed under the given
condition. Means of child distributions are expressed through
a variable x, the mean placement. Fig. 5 shows the means of
three child distributions as represented by (2x, 0, and x) or
(20.5x, 2x, and 2x). The mean of each child distribution
should be confined to a range that maintains the variance of
the parent distribution. Consider a family of three child dis-
tributions, as shown in Fig. 6. As the mean placement x ap-
proaches the limit, the standard deviations of child distribu-
tions must become smaller if the variance of the parent is to
be preserved. When x is equal to the limit, the child distri-
butions will have zero standard deviations.

Standard Deviation. The standard deviation of each child
distribution is determined as a multiple of sd. For example,
the standard deviation of a child distribution can be equal to
sd or 2sd. Specifying the mean placement x and requiring the
variance of the combination of child distributions to equal the
variance of the parent yields the value of sd.

Constructing Child Distributions

To construct a family of child distributions is to determine
their means and standard deviations. Consider a parent distri-
bution that is sensitive to factor j and has a variance of 4 days.
Assume that the user chooses the categories of better-than-
expected, expected, and worse-than-expected conditions to de-
scribe the conditions of the factor. Then a family of three child
distributions should be constructed. Assume that the probabil-
ities of occurrence for the child distributions are equal; that is,
p1 = p2 = p3 = 1/3. Thus, based on (8) and (9), the mean and
variance, respectively, of the combined child distributions are

(1/3)o 1 (1/3)o 1 (1/3)o = 0 (10)1 2 3

2 2 2 2 2 2(1/3)(sd 1 o ) 1 (1/3)(sd 1 o ) 1 (1/3)(sd 1 o ) = 4 (11)1 1 2 2 3 3
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FIG. 6. Effect of Mean Placement
Assume 2o1 = o3 = x and o2 = 0 so that (10) is satisfied, and
let the child distributions have equal standard deviations, then
(11) can be rewritten

2 2sd 1 (2/3)x = 4 (12)

The limit of the value of x is found by requiring that the
variance of the child distribution be nonnegative. That is

2 2sd = 4 2 (2/3)x $ 0 (13)

Thus, the limit in this case is x # = 2.45 (limit = 2.45).6Ï
In other words, the values of 2.45 and 22.45 are the two
extreme means for Child Distributions 1 and 3, respectively.
The next step is to select the value of x between 0 and 2.45.
Instead of specifying the exact value of x, the NETCOR model
suggests that the value of x be selected based on the level of
influence of the factor under consideration on the activity un-
der consideration. In this example, assume x is set to one-half
of the limit. Then x is equal to 1.27. The properties of this
family of three child distributions are thus Child 1 ( p1 = 1/3,
o1 = 21.27, and sd1 = 1.71), Child 2 ( p2 = 1/3, o2 = 0, and
sd2 = 1.71), and Child 3 ( p3 = 1/3, o3 = 1.27, and sd3 = 1.71).
A comprehensive analysis of the input distribution (such as
the analysis of the characteristics of the implicitly integrated
parent and grandparent distributions) is included in Wang
(1996).

Further Comments on Correlation

The occurrence of correlation between parent distributions
is due to the sharing of the same factor(s). However, it may
not be true that parent distributions that are sensitive to the
same factor must be correlated. This is because the outcomes
of any shared factor may not be the same over a long period
of time. In other words, as recognized in earlier works [e.g.,
Carr (1979) and Padilla and Carr (1991)], correlation can be
time dependent. Two outdoor activities that are each highly
sensitive to weather may not be correlated if they are sched-
uled over different days or in different seasons. Other factors
may require refinement as well. For example, site conditions
may vary across a project. Thus two activities that are each
highly sensitive to site conditions may have have correlated
durations. Nevertheless, in a broad view, it is reasonable to
attribute correlation to the sharing of factors.

Uncertainty Sensitivity along Path

In this paper, the uncertainty sensitivity for factor j along a
path is measured using the coefficient of variation (CV). Math-
JOURNAL OF CONSTRUCTION ENG

J. Constr. Eng. Manage
ematically, the value of CV along a path for factor j, denoted
as CVj, is given

CV = variance /mean (14a)Ïj j

and the value of CV along a path for all factors, denoted as
CV, is given

CV = variance /mean (14b)Ï all

In (14) mean = expected duration of a path; variancej = vari-
ance of the path when only factor j is evaluated; and varianceall

= variance of the path when all factors are evaluated. A path
with a high value of CV for a factor is considered to be highly
sensitive to the factor. High sensitivity to a factor indicates
that a path duration is more likely to be affected by this factor
(if the factor condition is other than expected).

Expected Delay Penalty

Several indicators can be used to measure the performance
of a project in terms of duration. Because one of the main
reasons to finish a project on time is to prevent enforcement
of a delay penalty, NETCOR uses a measure of the expected
delay penalty to gauge the risk of a path or project. The ex-
pected delay penalty EDP is defined

`

EDP = R 3 T 3 DP (15)T dO d
T =1d

in which Td = number of days beyond the target duration;
= probability that the project duration is Td days beyondRTd

the target; and DP = daily delay penalty.

Implementation of NETCOR

The implementation strategy for NETCOR’s duration and
correlation modeling procedure can be found in Wang (1996).
A newly developed simulation language, STROBOSCOPE
(STate and ResOurce Based Simulation of COnstruction
ProcEsses) (Martinez 1996), is adopted to execute the simu-
lation-relevant algorithms described in the NETCOR model.
In addition to STROBOSCOPE’s powerful capabilities to dy-
namically access the state of the simulation and properties of
the resources involved in construction operations, it has an
add-on that allows the definition of CPM networks with sto-
chastic durations and calculation of various statistics about the
project and activities. STROBOSCOPE can be run under the
environment of the 32-bit version of Windows (e.g., Windows
95) or 16-bit version of Windows (e.g., Windows 3.1 plus the
Win32s operating system extension).
INEERING AND MANAGEMENT / NOVEMBER/DECEMBER 2000 / 463
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ANALYSIS OF CORRELATION EFFECT

This section demonstrates the use of NETCOR. A sample
project is used to begin to investigate the correlation effect on
a project’s duration, an analysis of factor sensitivities along
paths is conducted, and the performance of NETCOR, PERT,
and Monte Carlo-simulation models are compared. The main
objective of these exercises is to examine whether NETCOR
works as expected.

Sample Network

Fig. 7 presents an example nine-activity project network.
The network consists of three paths. The first path (1 → 2 →
3) is the conventional CPM with no float available. The second
(4 → 5 → 6) and third paths (7 → 8 → 9) have 1 and 4 days
of float, respectively. In NETCOR, two types of input are re-
quired: information that can be used to estimate the mean and
standard deviation of each activity and a qualitative estimate
of the sensitivity of each activity to each factor.

Duration Mean and Standard Deviation

For this example, the mean and standard deviation for each
activity were derived from the entered values for the optimistic
duration l, mode t, and pessimistic duration u of each activity,
as shown on the left side of Table 1. These values were used
to calculate the mean and standard deviation s of the grand-
parent distribution for each activity by assuming a beta dis-
tribution with shape parameters a and b. This is the same
procedure used to find mean and standard deviation in a tra-
ditional PERT analysis.

Qualitative Estimates

The factors considered in this example project are labor
skills, weather, and equipment. The right side of Table 1 shows
the assumed sensitivity of each activity to each factor. For
example, Activity 1 has a low sensitivity to labor and medium
sensitivities to weather and equipment.

Evaluation

Based on the inputs presented in Table 1, NETCOR then
uses a family of child distributions to represent the grandparent
464 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMEN
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distribution for each activity. This is done in two steps: (1)
Calculate the standard deviation of the parent distribution
based on a scale system; and (2) calculate the mean and
standard deviation for each child distribution. During this two-
step process, the mean and standard deviation of the grand-
parent distribution are always preserved. The scale system
used is w1[high] = w2[high] = w3[high] = 8, w1[medium] =
w2[medium] = w3[medium] = 5, and w1[low] = w2[low] =
w3[low] = 1.

Three child distributions are used for each family. The prob-
abilities of occurrence and standard deviations of child distri-
butions for each family are assumed to be the same; child
distribution means are symmetrically placed. The value of x is
set to 0.7, 0.5, or 0.3 limit when the family has a high, me-
dium, or low sensitivity, respectively. Then, based on the cal-
culation procedures described previously, the mean and stan-
dard deviation of child distributions with respect to labor,
weather, and equipment can be obtained.

Evaluation of NETCOR’s results is complicated by the fact
that the true impact of correlation is unknown. In the discus-
sion presented below, NETCOR’s results for the sample net-
work are compared with four analyses that do not take cor-
relation into account: standard PERT analysis, Monte Carlo
simulation carried out using normally distributed activity du-
rations with the same mean and variance used in NETCOR’s
grandparent distribution (Normal Grand), Monte Carlo simu-
lation carried out using beta-distributed activity durations with
the same mean and variance used in NETCOR’s grandparent
distribution (Beta Grand), and Monte Carlo simulation carried
out directly on NETCOR’s child distributions (Normal Child).
The PERT and Normal Grand analyses are included because
these are the most commonly used means of incorporating
uncertainty. It has frequently been suggested that construction
activity duration distributions can be best modeled using a beta
distribution. However, because NETCOR models activity du-
ration as a sum of durations due to several factors, the resulting
grandparent duration is, by the central-limit theorem, normally
distributed [see Wang (1996) for a further discussion]. The
Beta Grand analysis is included to see whether this limitation
is important for the example network. The Normal Child anal-
ysis is included to further isolate the effect of correlation as
captured by NETCOR. Child distributions identical to those
TABLE 1. Three-Point Estimates and Uncertainty Sensitivity for Example Network

Activity
(1)

l
(2)

t
(3)

u
(4)

a
(5)

b
(6)

Mean
(7)

s
(8)

Labor
(9)

Weather
(10)

Equipment
(11)

A1 13 15 25 2 6 16 1.73 L M M
A2 1 2 7 1.3 2.7 3 1.26 H L M
A3 3 4 10 1.1 1.4 6 1.85 M M L
A4 3 5 20 1.3 3.1 8 3.35 M H H
A5 7 8 18 1.1 1.9 11 2.65 M M H
A6 3 4 8 1.2 1.8 5 1.22 H M L
A7 4 5 18 1.3 4.7 7 2.17 M H H
A8 4 6 24 1.1 1.6 12 5.12 H M L
A9 1 1.5 8 1.7 10 2 0.68 L H M

Note: l = optimistic duration, t = mode, u = pessimistic duration, s = standard deviation, a and b = shape parameters of beta distribution, H = high,
= medium, and L = low.

FIG. 7. Example Project Network
T / NOVEMBER/DECEMBER 2000
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TABLE 2. Comparison of Without- and With-Correlation Analyses

Project duration
(1)

PERT
(2)

Normal Child
(3)

Beta Grand
(4)

Normal Grand
(5)

With-correlation
(6)

Mean 25 27.22 26.79 27.14 27.02
Standard deviation 2.83 3.08 3.15 2.93 4.20
EDP 1.12DP 2.88DP 2.66DP 2.89DP 3.19DP
90% confidence intervals — — — 22.6–32.2 (D = 9.6) 20.6–34.2 (D = 13.6)
Probability of overrun 0.43 0.76 0.69 0.76 0.66

FIG. 8. Project Duration for With- and Without-Correlation Analyses
used in NETCOR form the basis of this simulation; the only
difference between the Normal Child analysis and NETCOR
analyses is the introduction of correlation.

Results—Project Duration

In the discussion below, project duration for the various
analyses (PERT, Normal Grand, Beta Grand, Normal Child,
and with correlation) is compared using several metrics: the
mean and standard deviation of the overall duration distribu-
tion, expected delay penalty EDP, range of 90% confidence
intervals for project duration, and probability of schedule over-
run (the probability that the project duration exceeds the CPM
duration).

PERT versus Without-Correlation Analyses

The left side of Table 2 summarizes the results of project
duration for the four without-correlation analyses. As ex-
pected, the Normal Grand and Normal Child distributions gen-
erate similar results in every category. The Beta Grand distri-
bution generates slightly different results than the other two
simulation analyses. Compared with the PERT analysis, each
of the without-simulation analyses results in increases in the
expected project duration of about 2 days (8%), standard de-
viation of about 0.22 days (8%), EDP of about 1.69DP
(150%), and probability of overrun of about 0.31 (62%). PERT
underestimates variation because it ignores the uncertainty as-
sociated with other noncritical paths (Moder et al. 1983).

Without-Correlation versus With-Correlation Analyses

Fig. 8 graphically summarizes the cumulative probability
distribution of the project’s duration for PERT, without-cor-
relation Normal Grand analysis, and with-correlation analysis.
The effect of correlation can be clearly observed from the fig-
ure; the with-correlation distribution has extended the tails of
the distribution.

The right side of Table 2 shows that the with-correlation
analysis results in a small decrease in the project’s expected
duration. With respect to standard deviation and EDP, the val-
ues under with-correlation analysis are 4.20 days and 3.19DP,
JOURNAL OF CONSTRUCTION ENG
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TABLE 3. Uncertainty Sensitivity by Path

Path
(1)

Float
(days)

(2)
Labor

(3)
Weather

(4)
Equipment

(5)

1
2
3

0
1
4

0.080
0.122
0.205

0.077
0.133
0.191

0.065
0.143
0.108

respectively. These represent 43 and 10% increases as com-
pared with the Normal Grand analysis. As expected, the 90%
confidence intervals for the with-correlation analysis are larger
than those of the without-correlation analysis. The probability
of schedule overrun depends on the target date. In Fig. 8, the
without-correlation and with-correlation distributions intersect
each other when the project’s duration is about 27 days. If the
project’s completion date is set to 27 days, then both analyses
have the same probability of schedule overrun. Detailed dis-
cussion of the effect of various scale systems on project du-
ration can be found in Wang (1996).

Results—Uncertainty Sensitivity along Path

In a network, the uncertainty sensitivity (measured by CV)
along a path should be examined from two perspectives: be-
tween paths (Which path is most sensitive to a particular fac-
tor?) and along a path (To which factor is a given path most
sensitive?). Table 3 presents the uncertainty sensitivity with
respect to each factor for each path. Path 3 (4 days of float)
is the path that is most sensitive to labor, weather, and all
factors combined. Path 2 (1 day of float) is the path that is
most sensitive to equipment. Although Path 1 is the critical
path, it is the least sensitive path in every comparison. Table
3 also shows that the factor that has the greatest influence on
Paths 1 and 3 is labor and equipment has the greatest influence
on Path 2.

With knowledge of both the uncertainty sensitivity along a
path from a factor and the amount of float associated with that
path, management can focus attention on two types of paths,
critical and near critical, that are highly sensitive to factors.
Because there is no float time available for critical paths to
react to changes and even small variations in the duration of
INEERING AND MANAGEMENT / NOVEMBER/DECEMBER 2000 / 465
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critical path directly affect project duration, critical paths
should receive particular attention. Near-critical paths with a
large variance that is caused primarily by a single factor war-
rant special attention, because poorer than expected conditions
for that factor can lead to a large increase in the path duration.

CONCLUSIONS

This paper has presented a simulation-based model,
NETCOR, that allows correlation between activity durations
to be considered in network analysis. The incorporate of cor-
relation in network analysis should lead to improved estimates
of project duration. The strengths of NETCOR arise from two
sources. First, the use of qualitative estimates (e.g., high, me-
dium, and low) to describe the effect of factor-based uncer-
tainty should allow the user to be more comfortable in pro-
viding input than would be the case with other approaches
(particularly direct-elicitation approaches that require correla-
tion coefficients as input). Second, in NETCOR, correlation is
evaluated based on a grandparent-parent-child structure that
systematically breaks down the effects of uncertainty by factor
and condition. This systematic structure eases the evaluation
of the effects of individual factors on path and project dura-
tion, making it possible to identify the factors that have the
greatest impact on a project. NETCOR relies on a variety of
assumptions and simplifications to allow the use of the grand-
parent-parent-child structure. For example, it is assumed that
there is no interaction between factor conditions in NETCOR;
thus, the results generated by NETCOR are only approximate.

A small example network is presented here to demonstrate
NETCOR. In a companion paper (Wang and Demsetz 2000),
NETCOR is applied to a recent construction project. Future
work on NETCOR may include exploring ways to capture
nonnormal grandparent distributions [see Wang (1996) for a
detailed discussion]; implementing time-dependent and non-
time-correlated duration variables; collecting field data to jus-
tify child distributions and parent distributions, and values of
mean placement x, and correlation coefficient; investigating
applications of the path approach (e.g., managing subcontrac-
tors or work packages from the viewpoint of a path); applying
NETCOR to additional construction projects; and applying
NETCOR to other areas. For example, NETCOR could be
used to investigate correlation in cost. NETCOR also could be
used in resource allocation, with resources assigned first to
activities that are highly sensitive to particular factors.
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