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Abstract

Ž .An effective approach to obstacle detection and avoidance for autonomous land vehicle ALV navigation in outdoor
road environments using computer vision and image sequence techniques is proposed. To judge whether an object newly
appearing in the image of the current cycle taken by the ALV is an obstacle, the object shape boundary is first extracted
from the image. After the translation from the ALV location in the current cycle to that in the next cycle is estimated, the
position of the object shape in the image of the next cycle is predicted, using coordinate transformation techniques based on
the assumption that the height of the object is zero. The predicted object shape is then matched with the extracted shape of
the object in the image of the next cycle to decide whether the object is an obstacle. We use a reasonable distance measure to
compute the correlation measure between two shapes for shape matching. Finally, a safe navigation point is determined, and
a turn angle is computed to guide the ALV toward the navigation point for obstacle avoidance. Successful navigation tests
show that the proposed approach is effective for obstacle detection and avoidance in outdoor road environments. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .Autonomous land vehicles ALVs are useful for
many automation applications both in indoor and
outdoor environments. Vision-based obstacle detec-
tion for ALV navigation in outdoor road environ-
ments is a difficult and challenging task because of
the great variety of object and road conditions, like
irregular and unstable features on objects, moving
objects, changes of illumination, and even rain. Suc-

) Corresponding author. Tel.: q886-357159090; fax: q886-
35721490

cessful ALV navigation requires the integration of
the techniques of environment sensing and learning,
image processing and feature extraction, ALV loca-
tion, path planning, wheel control, and so on. This
study is mainly concerned with obstacle detection
and avoidance for ALV navigation in outdoor road
environments using computer vision and image se-
quence techniques.

Many research works have been reported for ob-
w xstacle detection in outdoor roads 1–33 . Most sys-
w xtems, such as the CMU Navlab 1–8 , the vehicle

constructed by Martin Marietta Denver Aerospace
w x9–11 , and the navigation system developed at the
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w xUniversity of Maryland 12 , use laser range sensors
to detect obstacles in outdoor roads or cross-country

w xterrain. FMC 13 uses a sonic imaging sensor and an
infrared sensor for obstacle avoidance and target
detection.

As to vision-based approaches to obstacle detec-
tion, they basically can be divided into three classes.
In the first class, obstacles are extracted directly

w xfrom 2D images 14–21 . Only one camera and only
the image in the current navigation cycle are used,
with certain a priori knowledge and predefined as-
sumptions being considered. In the second class of
approaches, motion information obtained from a se-
quence of images are utilized to detect obstacles
w x22–26 . The most popular approaches in this class
are based on optical flow. In the third class of
approaches, obstacles are detected using stereo-vi-

w x w xsion techniques 27–32 . Besides, Xie et al. 33 used
a range finder coupled with a CCD camera to ac-
quire 3D information of obstacles. Although the first
class in general takes less computing time and has
better detection results than the second and the third
classes, in fact, it does not really detect obstacles
because obstacles are extracted directly from the 2D
image. Shadows on roads may also be regarded as
obstacles in this class of approaches. On the con-
trary, in the second and the third classes, 3D com-
puter vision techniques are used to really judge
whether objects on roads are obstacles, although
more computing time is required in these two classes
than the first class.

In this paper, an effective approach to obstacle
detection and avoidance for autonomous land vehicle
navigation in outdoor road environments using com-
puter vision and image sequence techniques is pro-
posed. To judge whether one object newly appearing
in the image of the current cycle is an obstacle, we
first extract the object shape boundary from the
image. After the translation from the ALV location
in the current cycle to that in the next cycle is
estimated, the position of the object shape in the
image of the next cycle is predicted using coordinate
transformation techniques, based on the assumption
that the height of the object is zero. The predicted
object shape is then matched with the extracted
shape of the object in the image of the next cycle to
decide whether the object is an obstacle. We use the

Ž . w xdistance-weighted correlation DWC 34 as the

similarity measure between the two shapes for shape
matching. Then a navigation point is computed, and
a turn angle is decided accordingly to guide the ALV
to follow the navigation point for obstacle avoidance.
Successful navigation tests show that the effective-
ness of the proposed approach for obstacle detection
and avoidance in outdoor road environments.

A new prototype ALV with smart, compact, and
ridable characteristics, as shown in Fig. 1, is con-
structed as a testbed for this study, whose dimension
is 118.5 cm by 58.5 cm. It has four wheels in which
the front two are the turning wheels and the rear two
the driving wheels. Above the front wheels is a
cross-shaped rack on which some CCD cameras are
mounted, and above the rack is a platform on which
two monitors, one being the computer monitor and
the other the image display, are placed. Above the
platform is a vertical bar on which another camera
used for obstacle detection and avoidance in this
study is mounted. The central processor is an IBM

Ž .PCrAT compatible personal computer Pentium-166
with a color image frame grabber which takes 512=

486 RGB images, with eight bits of intensity per
image pixel.

The ALV is computer-controlled with a modular
architecture, as shown in Fig. 2, including four com-
ponents, namely, a vision system, a central processor
Pentium-166, a motor control system, and a DC
power system. The vision system consists of a cam-

Fig. 1. The prototype ALV used in this study.
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Fig. 2. System structure of prototype ALV.

era, a TV monitor, and a Targa Plus color image
frame grabber. The central processor Pentium-166
has an RAM with 16 megabytes, one floppy disk, a
1.2-gigabyte hard disk, a 3.6-gigabyte hard disk, and
an EL slim display. The motor control system in-
cludes a main control board with an Intel 8085
controller, a motor driver, and two motors. The
power of the system is supplied by a battery set
including two 12-V power source, each being di-
vided into various voltages using a DC-to-DC con-
verter set to provide power to the ALV components.

The remainder of this paper is organized as fol-
lows. In Section 2, the details of the proposed
vision-based obstacle detection method is described.
In Section 3, the proposed obstacle avoidance method
is introduced in detail. The descriptions of the em-
ployed image processing techniques and experimen-

tal results are included in Section 4. Finally, some
conclusions are stated in Section 5.

2. Proposed vision-based obstacle detection
method

Basically, three types of objects may be extracted
Ž .from the road image in this approach, which are: 1

type-1 objects: the objects that newly appear in the
road image of the current cycle, which will be

Ž .judged to be obstacles or not in the next cycle; 2
type-2 objects: the objects that appear in the road
image of the previous cycle, which are judged to be

Ž .obstacles or not in the current cycle; and 3 type-3
objects: the objects that have been decided to be
obstacles or non-obstacles in the current or subse-
quent cycles.
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Initially, no objects appear in the road image, and
we employ the approach proposed in Chen and Tsai
w x35 , which utilizes color information clustering and
combined line and road following techniques, to
guide the ALV to follow the road. When new objects
appear in the road image, all of them are regarded as
type-1 objects and whether they are obstacles will be
judged in the next cycle. In the next cycle, these
type-1 objects become type-2 objects and whether
they are obstacles are judged in this cycle. After the
judgment, the type-2 objects become type-3 objects.
Type-3 objects may still appear in the images of
several subsequent cycles. We then compute a navi-

gation point and drive the ALV toward the point
such that the ALV can avoid collision with the
type-3 objects that have been decided to be obsta-
cles. The entire process is repeated one cycle after
another. Note that type-1, type-2, and type-3 objects
may appear in the image simultaneously, and some
type-3 objects may disappear from the road image in
subsequent cycles.

To judge whether one object is an obstacle or not
in the next cycle, we first extract the shape boundary
of the object from the road image of the current
cycle. After the translation from the ALV location in
the current cycle to that in the next cycle is esti-

Fig. 3. Illustration of how we estimate the translation vector between two continuous ALV locations.
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mated, the position of the object shape in the image
of the next cycle is predicted using coordinate trans-
formation techniques, based on the assumption that
the height of the object is zero. The predicted object
shape is then matched with the extracted shape
boundary of the object in the image of the next cycle
to decide whether the object is a non-obstacle, a
static obstacle, or a moving obstacle. We use the

w xDWC 34 as the similarity measure between the two
shapes for shape matching.

In the following, we state first the estimation of
the translation between two continuous ALV loca-
tions, then the prediction process of the object shape
in the image of the next cycle, followed by the shape
matching process.

2.1. Estimation of translation between two continu-
ous ALV locations

When the ALV keeps driving on a road, we use
w xthe approach proposed in Ref. 35 to guide the ALV

to follow the road. In this approach, the ALV loca-
tion on the road in cycle i is represented by two

Ž .parameters d , u , where d is the distance of thei i i

ALV to the central path line on the road and u isi

the pan angle of the ALV relative to the road direc-
Ž .tion positive to the left . Let P denote the obtainedi

Ž .ALV location d , u in cycle i and P denote thei i iq1
Ž .obtained ALV location d , u in cycle iq1.iq1 iq1

What we desire to know is the translation vector
from P to P , denoted by T , which can bei iq1

derived in terms of d , u , d , and u . Withouti i iq1 iq1

loss of generality, we first assume that the ALV
turns to the right from P to P , i.e., u -u .i iq1 iq1 i

Then as shown in Fig. 3, where u )0, u -0, andi iq1

d -d -0, the angle /CBD can be expressed asi iq1

p
/CBDs ydy/DBE

2

p p
s ydy y/DEBž /2 2

sydqdqgsg , 1Ž .

where d is the turn angle of the front wheels.
Alternatively, /CBD can be expressed as

/CBDs/CBKq/KBDsyu qu . 2Ž .iq1 i

So, angle g can be determined by

gsu yu . 3Ž .i iq1

The length of vector T can be solved to be

d ydiq1 i
l s . 4Ž .T cos mquŽ .i
By the basic kinematics of the ALV, the rotation
radius R can be found to be

p g
Rsdrsindsdrsin ymy , 5Ž .ž /2 2

where d is the distance between the front wheels and
the rear wheels, and l can be expressed asT

(l sR 2 1ycosg 6Ž . Ž .T

w x Ž . Ž .according to Ref. 36 . From Eqs. 4 and 6 , we get

(d yd d 2 1ycosgŽ .iq1 i
s . 7Ž .p gcos mquŽ .i sin ymyž /2 2

Replacing g by u yu , the direction of T isi iq1

determined by the angle

u yui iq1
Acosu yBcosi ž /2y1ms tan , 8Ž .

u yui iq1� 0Asinu yBsini ž /2

where

2(As 2 d 1ycos u yu ,Ž .Ž .i iq1

Bsd yd . 9Ž .iq1 i

Similarly, if the ALV turns to the left from P toi

P , i.e., if u )u , the direction of T can beiq1 iq1 i

determined by the angle

u yui iq1
Acosu qBcosi ž /2y1ms tan y1 .Ž .

u yui iq1� 0Asinu qBsini ž /2

10Ž .

Then the components of the translation vector Ts
Ž .x , y are solved to beT T

x s l cosm ,T T

y s l sinm. 11Ž .T T
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The above vision-based kinematic model is used
only when no location error exists during ALV
navigation. If location error exists during ALV navi-
gation, the vision-based kinematic model may be
unsuitable for use and an additional control-based
kinematic model is used to compensate for the defi-
ciency of the original vision-based model. The loca-
tion error mainly results from the wheel slippage, the
unflatness of the road surface, andror the coordinate
transformations, etc. Fig. 4 illustrates one case of the
location error, where the ALV location in cycle i

Ž . Ž .and iq1 are 0,0 and d,0 , respectively, for d/0.
Since the ALV trajectory between two continuous
navigation cycles is assumed to be a circle, the ALV

Ž .can never reach the location d,0 in cycle iq1 and
location error will exist in cycle iq1. If the two

Ž . Ž .continuous ALV locations 0,0 and d,0 are used to
find their translation based on the vision-based kine-
matic model described above, an unreasonable solu-
tion will be produced. For this, the following naviga-

tion checking rule is used to decide whether the
vision-based kinematic model is applicable.

Navigation checking rule:

if u -0, then if d -0, then u -u and d ) di iq1 i iq1 i

else if d )0, then u )uiq1 i

Ž .else d s0 u su and d ) diq1 i iq1 i

else if u )0, then if d )0, then u )u and d - di iq1 i iq1 i

else if d -0, then u -uiq1 i

Ž .else d s0 u su and d - diq1 i iq1 i

Ž .else u s0 if d -0, then u -u and d ) di iq1 i iq1 i

else if d )0, then u )u and d - diq1 i iq1 i

Ž .else d s0 u s0 and d s d ,iq1 iq1 i

12Ž .
where the distances d and d are positive to thei iq1

right relative to the central path line, the pan and turn
angles u , u , and d are positive to the left relativei iq1

to the road direction, and the value of d can be
obtained by checking the ALV control system.

Fig. 4. Illustration of one case of location error.
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If the values of d , u , d , u , and d satisfyi i iq1 iq1

the above navigation checking rule, they are used to
compute the translation vector from P to Pi iq1

based on the vision-based kinematic model. Other-
Ž .wise, the ALV location d , u in P isiq1 iq1 iq1

unreasonable and a control-based kinematic model is
proposed, which uses the ALV control information
to compute the translation vector. The computation
process based on the control-based kinematic model
is described as follows. As shown in Fig. 3, let S
denote the travelled distance from P to P , whichi iq1

can be obtained from the counter of the odometer in
the ALV control system. Then, angle g can be
expressed by

gsSrR . 13Ž .
Ž .Since R can be determined by Eq. 5 , where d can

be obtained by checking the ALV control system,
angle g can be determined accordingly, and the

Ž .length l of vector T expressed in Eq. 6 can thusT

be solved. Since the direction of T is determined by

p g
ms ydy , 14Ž .

2 2

the components of the translation vector expressed in
Ž .Eq. 11 can be solved.

The computed translation vector is then used to-
Ž .gether with the ALV location d , u in P toi i i

estimate a reasonable ALV location in P wheniq1
Ž Xthe control-based kinematic model is used. Let d ,iq1

X .u denote the estimated ALV location in P .iq1 iq1

Then, if d-0, as illustrated in Fig. 3, dX and u
X

iq1 iq1

are solved to be

dX sd q l cos mquŽ .iq1 i T i

u
X su yg . 15Ž .iq1 i

Ž . XOtherwise dG0 , d is solved byiq1

dX sd y l cos myu , 16Ž . Ž .iq1 i T i

X Ž .and u is identical to that expressed in Eq. 15 .iq1

Note that if d sd , u su s0, and ds0,iq1 i iq1 i

we cannot derive the translation vector using the
vision-based kinematic model even when the naviga-
tion from P to P is judged to be reasonable byi iq1

checking the values of d , u , d , u , and d ini i iq1 iq1

the navigation checking rule. In this case, the con-
trol-based kinematic model is used, and the compo-

nents of the translation vector T from P to P arei iq1

just
x s0,T

y sS. 17Ž .T

The vision-based kinematic model combined with
the control-based kinematic model and the naviga-
tion checking rule enables the ALV to achieve reli-
able and fault-tolerant navigation.

2.2. Object shape prediction in next cycle

Several coordinate systems and coordinate trans-
formations are used in the prediction process. The

Ž .image coordinate system ICS , denoted as u–w, is
attached to the image plane of the camera mounted

Ž .on the ALV. The camera coordinate system CCS ,
denoted as u–Õ–w, is attached to the camera lens

Ž .center. The vehicle coordinate system VCS , de-
noted as x–y–z, is attached to the middle point of
the line segment which connects the two contact
points of the two front wheels of the ALV with the
ground. The x-axis and the y-axis are on the ground
and parallel to the short and the long sides of the
vehicle body, respectively. The z-axis is vertical to
the ground. The transformation between the CCS and
the VCS can be written in terms of homogeneous

w xcoordinates 37,38 as

1 0 0 0
0 1 0 0

uÕw1 s xyz1Ž . Ž . 0 0 1 0
yx yy yz 1d d d

r r r 011 12 13

r r r 021 22 23= , 18Ž .
r r r 031 32 33

0 0 0 1
where
r scosucoswqsinu sinfsinw ,11

r sysinucosf ,12

r ssinu sinfcoswycosu sinw ,13

r ssinucoswycosu sinfsinw ,21

r scosucosf ,22

r sycosu sinfcoswysinu sinw ,23

r scosfsinw ,31

r ssinf ,32

r scosfcosw , 19Ž .33
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and u is the pan angle, f the tilt angle, and w the
swing angle, of the camera with respect to the VCS;

Ž .and x , y , z is the translation vector from thed d d

origin of the VCS to the origin of the CCS.
To predict the shape boundary of an object in the

ICS in the next cycle, we first find the ICS coordi-
nates of all the boundary points representing the
shape of the object in the image of the current cycle.
We then backproject each boundary point of the
object in the ICS into the VCS, based on the assump-
tion that the height of the boundary point in the VCS
is zero, i.e., its z coordinate is zero, to obtain the 2D

Ž .VCS coordinates x, y of the boundary point in the
current cycle. By using the translation vector derived

Ž X X.previously, the 2D VCS coordinates x , y of the
boundary point in the next cycle can be found, as
illustrated in Fig. 5, where u )0, u -0, and thei iq1

Ž .components of the translation vector are x , y . InT T

Ž .Fig. 5. Illustration of how the VCS coordinates x, y of some
boundary point P in the next cycle are computed.

Ž X X.the figure, the VCS coordinates x , y of point P
in cycle iq1 is solved to be

1 0 0
X X 0 1 0x y 1 s xy1Ž . Ž .

yx yy 1T T

cos u yu ysin u yu 0Ž . Ž .iq1 i iq1 i

= sin u yu cos u yu 0Ž . Ž .iq1 i iq1 i

0 0 1
20Ž .

or

xX s xyx cos u yuŽ . Ž .T iq1 i

q yyy sin u yuŽ . Ž .T iq1 i

yX s x yx sin u yuŽ . Ž .T iq1 i

q yyy cos u yu . 21Ž . Ž . Ž .T iq1 i

After the backprojection and translation processes,
we project the backprojected and translated bound-
ary point in the VCS into the ICS to predict the ICS

Ž .coordinates u,w of the boundary point in the next
cycle and the prediction process is finished. The
backprojection and projection principles are de-
scribed as follows.

Ž .1 Backprojection principle: As shown in Fig. 6,
assume that point P in the image has the CCS

Ž . Ž .coordinates u , yf , w where u , w indicateP P P P

the position in the image, i.e., the ICS coordinates,
and f is the focus length. After backprojecting the
point P in the image into the VCS, we can get a line
L that passes P and the lens center O . Let PX

c

denote the intersection point of this line L and the
Ž .horizontal plane zsh. Using Eq. 18 , we get the

Ž .VCS coordinates x , y , z of point P in theP P P

image as

x su cosucoscqsinu sinfsincŽ .P P

qf sinucosf qw sinu sinf coscŽ . ŽP

qcosucosc qx ,. d

y su sinucoscqcosu sinfsincŽ .P P

yf cosucosf yw cosu sinf coscŽ . ŽP

qsinu sinc qy ,. d

z su cosu sincŽ .P P

yf sinfqw cosucosc qz . 22Ž . Ž .P d
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Fig. 6. Illustration of the backprojection and projection processes.

Additionally, the equation of line L can be expressed
as

xyx yyy zyzd d d
s s sk , 23Ž .

x yx y yy z yzP d P d P d

where k is a constant. By substituting zsh into Eq.
Ž . Ž X X X . X23 , the VCS coordinates x , y , z of point PP P P

can be solved to be

hyzdXx sx q x yx ,Ž .P d P dz yzP d

hyzdXy sy q y yy ,Ž .P d P dz yzP d

zX sh. 24Ž .P

Since we backproject each boundary point in the
image into the VCS using the assumption that the
height of the boundary point in the VCS is zero, we

Ž .substitute hs0 into Eq. 24 and the desired 2D

Ž X X . XVCS coordinates x , y of point P are solved toP P

be

z x yxŽ .d P dXx sx y ,P d z yzP d

z y yyŽ .d P dXy sy y . 25Ž .P d z yzP d

Ž .2 Projection principle: As shown in Fig. 6,
X Ž Xassume that point P has the VCS coordinates x ,P

X X . Xy , z . After projecting the point P in the VCSP P

into the ICS, we get its corresponding space point P
in the ICS. Since the lens center O has the VCSc

Ž . Ž .coordinates x , y , z as given in Eq. 18 , thed d d

distance between PX and O , denoted as D, isc

calculated to be

2 2 2X X X(Ds x yx q y yy q z yz .Ž . Ž . Ž .P d P d P d

26Ž .
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Ž . Ž .Fig. 7. Illustration of how to decide using the DWC correlation measure whether an object is an obstacle. a A non-obstacle is detected. b
Ž .A static obstacle is detected. c A moving obstacle is detected.

Ž .Let x , y , z denote the VCS coordinates of theP P P

corresponding point P in the image.Then the follow-
ing equation is satisfied:

x yxX y yyX z yzX fqDP P P P P P
s s s sK ,X X Xx yx y yy z yz Dd P d P d P

27Ž .

where f is the focus length and K is a constant. The
VCS coordinates of point P can be solved accord-
ingly to be

x sK x yxX qxX ,Ž .P d P P

y sK y yyX qyX ,Ž .P d P P

z sK z yzX qzX . 28Ž . Ž .P d P P

Since we assume that the height of the boundary
point in the VCS is zero, we substitute zX s0 intoP

the above equations for further simplification. Using
the transformation between the CCS and the VCS

Ž .described in Eq. 18 , we can get the CCS coordi-
Ž .nates u , yf , w of point P, and so the desiredP P

Ž .coordinates u , w of point P in the image.P P

2.3. Shape matching

To judge whether an object O is an obstacle in
Žthe current cycle, we extract its shape represented

.by the shape boundary points in the image of the
previous cycle, and predict its shape in the image of
the current cycle using coordinate transformation
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Ž . �Fig. 8. Illustration of closeness distance measure L d s1r 1q
w Ž .x2 w Ž .x24D d q D d .F R

techniques based on an assumption stated and de-
rived previously. Let P denote the predicted shape
boundary and E denote the extracted shape boundary
of the object in the image of the current cycle. To
match P and E, we overlap them and compute the

w xmeasure of the DWC 34 to check the similarity
between them. First, the minimum distance d of ab

boundary point b in P or E is defined to be the
Euclidean distance between b and its closest point in
the other shape. The weight w k of b is defined to beb

1r d2 q1 if 0Fd Fk ,Ž .k b bw s 29Ž .b ½ 0 otherwise,

where k is a constant that limits the distance within
which the closest point of b is searched for. Then
the DWC is defined to be

1 1 1
k k kDWC P , E s w q w ,Ž . Ý Ýi jž /2 N NP EigP jgE

30Ž .

where N and N are the total numbers of theP E

boundary points in P and E, respectively. It can be
kŽ .easily verified that 0FDWC P, E F1. The value

kŽ .of DWC P, E is then checked to judge whether the
object O is an obstacle. If the value is greater than a
certain threshold value, say TH_1, where 0-TH_1
-1, it is decided that O is not an obstacle because
P and E are strongly similar, as illustrated in Fig.

Ž .7 a . If the value is smaller than TH_1 and greater
than another threshold value, say TH_2, where 0-

TH_2-TH_1, it is decided that O is a static obsta-
cle because P and E are partially similar, as illus-

Ž .trated in Fig. 7 b . Finally, if the value is smaller
than TH_2, it is decided that O is a moving obstacle
because P and E are strongly dissimilar, as illus-

Ž .trated in Fig. 7 c .

3. Proposed obstacle avoidance method

3.1. NaÕigation point selection

If no obstacle appears on the road ahead, we drive
the ALV to follow the central path line on the road
using a closeness distance measure from the ALV to
the central path line proposed by Cheng and Tsai
w x36 . The measure is defined as

1
L d s , 31Ž . Ž .2 2

1q D d q D dŽ . Ž .F R

where D and D are the corresponding distancesF R

from the front and the rear wheels of the ALV to the
central path line after the ALV traverses a distance
with the turn angle d , as illustrated in Fig. 8. A
larger value of L means that the ALV is closer to the

Fig. 9. Illustration of the definitions of the LP and the RP of one
object.
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path. It is easy to verify that 0-LF1, and that
Ls1 if and only if both the front wheels and the
rear wheels of the ALV are located just right on the
path.

To find the turn angle of the front wheel to drive
the ALV as close to the central path line as possible,
a range of possible turn angles is searched. An angle
is hypothesized each time, and the value of L is
calculated accordingly. The angle that produces the
maximal value of L is then used as the desired turn
angle.

It should be mentioned that allowing the ALV a
larger angle to turn in a session of turn drive does
not mean that better navigation can be achieved. It
may cause serious twisting. On the other hand, a
smaller range of turn angles may bring the ALV
slightly closer to the central path line. Hence, the
largest angle allowing the ALV to turn is a tradeoff
between smoothness of navigation and closeness to
the central path line.

If obstacles appear on the road ahead, we com-
pute a safe navigation point and drive the ALV
toward this point for obstacle avoidance. The naviga-
tion point is selected as follows. For each boundary
point of an obstacle, we compute its corresponding
angle that is defined as the angle between the y-axis
of the VCS and the line segment which connects the
boundary point and the origin of the VCS. This angle
is positive to the left with respect to the y-axis of the
VCS. We define the left extreme point LP as the
boundary point whose corresponding angle is the
largest, and define the right extreme point RP as the
boundary point whose corresponding angle is the
smallest. Fig. 9 shows the LP and the RP of an
obstacle O, where the corresponding angle u of the1

LP is the largest and the corresponding angle u of2

the RP is the smallest. Then the proposed navigation
point selection method is illustrated in Fig. 10, where
there are three obstacles O , O , and O ahead of1 2 3

the ALV on the road, and LP and RP are the LP andi i

Fig. 10. Illustration of how the navigation point is chosen when obstacles appear on the road ahead.
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Fig. 11. Illustration of why obstacles disappear from the image
due to the angle of the camera view when they are still ahead of

Ž . Ž .the ALV. a Horizontal camera view. b Vertical camera view.

the RP of obstacle O , respectively, for is1, 2, andi

3.
In the figure, RP is the point on the left road0

boundary that is the closest to LP , and LP is the1 4

point on the right road boundary that is the closest to
RP . We then compute the angle between the line3

Žsegment connecting RP and O the origin of thei V
.VCS and the line segment connecting LP andiq1

O , for is0, 1, 2, and 3. From all of the angles soV

computed, we find the largest one and let it be u ,k

ks0, 1, 2, or 3. Then the middle point of the line
segment connecting RP and LP is chosen as thek kq1

navigation point. It can be seen from the figure that
u is the largest angle, so the navigation point is set1

as the middle point of the line segment connecting
RP and LP . This way of choosing the navigation1 2

point can be further applied to the case that there are
more obstacles than three on the road ahead.

If all of the obstacles ahead of the ALV appear in
the image simultaneously in the current cycle, they

are extracted from the image to find their LPs and
RPs, and the navigation point in this cycle is com-
puted using these LPs and RPs. In the next cycle, if
all of the obstacles ahead of the ALV still appear in
the image simultaneously, they are extracted and the
navigation point in this cycle is computed in the
same way as described above. But, if some of these
obstacles, which are still ahead of the ALV, disap-
pear from the image due to the angle of the camera

Fig. 12. Illustration of why the chosen navigation point varies
Ž .during ALV navigation. a Point N1 is chosen as the navigation

Ž .point. b Point N2 is chosen as the navigation point since a new
obstacle appears ahead of the ALV after the ALV travels a certain
distance.
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view as shown in Fig. 11, they cannot be extracted
from the image to find their LPs and RPs. At this
moment, their LPs and RPs in this cycle are pre-
dicted using their extracted LPs and RPs in the
previous cycle. The prediction process has been stated
previously in Section 2.2. These predicted LPs and
RPs together with the extracted LPs and RPs of the
obstacles that appear in the image in this cycle are
then used to compute the navigation point in this
cycle.

In subsequent navigation cycles, the navigation
point is computed cyclically until no obstacle is
ahead of the ALV. At this moment, the ALV heads
back to the central path line using the line following
scheme described previously, and the obstacle avoid-
ance process is finished. Note that the chosen naviga-
tion point may vary during ALV navigation since
new obstacles may appear in the image during navi-

Ž .gation, as illustrated in Fig. 12. In a , three obstacles
are ahead of the ALV and point N1 is chosen as the
navigation point. After the ALV travels a certain
distance, a new obstacle appears ahead of the ALV
and the chosen navigation point is changed to point

Ž .N2 as shown in b .

3.2. Turn angle computation

After the navigation point is chosen, the ALV
turns an angle to approach this point for safe naviga-
tion. The turn angle computation is illustrated in Fig.

Ž .13, where P : x , y is the navigation point, l isn n n T

the distance between P and O , R is the rotationn V

radius, and d is the turn angle of the front wheels we
Ž . Ž .want to compute. From Eqs. 5 and 6 , we can

obtain the following equation:
cosm

tands . 32Ž .lT
sinmq

2 d

Since l , sin m, and cos m can be solved byT

2 2(l s x qy , 33Ž .T n n

yn
sinms , 34Ž .

2 2(x qyn n

xn
cosms , 35Ž .

2 2(x qyn n

the desired turn angle of the front wheels is solved
accordingly to be

2 dxny1ds tan . 36Ž .2 2ž /x qy q2 dyn n n

3.3. Precise ALV location estimation

The ALV keeps driving forward after an image is
taken at the beginning of each navigation cycle.
After the image is processed and corresponding algo-
rithms are performed, the ALV location at the time
instant of image taking can be found. At this mo-
ment, however, the ALV has traÕelled a certain
distance, and the current ALV location cannot be
found by vision-based information. To overcome this
difficulty, the system uses the ALV control informa-
tion to estimate the current ALV location. Let Pi

denote the ALV location at the time instant of image
taking, and PX denote the current ALV location afteri

the ALV has travelled a certain distance. Then, as
described in Section 2.1, the translation vector T
from P to PX can be found by using the travelledi i

distance S and the pan angle d of the front wheels of
the ALV from P to PX, and the current ALVi i

location PX can thus be estimated by using P and T.i i

Fig. 13. Illustration of how the turn angle of the front wheels of
the ALV is computed.
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Fig. 14. A real color road image and its clustering result.

At the end of each navigation cycle, the actual
current ALV location can be estimated as described
above. The ALV then drives from the actual current
ALV location toward the navigation point when
obstacles appear on the road ahead, or toward the
central path for line following when no obstacle
appears on the road ahead.

Fig. 15. A 24-connected component, where one broken pixel
exists between p1 and q1 in the horizontal direction, another
exists between p2 and q2 in the vertical direction, and a third one
exists between p3 and q3 in the diagonal direction.

4. Image processing techniques and experimental
results

4.1. Image processing techniques

We use an ISODATA clustering algorithm based on
w xan initial-center-choosing technique 35 , which can

solve the problem caused by great changes of inten-
sity in navigations, to divide the road image into

Ž .three clusters according to their intensity values: 1
cluster-0: dark area, like trees and the tested black

Fig. 16. A point p and its candidate 24-neighbors, which are
represented by the = points.
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Ž .board on the road; 2 cluster-1: gray area, coming
Ž .from the main body of the road; and 3 cluster-2:

bright area, like the sky and the tested white boards
on the road. A real road image and its clustering

Fig. 17. A sequence of real road images, their clustering results, and the extracted and predicted boundary points of some tested objects on
Ž .the road ahead, which illustrate the obstacle detection and avoidance processes when the ALV navigates along a road. a Two type-1

Ž .objects newly appear in the image in this cycle, and whether they are obstacles will be judged in the next cycle. b The two type-1 objects
Ž .in a become type-2 objects that are judged to be obstacles or not in this cycle, where the white board is decided to be an obstacle and the

Ž . Ž .black board is decided to be a non-obstacle. c The two type-2 objects in b become type-3 objects that have been decided to be obstacles
or non-obstacles in the previous cycle, and two additional type-1 objects newly appear in the image that will be judged to be obstacles or not

Ž . Ž .in the next cycle. d The two type-1 objects in c become type-2 objects that are decided to be non-obstacles in this cycle. Note that in this
Ž . Ž . Ž .figure the two type-3 objects in c disappear from the image though they are still ahead of the ALV. e The two type-2 objects in d

become type-3 objects and no new object appears in the image in this cycle, while the ALV has reached the navigation point and begins to
Ž . Ž . Ž .head back to the central path line. f One type-3 object in e disappears from the image, and another type-3 object in e remains in the

Ž .image in this cycle, while the ALV keeps heading back to the central path line. g One type-1 object newly appears in the image when the
ALV navigates on the central path line, and whether it is an obstacle will be judged in the next cycle. Note that in this figure the object

Ž . Ž .partially blends into the road. h The type-1 object in g becomes type-2 object that is decided to be an obstacle in this cycle.
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Ž .Fig. 17 continued .

result are shown in Fig. 14, where the tested black
and white boards on the road are classified into
cluster-0 and cluster-2 areas, respectively.

We then extract the road surface, which is the
cluster-1 feature, from the binary image to find the
ALV location and the left and right boundaries on

w xthe road 35 . Next, we extract the boundary points
of the objects in the area bounded by the two lines
representing the two road boundaries from the binary

w ximage 39 . The process is described as follows.
First, we use the Sobel operators, which have the
advantage of both differencing and smoothing effect,

to find the positions of the boundary points in the
image.

Second, we scan the image to label the object
boundary pixels to find 24-connected components.
Each component represents one specific object shape.
The 24-connected component allows single broken
points on its boundary in all directions including the
horizontal, vertical, and diagonal directions as illus-
trated in Fig. 15, where broken pixels exist between
p1 and q1 in the horizontal direction, between p2
and q2 in the vertical direction, and between p3 and
q3 in the diagonal direction, and all shape points are
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Ž .Fig. 17 continued .

still connected. Before the labeling procedure, we
first define the candidate 24-neighbors of some

Ž .point p that have the following properties: 1 for
each candidate 24-neighbor q of p, p and q are

Ž . Ž24-connected; 2 if the u coordinate the horizontal
.coordinate in the ICS of q is smaller than that of p,
Žthen the w coordinate the vertical coordinate in the

.ICS of q is greater than or equal to that of p; and
Ž .3 if the u coordinate of q is greater than or equal
to that of p, then the w coordinate of q is greater
than that of p.

Fig. 16 shows a point p and its candidate 24-
neighbors, which are labeled with ‘‘x’’. The labeling
procedure of the 24-connected component, which is
extended from that of the 8-connected component

w xdescribed in Ref. 39 , is stated as follows.
Scan the input image pixel by pixel from left to

right and from top to bottom. The nature of the
scanning sequence ensures that when some pixel is
examined, its candidate 24-neighbors have been ex-
amined. Let p denote the pixel examined currently
in the scanning process. If p is not a boundary point,
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Ž .Fig. 17 continued .

simply move p to the next scanning position. If p is
a boundary point, check its candidate 24-neighbors
for labeling p. If all the neighbors are not boundary
points, decide that a new 24-connected component is
encountered and a new label is assigned to p. If

Žsome of the neighbors are boundary points have
.been labeled , assign the label of any one of these

boundary points to p and make a note that the labels
of these boundary points are equivalent. Then move
p to the next scanning position and examine p in the
same way. At the end of the scan, all boundary

points have been labeled, but some of these labels
may be equivalent.

w xFinally, the algorithm of Warshall 40 , which can
save much computing time, is employed to find the
equivalent classes from these labels, and a unique
label is assigned to each class. The image is scanned
again to replace each label by the label assigned to
its equivalent class. This yields a set of 24-connected
components, each of which represents one specific
object shape composed of the boundary points that

Ž .have the same label. Fig. 17 a shows a real road
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Ž .Fig. 17 continued .

scene and the extracted boundary points, represented
by the black circles, of two objects on the road.

4.2. Experimental results

Based on the proposed approach and algorithms,
the prototype ALV constructed for this study is
tested and found to be able to navigate safely and
smoothly along part of the campus road in National
Chiao Tung University. The ALV could follow the
central path line when no obstacle appears on the
road ahead. The ALV could decide whether the

tested objects on the road ahead are obstacles during
navigation, and could drive toward a safe navigation
point to avoid collision with the detected obstacles.
A lot of successful navigation tests confirm the
feasibility of the approach. The average cycle time is
about 1.0 s, and the average speed is 170 cmrs or
6.2 kmrh.

Fig. 17 shows a sequence of real road images,
their clustering results, and the extracted and pre-
dicted boundary points of some tested objects on the
road ahead, which illustrate the obstacle detection
and avoidance processes when the ALV navigates
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Ž .Fig. 17 continued .

along a road. In the figure, the road boundaries are
represented by the white lines, the extracted and
predicted boundary points of objects are represented
by the symbols of ‘‘Ø ’’ and ‘‘x’’, respectively, the
navigation points are represented by the white cir-
cles, and type-i objects, for is1, 2, or 3, are
represented by T i’s.

Ž .In Fig. 17 a , two boards newly appear in the
image, and the white board is classified into cluster-2
area and the black board is classified into cluster-0
area. As defined previously, they are type-1 objects
in this cycle, and will be judged to be obstacles or

Ž .not in the next cycle. In b , the two boards become
type-2 objects that will be judged to be obstacles or
not in this cycle. After the shape matching process, it
is decided that the white board is an obstacle and
that the black board is not an obstacle. Then, the

Ž .detected obstacle the white board is used to derive
the navigation point, and a turn angle is computed to
drive the ALV toward this point for safe navigation.

Ž . Ž .In c , the two boards in b become type-3
objects that have been decided to be obstacles or
non-obstacles in the previous cycle, and two addi-

Ž .tional white boards type-1 objects newly appear in
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Ž .Fig. 17 continued .

the image that will be judged to be obstacles or not
Ž .in the next cycle. Since the previous obstacle in b

still remains in the image in this cycle, it is extracted
and used to derive the navigation point in this cycle,
and the ALV keeps driving toward the navigation

Ž . Ž .point. In d , the two type-3 objects in c disappear
Ž .from the image, and the two white boards in d

become type-2 objects that are judged and decided to
be non-obstacles in this cycle. Hence, no obstacle
appears in the image in this cycle. But, due to the
angle of the camera view as described in Section 3.1,

Ž .the previous obstacle in c is still ahead of the ALV

though it disappears from the image. At this mo-
ment, we predict the location of this hidden obstacle
with respect to the ALV, which is then used to
derive the navigation point that is also invisible in
the image. The ALV keeps driving toward the navi-
gation point.

Ž . Ž .In e , the two white boards in d become type-3
objects and the ALV has reached the navigation
point. At this moment, no obstacle is ahead of the
ALV, and the ALV begins to head back to the

Ž . Ž .central path line. In f , one type-3 object in e
disappear from the image and another type-3 object
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Ž .Fig. 17 continued .

Ž .in e remains in the image, and the ALV keeps
heading back to the central path line. Finally, as

Ž .shown in g , the ALV navigates on the central path
Ž .line after navigation for several cycles. In g , one

plastic bucket newly appears on the road ahead,
which will be judged to be obstacle or not in the next
cycle. It can be seen from the cluster-1 area in the
clustering result that the bucket partially blends into

Ž .the road. In h , the bucket is decided to be an
obstacle after the shape matching process, where the
bucket also blends into the road in this cycle. Then, a
navigation point is derived, and a turn angle is

computed to drive the ALV toward the navigation
point. The obstacle avoidance process for ALV navi-
gation described above is performed in the same way
in subsequent navigation cycles.

5. Conclusions

A vision-based approach to obstacle detection and
avoidance for ALV navigation in outdoor road envi-
ronments has been proposed. Several techniques have
been integrated in this study to provide a reliable
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navigation scheme. Vision-based and control-based
kinematic models have been combined such that
fault-tolerant ALV navigation can be achieved.
Backprojection and projection principles have been
used to predict the boundary points of objects in the
next cycle. The DWC correlation measure has been
employed to judge whether an object is an obstacle.
A connected component labeling algorithm and War-
shall’s algorithm have been implemented to extract
effectively the boundary points of objects on the
road ahead with less computing time. When obsta-
cles disappear from the image but they are still ahead
of the ALV, their positions with respect to the ALV
can be predicted and used further to derive the
navigation point. The safe navigation point on the
road is chosen appropriately during navigation for
obstacle avoidance. A sequence of real road images
has been used in experiments to test the proposed
obstacle detection and avoidance method along a
road. Successful navigation results confirm the effec-
tiveness of the proposed approach. Future research
directions may focus on recognition and representa-
tion of general objects on roads, path planning, and
environment sensing and learning, etc.

Acknowledgements

This work was supported by National Science
Council, Republic of China under Grant NSC87-
2213-E009-001.

References

w x1 C. Thorpe, Outdoor visual navigation for autonomous robots,
Ž .Robotics and Autonomous Systems 7 1991 85–98.

w x2 S. Singh, P. Keller, Obstacle Detection for High Speed
Autonomous Navigation, Proc. IEEE International Confer-
ence on Robotics and Automation, Sacramento, CA, USA,
April 1991, pp. 2798–2805.

w x3 C. Thorpe, M. Hebert, T. Kanade, S. Shafer, Toward au-
tonomous driving: the CMU navlab: Part I. Perception, IEEE

Ž . Ž .Expert 6 3 1991 31–42.
w x4 C. Thorpe, M. Hebert, T. Kanade, S. Shafer, Toward au-

tonomous driving: the CMU navlab: Part II. Architecture and
Ž . Ž .systems, IEEE Expert 6 3 1991 44–52.

w x5 J.D. Crisman, C.E. Thorpe, SCARF: a color vision system
that tracks roads and intersections, IEEE Transactions on

Ž . Ž .Robotics and Automation 9 1 1993 49–58.

w x6 Y. Goto, A. Stentz, The CMU system for mobile robot
navigation, Proc. IEEE International Conference on Robotics
and Automation, Raleigh, NC, USA, 1987, pp. 99–105.

w x7 C. Thorpe, M.H. Hebert, T. Kanade, S.A. Shafer, Vision and
navigation for Carnegie-Mellon NAVLAB, IEEE Trans. on

Ž . Ž .Pattern Analysis and Machine Intelligence 10 3 1988
362–373.

w x8 J.D. Crisman, C.E. Thorpe, UNSCARF, A Color Vision
System for the Detection of Unstructured Roads, Proc. IEEE
International Conference on Robotics and Automation,
Sacramento, CA, USA, April 1991, pp. 2496–2501.

w x9 M.A. Turk, D.G. Morgenthaler, K.D. Germban, M. Marra,
VITS — a vision system for autonomous land vehicle navi-
gation, IEEE Trans. on Pattern Analysis and Machine Intelli-

Ž . Ž .gence 10 3 1988 342–361.
w x10 A.M. Waxman, J.J. Lemoigne, L.S. Davis, B. Srinivasan,

T.R. Kushner, E. Liang, T. Siddalingaiah, A visual naviga-
tion system for autonomous land vehicles, IEEE Journal of

Ž . Ž .Robotics and Automation RA-3 2 1987 124–141.
w x11 K.E. Olin, D.Y. Tseng, Autonomous cross-country naviga-

Ž . Ž .tion, IEEE Expert 6 3 1991 16–30.
w x12 L.S. Davis, Visual navigation at the University of Maryland,

Ž .Robotics and Autonomous Systems 7 1991 99–111.
w x13 D. Kuan, G. Phipps, A. Hsueh, Autonomous robotic vehicle

road following, IEEE Trans. on Pattern Analysis and Ma-
Ž . Ž .chine Intelligence 10 4 1988 648–658.

w x14 M. Schwarzinger, T. Zielke, D. Noll, M. Brauchmann, W.V.
Seelen, Vision-Based Car-Following: Detection, Tracking,
and Identification, Proc. of the Intelligent Vehicles ’92 Sym-
posium, Detroit, USA, Jun. 1992, pp. 24–29.

w x15 F. Thomanek, E.D. Dickmanns, D. Dickmanns, Multiple
Object Recognition and Scene Interpretation for Autonomous
Road Vehicle Guidance, Proc. of the Intelligent Vehicles ’94
Symposium, Paris, France, Oct. 1994, pp. 231–236.

w x16 M. Cappello, M. Campani, A. Succi, Detection of Lane
Boundaries, Intersections and Obstacles, Proc. of the Intelli-
gent Vehicles ’94 Symposium, Paris, France, Oct. 1994, pp.
284–289.

w x17 U. Regensburger, V. Graefe, Visual Recognition of Obstacles
on Roads, Proc. of the 1994 IEEErRSJrGI International
Conference on Intelligent Robots and Systems, Munich, Ger-
many, Sep. 1994, pp. 980–987.

w x Ž .18 B. Ulmer, VITA-An Autonomous Road Vehicle ARV for
Collision Avoidance in Traffic, Proc. of the Intelligent Vehi-
cles ’92 Symposium, Detroit, USA, Jun. 1992, pp. 36–41.

w x19 W. Efenberger, Q.H. Ta, L. Tsinas, V. Graefe, Automatic
Recognition of Vehicles Approaching from Behind, Proc. of
the Intelligent Vehicles ’92 Symposium, Detroit, USA, Jun.
1992, pp. 57–62.

w x20 S. Hirata, Y. Shirai, M. Asada, Scene Interpretation Using
3-D Information Extracted from Monocular Color Images,
Proc. of the 1994 IEEErRSJ International Conference on
Intelligent Robots and Systems, Raleigh, NC, USA, Jul.
1992, pp. 1603–1610.

w x21 M. Schmid, An Approach to Model-Based 3-D Recognition
of Vehicles in Real Time by Machine Vision, Proc. of the
1994 IEEErRSJrGI International Conference on Intelligent



( )K.-H. Chen, W.-H. TsairAutomation in Construction 10 2000 1–25 25

Robots and Systems, Munich, Germany, Sep. 1994, pp.
2064–2071.

w x22 B. Roberts, B. Bhanu, Inertial navigation sensor integrated
motion analysis for autonomous vehicle navigation, Journal

Ž . Ž .of Robotic Systems 9 6 1992 817–842.
w x23 B. Heisele, W. Ritter, Obstacle Detection Based on Color

Blob Flow, Proc. of the Intelligent Vehicles ’95 Symposium,
Detroit, MI, USA, Sep. 1995, pp. 282–286.

w x24 W. Enkelmann, Obstacle detection by evaluation of optical
flow fields from image sequences, Image and Vision Com-

Ž . Ž .puting 9 3 1991 160–167.
w x25 S.M. Smith, J.M. Brady, A scene segmenter; visual tracking

of moving vehicles, Engineering Applications of Artificial
Ž . Ž .Intelligence 7 2 1994 191–204.

w x26 Z. Zhang, R. Weiss, A.R. Hanson, Obstacle detection based
on qualitative and quantitative 3D reconstruction, IEEE Trans.

Ž . Ž .on Pattern Analysis and Machine Intelligence 19 1 1997
15–26.

w x27 E. Grosso, M. Tistarelli, Activerdynamic stereo vision, IEEE
Ž .Trans. on Pattern Analysis and Machine Intelligence 17 9

Ž .1995 868–879.
w x28 J.L. Bruyelle, J.G. Postaire, Direct range measurement by

linear stereovision for real-time obstacle detection in road
Ž .traffic, Robotics and Autonomous Systems 11 1993 261–

268.
w x29 N. Kehtarnavaz, N.C. Griswold, J.S. Lee, Visual control of

Ž .an autonomous vehicle BART — the vehicle-following
Ž . Ž .problem, IEEE Trans. on Vehicular Technology 40 3 1991

654–662.
w x30 Y.F. Wan, F. Cabestaing, J.C. Burie, A New Edge Detector

for Obstacle Detection with a Linear Stereo Vision System,
Proc. of the Intelligent Vehicles ’95 Symposium, Detroit, MI,
USA, Sep. 1995, pp. 130–135.

w x31 M.E. Brauckmann, C. Goerick, J. Grob, T. Zielke, Towards
All Around Automatic Visual Obstacle Sensing for Cars,
Proc. of the Intelligent Vehicles ’94 Symposium, Paris,
France, Oct. 1994, pp. 79–84.

w x32 J.L. Bruyelle, J.G. Postaire, Disparity Analysis for Real Time
Obstacle Detection, Proc. of the Intelligent Vehicles ’92
Symposium, Detroit, USA, Jun. 1992, pp. 51–56.

w x33 M. Xie, L. Trassoudaine, J. Alizon, J. Gallice, Road obstacle
detection and tracking by an active and intelligent sensing

Ž .strategy, Machine Vision and Applications 7 1994 165–177.
w x34 T.J. Fan, W.H. Tsai, Automatic chinese seal identification,

Ž .Computer Vision, Graphics, Image Processing 25 1984
311–330.

w x35 K.H. Chen, W.H. Tsai, Vision-based autonomous land vehi-
cle guidance in outdoor road environments using combined
line and road following techniques, Journal of Robotic Sys-

Ž . Ž .tems 14 10 1997 711–728.
w x36 S.D. Cheng, W.H. Tsai, Model-based guidance of au-

tonomous land vehicle in indoor environments by structured
light using vertical line information, Journal of Electrical

Ž . Ž .Engineering 34 6 1991 441–452.
w x37 L.L. Wang, P.Y. Ku, W.H. Tsai, Model-based guidance by

the longest common subsequence algorithm for indoor au-
tonomous vehicle navigation using computer vision, Automa-

Ž .tion in Construction 2 1993 123–137.
w x38 Y.M. Su, W.H. Tsai, Autonomous land vehicle guidance for

navigation in buildings by computer vision, radio, and photo-
electric sensing techniques, Journal of the Chinese Institute

Ž . Ž .of Engineers 17 1 1994 63–73.
w x39 R.C. Gonzalez, Richard E. Wood, Digit Image Processing,

Addison-Wesley Publishing, Reading, MA, USA, 1992.
w x40 S. Warshall, A theorem on boolean matrices, Journal of the

Ž . Ž .ACM 9 1 1962 11–12.


