
VISUAL SOFTWARE CONSTRUCTION APPROACH 863

Received September 11, 1998; revised April 14, 1999; accepted May 21, 1999.
Communicated by Y. S. Kuo.
* This research work was supported in part by the National Science Council, Taiwan, under contract
log#34102F. An earlier version of this paper was presented at the 13th International Conference on
Advanced Science and Technology, 1997.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 16, 863-884 (2000)

863

Integration of Reusable Software Components
and Frameworks Into a Visual Software

Construction Approach*

DENG-JYI CHEN, CHORNG-SHIUH KOONG, WU-CHI CHEN,
SHIH-KUN HUANG+ AND N. W. P. VAN DIEPEN++

Department of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

E-mail: {djchen, csko}@csie.nctu.edu.tw
+Institute of Information Science

Academia Sinica
Taipei, Taiwan 115, R.O.C.

E-mail: skhuang@iis.sinica.edu.tw
++ Computing Science Institute

University of Nijmegen
The Netherlands

Software reuse is an effective means of improving software productivity and
software quality. Reusable Software Components (RSCs) are the basic building com-
ponents for software programs constructed using the software reuse approach. The
object-oriented approach is used to design and implement our RSCs. Our laboratory
has already implemented more than 300 reusable software components, including
design-level frameworks in various application domains and approximately 200,000
lines of code in our library. These components and frameworks have been accumu-
lated in the course of designing and implementing strategy-based game systems,
multimedia authoring systems (2-D and 3-D), multimedia playback systems, and
other application systems.

Multimedia software plays an important role in the software industry. In
contrast to traditional software, multimedia software provides users with visual and
audio effects through their interfaces and can more accurately model the real world.
A media component may contain various elements, such as text descriptions, voice
narration, and animation sequences, which more closely present the subject to be
modeled. Such a reusable media component is commonly referred to as a Multimedia
Reusable Component (MRC). Using RSCs, frameworks, and MRCs, our laboratory
has successfully designed and implemented a commercial product called DIY Magic
Cartoon World(for use in making subject-based cartoons.

The RSCs and frameworks can be visualized as icons for a visual programming
model. Reuse-in-large practice is, therefore, achieved using visual programming
techniques based on these visualized components. In this study, we introduce design
principles and implementation techniques for our RSCs, frameworks, and MRCs.
RSCs, frameworks, and MRCs are integrated into a visual software construction
approach. More specifically, the design concept and implementation of an approach

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN864

for visual software construction are described. In addition to discussing the advan-
tages of the proposed construction approach, this work also presents examples which
illustrate how the visual programming environment is used.

Keywords: software component, object-oriented, software reuse, visual programming,
framework, multimedia

1. INTRODUCTION

Software productivity, quality, and maintenance, which are of primary concern in the
computer software industry, have been studied for decades. With these considerations in
mind, various methodologies and techniques have been proposed, including structural
approaches, modular approaches, and object-oriented approaches [1, 8, 21]. The Object-
Oriented approach is an effective methodology that has been studied and implemented
during the recent decade. Fayad presented a transition plan based on real-world experi-
ences and also recommended several effective managerial practices [9]. Designing reusable
software components and frameworks using the Object-Oriented approach is an effective
means of improving software productivity and software quality.

In 1976, Mcllroy[18] wrote, “Why isn’t software more like hardware? Why must every
new development start from scratch? There should be catalogs of software modules as there
are catalogs of VLSI devices: when we build a new system, we should be ordering compo-
nents from these catalogs and combining them, rather than reinventing the wheel every
time”.

His perspective on software reuse led to many subsequent investigations. With the
evolution of the Objected-Oriented Paradigm in recent years, the software industry has
increasingly focused on software reuse. Notable examples include Cox’s Objective-C for
Software IC [7], Booch’s Ada components [2], Freeman’s classification of software reusabil-
ity[10], Prieto-Diaz’s facet scheme for software reusability classification[20], Chen’s inter-
face design for reusable software components and C++ reusable components [3,4], Microsoft’s
component object model (COM)[22], SUN's JavaBeans[23], Eric Gramma's Design Patterns
[11], Grady Booch’s Application Framework[24], and Talph E. Johnson’s Framework[25],
from building blocks [16] to design patterns (frameworks) [11]. Pertinent which range articles
presenting framework development experiences or design guidelines include the following:
Fayad reviewed the current situation, classified strengths/weaknesses, and discussed fu-
ture trends in frameworks [9, 26]. Demeyer provided design guidelines for developing frame-
works [27]. Baumer thoroughly examined domain partitioning, framework layering, and frame-
work construction [28]. Brugali highlighted the relationships between application frameworks,
patterns, and pattern languages in the domain of manufacturing systems[29]. Some of the
above studies led to practical and commercial software products, such as Software IC from
the Stepstone Corporation, Booch’s Components (Ada reusable components and C++
components), MacApp, COM/DCOM, and OMG’s CORBA. However, these reusable com-
ponents or frameworks are still difficult for most people to reuse without integrating into an
innovative software construction approach. To overcome this problem, reusable software
components must be integrated into a visual programming environment to facilitate the use
of these reusable components.

VISUAL SOFTWARE CONSTRUCTION APPROACH 865

Multimedia software has been extensively applied in the application software industry.
In contrast to traditional software, it provides users with visual and audio effects through
their interfaces and can more effectively model the real world. Therefore, this study has
developed reusable media components for use in designing multimedia software application
systems. A reusable media component may contain various elements, such as text
descriptions, voice narration, and animation sequences, which can more accurately repre-
sent the subject to be modeled. They are commonly referred to as reusable software compo-
nents Multimedia Reusable Components (MRCs). Details regarding this subject can be
found in [6].

A visual requirement specification allows a user to view the specification as an anima-
tion sequence instead of having to read or study voluminous specification documents. This
work also proposes a novel paradigm for software construction, based on the use of RSCs
and frameworks. In addition, a prototype of a visual programming environment system is
implemented which programmers can use to practice programming at the level of reuse-in-
large.

The rest of this paper is organized as follows. Section 2 discusses the Reusable
Software Components (RSCs) and frameworks. Section 3 then presents a proposed visual
software construction approach. Next, section 4 addresses implementation issues concern-
ing the proposed approach, in particular the interconnection interface requirements for reus-
able components and their interconnection language requirements. A major portion of this
section is devoted to the proposed visual programming model and its supporting program-
ming environment. In addition, illustrative examples demonstrate how the proposed visual
programming environment works. Conclusions are finally made in section 5.

2. REUSABLE SOFTWARE COMPONENTS AND FRAMEWORKS

Traditionally, a software module or routine that can be invoked using a procedure call
or function call in an application program is considered to be a reusable software component.
Thus, all software functions or procedures can be considered to be reusable software
components. However, a reusable component considered in this manner and implemented
using conventional programming approaches is not likely to be reused since tailoring such
components for different applications is relatively difficult. According to a previous
investigation, traditional software routines do not significantly improve software productiv-
ity [5]. Thus, what makes a good Reusable Software Component must be re-examined. Our
earlier work [3] provided details about what constitutes a good reusable software compo-
nent based on a tradeoff study of interfaces between reusable software components. In the
next section, we will briefly describe the notions underlying the design of these reusable
software components.

2.1 Reusable Software Components and Frameworks

Ideally, a Reusable Software Component or Framework must be designed for use in
constructing many different applications (maximizing applicability) and for easy reuse or
adaptation by software designers and programmers(i.e. ease of tailoring for specific
applications). Fig. 1 depicts an ideal RSC or framework in which a 2-dimensional graphic is
used.

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN866

In this figure, assume that an RSC or framework is designed specifically for a certain
application. In doing so, it can be easily adapted for that particular application. However,
such an RSC or framework is inappropriate for other applications. On the other hand, if an
RSC or framework is designed very generally, theoretically, it can be applied to many
applications. However, tailoring for specific applications is relatively difficult. Thus, an RSC
or framework must be designed and implemented so that there is a balance between generali-
zation and specialization. Below, the client and server model shown in Fig. 2 are used to
depict the role of a reusable software component as a means of describing in detail the basic
design and implementation of our RSCs.

Fig. 1. An ideal Reusable Software Component or Framework.

Fig. 2. A client and server model.

A reusable software component can be considered to be a server that provides ser-
vices for potential clients. A client, an application program, only needs to know the interface
specifications of a potential server and does not need to know the details of how the server
provides those services. A server can accept various kinds of requests from clients. If the
interface constraint is tightly restricted, the server can ascertain that requests for services
from clients conform to its interface conditions. However, it may also lose many possible
clients whose service requests are statically incompatible. On the other hand, if the interface
constraint is relaxed, the server can accept a broader range of service requests from its
clients. In doing so, there is a tradeoff between interface compatibility and flexibility[3]. A
component can be a client, a server or a client and a server.

We adopted the Object-Oriented approach to construct our RSCs. Generalization is
achieved by using multiple polymorphism (dynamic binding) for implementation and
specialization, which are performed using refinement (inheritance) for implementation when
designing our RSCs. Based on our study conducted over the past seven years on designing
and implementing RSCs, we believe that an effective RSC and framework must have the
following characteristics:

An ideal RSCs is a way of
balancing between generalization
specialization.

Generalization

Specialization

VISUAL SOFTWARE CONSTRUCTION APPROACH 867

1. Easy to generalize: RSCs and frameworks must be common enough to be used in many
applications. Restated, an RSC should be designed to accept various types of data used
in different applications.

2. Ease to refine (specialization): RSCs and frameworks must be adaptable, flexible, and
extendable enough for use in specialized applications.

3. Clear interface specification: An RSC or framework must provide a set of interfaces for its
clients that gives application users a clear picture of how to use the component.

4. Complete encapsulation: An RSC or framework must protect all its private information.
Application users can only use sets of public interface routines to update internal data,
thus ensuring that the component will have no side effects when used in clients’
applications.

5. Complete testing: RSCs and frameworks must be bug-free. They should be designed and
well tested in such a way as to guarantee quality.

Reusable software components designed according to the above principles will be
ideal for future reuse. Our laboratory has been attempting to use the Object-Oriented ap-
proach according to these principles for the last seven years. In doing so, more than 300
reusable components consisting of approximately 200,000 lines of code have been
accumulated. The sizes of the reusable components range from 500 lines of code to 3,000
lines of code, depending on the application.

In addition to good and healthy reusable components, an efficient interconnect lan-
guage is also required to integrate these reusable components into useful application
programs. Later, in section 4, we will discuss an integration tool and its relative interconnec-
tion language.

2.2 Standardization and Classification of RSCs and Frameworks

In general, four kinds of software components can be considered for use in reusable
software components or frameworks. Starting from high-level and continuing down the low-
level, they are as follows:

1. Requirement specification components: These can be considered as users' requirement
analysis results and analysis-level components (reusable specification analysis
components).

2. Design frameworks (or design patterns): These are design-level components (or reusable
design results) that can be reused to design different application domains. This kind of
component is referred to herein as a Reusable Software Design Framework (RSDF). They
are designed and implemented using the design principles mentioned above and in [4].

3. Code components: These are software modules or routines referred to herein as Reusable
Software Components(RSCs). They are designed and implemented using the object-
oriented approach and the design principles stated above.

4. Data or media components: These are numerical data, text data, or data in other media.
Multimedia software plays an important role in the software industry. Thus, reuse of
media data should not be neglected. These components are referred to herein as Multi-
media Reusable Components(MRCs).

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN868

Below, we will consider standardization for our RSCs. Our reusable software compo-
nents include two major types: 1) Reusable Software Component Specifications and 2) Reus-
able Software Component Bodies. Fig. 3 shows details of these parts, which are described
below. A standardized format for framework implementation based on the same consider-
ations was reported in [4].
1. Search information: This includes the component name, author, taxonomy code, applica-

tion domain, creation date, and modification history of the component. These items can
be used as keywords for retrieving components.

2. Basic information: This includes the component size, version and file name in a system.
3. Overview: This describes the basic functions and characteristics of the component, and

the public interfaces supported by the component.
4. Input/Output message: This describes the meaning and format of parameters passed from/

to the application program through public interfaces.
5. Use format: This contains examples and guidelines for using the component in applications.

Thus, programmers do not need to study or read the actual component codes.

In our implementations, we use four different files to store all the information about
each RSC:

1. File *.doc is used to store the component's specification information.
2. File *.h is used to store the component header file that will be included in application

programs in which the component is to be used.
3. File *.cpp is used to store the component body. This is the source code and is compiled

so as to produce an object code that is included in a library file with the extension lib.
Eventually, it will be linked to the main application program that uses this component to
produce an execution code.

4. File *.c is used to store the test program, which can be used to test the component when
it is used in an application program.

Fig. 3. Format of a Reusable Software Component.

Reusable Software Component (RSC)
Specification

Component body

Search Information

Basic Information

Over View

I/O Message

Use Format
expander m template adapter n

adapter 1expander 1

component

+ +

+ +

- -

VISUAL SOFTWARE CONSTRUCTION APPROACH 869

Previous investigations have placed too much emphasis on innovative and clever
search as well as query approaches to finding components(conventional routines and
functions). Those investigations commonly assume that hundreds of thousands of compo-
nents are available. However, many investigation have neglected the fact that designing
good reusable components significantly reduces the number of related components. For
example, our laboratory designed and implemented thousands of sorting routines to perform
sorting functions for thousands of different data-type applications. These routines can be
reduced to one design by adopting the object-oriented approach to implement a sorting
routine. The RSC space which needs to be searched is, thus, greatly reduced.

In the following, our approach to classifying RSCs is described. Basically, a software
program can be modeled as a composition of data structures and algorithms, along with
various tools and subsystems in a computer system (for example, operating systems, compil-
ers and other useful software). Logically, the hierarchy shown in Fig. 4 is adopted for RSC
classification. The first level catalogs the domain type, and the second the component
types, i.e., structures, tools, and subsystems.

Fig. 5. A naming system example.

gw Video Play

Domain:
 g: game
 e: electronic
 n: network
 d: database

Catalog
 w: windows
 c: control
 s: data structure

A naming system for RSCs is also needed. Component naming attempts to inform
users about where to look for components by examining general information about it. A
relatively easy means of doing so is to separate component names into three parts, as shown
in Fig. 5. The first letter in the component name is used to represent the application domain,

Fig. 4. RSC classification.

Domain

General purpose

User interFace

Game

CAI/CAD

Network Application

Electronic Book

Numerical

Data structure

Multiedia application

Database management

Domain structures

tools

subsystems
standard

subsystems

user defined

subsystems

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN870

the second letter is used to represent the component type, and the final part is used to
represent the component function. Fig. 5 shows a Windows game component that can used
for playing a video.

The above information provides a basis for users to retrieve and use existing compo-
nents in their applications. Later, in section 4, we will present a Component Retrieval System,
using the proposed classification structure and naming system, and then implement and
integrate it into a visual programming environment.

3. A VISUAL SOFTWARE CONSTRUCTION PARADIGM FOR
REUSABLE COMPONENTS AND FRAMEWORKS

MRCs are developed in order to represent requirement scenarios[6]. Using visual
representations of requirement specifications allows one to view such requirements as ani-
mation sequences so that one does not have to read or study voluminous requirement
documents. Such an innovative software approach provides users with visual aids which
can help them better understand the software requirements. This approach also provides
designers with a natural means of communicating with users and, thus, to receive more
accurate feedback from users regarding the requirements under consideration. In section 2,
we presented the design principles and implementation approach for our RSCs and Frame-
works in RSCs, Frameworks, MRCs, and the visual programming environment. A novel
paradigm for software construction is presented in the following.

Fig. 6. A Visual Software Construction (VSC) model.

Component
Constructor

System
Analyst

Customer

Visual Requirement
Authoring System

(VRAS)

MRC
Manager

Visual Requirement
Specification

Design
framework

Code/Data
components

Software
Program

Visual
Programming
Environment

3.1 A Visual Software Construction Model

Semantic pictures, commonly referred to as icons, can be used to represent RSCs,
frameworks, and MRCs in a visual programming environment [17]. Restated, an icon is
created for each RSC, MRC, and Framework. Consequently, a bank of icons are cataloged
and named as described in section 2.2. To effectively use these icons, a software construc-
tion paradigm must be developed. Consider the Visual Software Construction (VSC) Model
depicted in Fig. 6.

The software construction process can be divided into two major phases, requirement
construction and program construction. MRCs are the bases for requirement construction
while RSCs and Frameworks are the bases for program construction.

During the requirement construction phase, a Visual Requirement Authoring System
(VRAS) is employed to produce a visual requirement specification using MRCs. Such a
visual requirement specification is achieved by system analysts and passed onto users

VISUAL SOFTWARE CONSTRUCTION APPROACH 871

(customers) for evaluation. Modifications are made when analysts and users disagree.
During modification, analysts again invoke the VRAS to instruct the MRC Manager System
to retrieve an appropriate MRC for modification. If the MRC Manager System does not
locate such an MRC, then such an MRC is fabricated by invoking the MRC Component
Constructor. The constructed MRC is then stored in the MRCs Manager System by the
analyst using the Visual Requirement Authoring System. During fabrication of an MRC,
tools for aggregating video, motion pictures, static image picture, voice, and text together to
produce a visual presentation are supported for most common multimedia computer systems.
The VRAS also provides a rich set of functions to help MRC designers fabricate desired
MRCs. This innovative requirement representation paradigm provides analysts and design-
ers with a natural means of communicating with users (customers) and receiving more accu-
rate responses from users concerning the requirement under consideration.

During the program construction phase, the Visual Programming Environment (VPE)
is employed to produce programs according to the requirements obtained during the require-
ment construction phase. Ideally, the requirement representation film from the MRC is
automatically verifed to produce a list of design patterns (frameworks) that are closely appli-
cable to the requirement under consideration. Also, a list of RSCs applicable to the design
pattern (framework) is produced automatically. However, at the present time, the kinds of
design patterns (or frameworks) and RSCs that are needed must be manually identified to
construct programs for the requirements under consideration. Once a list of these frame-
works and RSCs has been identified, the VPE provides tools which designers can use to
produce the corresponding programs. Thus, the Visual Programming Environment must
provide the following: 1) a visual paradigm for producing visual programs, based on the use
of icons to represent various frameworks and RSCs, and a code generator for translating the
visual program into target code (high-level programs), and 2) a hyper-text editor that allows
programmers to edit programs when they reuse the design frameworks and RSCs. An inter-
connection language is defined for connecting icons so as to produce an iconic program. A
Code Generator takes these iconic programs and translates them into programming language
source code.

3.2 Advantages of the Proposed Construction Model

Many investigations have cited traditional software construction models as causing
problems in requirement specification, design, coding, testing, and maintenance. A detailed
list of problems can be found in [19]. Some of these problems can be alleviated using the
proposed construction model. The benefits of the proposed construction approach are as
follows.

1. A Visual Requirement Authoring System, instead of the traditional (NOTE: “conven-
tional” instead ?) requirement-gathering process, provide users with visual images that
allow them to better understand the software requirements. It also provides analysts and
designers with a natural means of communicating with users and receiving more accurate
feedback from users concerning the requirements under consideration.

2. The proposed approach provides a prototyping capability, as evidenced by its reuse of
design frameworks and RSCs during the construction of application software. A proto-
type satisfying the software requirements under consideration can be built using the
icons representing frameworks and RSCs. Thus, users (and customers) can observe
whether or not the functionality satisfies their requirement at an early stage before the
final system is implemented.

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN872

3. The proposed approach encourages good software programming practices. Encouraging
designers and programmers to reuse the design frameworks and components leads to
accumulation of their own design frameworks and RSCs. Accumulation of reusable com-
ponents and frameworks is essential for improving software productivity and quality.

4. Frameworks and RSCs are thoroughly implemented and tested before reuse. Doing so
encourages the design and implementation of healthy (bug-free and side-effect-free)
components. Consequently, the application software based on these healthy compo-
nents or frameworks needs less time for debugging. Thus, the testing cost can be
reduced.

5. In a visual programming paradigm, a top-level iconic program represents the system struc-
ture while a lower-level one represents the software program. When a modification or
change in the iconic program is required, designers or programmers can easily locate the
icon requiring replacement or modification. By substituting the icon or reconnecting
icons, the code generator can immediately generate a new version of the software program.

6. The proposed construction model encourages reuse-in-large practice, thereby improving
software productivity and quality.

Other merits of using a visual programming technique, such as 2-D graphic
programming, are as follows: it is able to easily learn and understand; graphic programs can
easily present higher-level abstractions; graphic programs are easily modified with few
errors; icon replacement is easier than text modification. Further details can be found in [12,
13, 15].

4. IMPLEMENTATION ISSUES CONCERNING THE
PROPOSED CONSTRUCTION APPROACH

In section 3, we briefly described the visualized software construction model. In the
following, we will present implementation issues concerning the proposed construction
approach. These issues can generally be divided into two main groups: 1) requirement-
construction phase issues and 2) program-construction phase issues.

4.1 Implementation Issues in the Requirement-Construction Phase

The requirement-construction phase focuses mainly on implementing a Visual Re-
quirement Authoring System that allows users to select the various MRCs stored in the
MRCs Manager System and turn them into films (visual presentations) that can be played for
users (customers). Fig. 7 depicts the model.

Requirement
Authoring

MRC
Build
Tool

MRC
Management

System

MRC
Database

GetRetrieve

MRC
Request

Load

Load

Output

Input

Requirement
Presentaion
Script file Input

Requirement
Presentation

Playback

Fig. 7. A Visual Requirement Authoring System.

VISUAL SOFTWARE CONSTRUCTION APPROACH 873

The MRCs must be designed in a standardized format, and MRC designers usually
seek the assistance of artists in drawing meaningful and simple motion pictures to describe
the basic meanings of events(requirements scenarios). The authoring system must provide
various functions that allow analysts to change MRC attributes, to make animation se-
quences for events in MRCs, and to assemble several MRCs to satisfy scenario-based
requirements. These scenario-based requirements are then combined into feature
presentations(films) and played for user evaluation. We have discussed this subject in
detail in [6]. Below, we will highlight some functions supported by our commercial product,
DIY Magic Cartoon World [14], which is similar to the Visual Requirement Authoring System
discussed herein.

In the authoring system, visual requirement specification is analogous to a cartoon
film. Cartoon films contain sets of scenes, which are similar to sets of MRCs. The scenes are
the base of a cartoon film. Correspondingly, MRCs is the base of a visual requirement. A
scene can have several actors whose characteristics can be defined using a set of functions
provided by the authoring tool, depending on the user’s needs. For example, an actor’s
scenario can be described using the authoring tool. Several acting scenarios can be defined
so as to make a scene. Similarly, an MRC may contain several requirement scenarios based
on the user’s needs. Thus, an MRC can be created and edited by an analyst based on the
functions provided by the authoring system. Functions supported in the current authoring
system include the following:

1. selecting and moving actors (representing requirement scenarios) from an actor bank
(representing requirement scenario databases) to a designated place in a scene (representing
MRCs);

2. recording voice narrative sessions for actors (requirement scenarios) and scenes (MRCs);
3. enlarging and scaling-down selected actors (representing particular requirement scenarios);
4. allowing left and right sequence changes between two actors (representing requirement

scenarios);
5. allowing up and down sequence changes between two actors (representing requirement

scenarios);
6. making animations of scenarios at different presentation speeds;
7. allowing foreground and background changes among actors (representing requirement

scenarios);
8. making sequential presentations of several selected actors (representing requirement

scenarios);
9. making several selected actors perform in parallel;
10. defining beginnings, progressions, and endings for scenes;
11. providing other features such as setting special effects and background music for scenes,

previewing scenes just completed, discarding unwanted actors, and so on.

Notably, the above features are all presented in visual form. Thus, users are performing
visual programming when they are using these functions to make cartoon films (or visual
requirement representations). The details of how to use MRCs to produce a visual require-
ment can be found in [6].

4.2 Implementation Issues in the Program-Construction Phase

Program construction concentrates mainly on implementing a Visual Programming
Environment. The Visual Programming Environment takes visual requirements and trans-
forms them into target software programs. Fig. 8 presents an outline of the system structure.

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN874

According to Fig. 8, several non-trivial tasks must be performed to implement a visual
programming environment.

Fig. 8. Visual programming system structure.

Component
Data Base

Component retrieve
system, DBMS

Query
Icon Manager

candidate frameworks
and

RSCs

Use selected
Icons (Objects)

Visual programning

draft

Icon Program

source code
generator

C++ Source Code

Text Editor
and

Text Viewer

Ouery
View
Add
Update

1. Each Framework or RSC stored in the Components Database must be visualized at the time
it is selected as a candidate for program construction and then placed into an icon pool by
the Icon Manager.

2. A visual programming model must be defined in order to make an iconic program.
3. An icon interconnection language and its corresponding code generator must be

implemented.

4.2.1 Visualizing the frameworks and RSCs

In contrast to hardware ICs, which have fixed semantic meanings (true, false, or don't
care) for their pins when they are connected to other ICs, software programs depend on
message names, and on parameter types and numbers during message-binding with other
software programs. Visualization of software components (frameworks and RSCs) by defin-
ing graphic bitmaps (icons) of their input and output layouts is used in our system. Fig. 9
presents a component layout.

Fig. 9. Component layout.

Creating a visualized component involves re-packaging a component from its original
text description. Re-packaging a component consists of the following three steps:

VISUAL SOFTWARE CONSTRUCTION APPROACH 875

Step 1: Find or draw a meaningful picture or icon to represent the component.
Step 2: Modify the original component by adding a virtual member function, called a connect

(), to the component. The connect() member function is implemented by means of
dynamic binding that links with other components. Thus, a component can be
dynamically bound to another components needing service from this component.

Step 3: Define component input pins and output pins according to the member functions
defined in the component.

For example, the nth output pin of component A is connected to the input pin of
component B, as shown in Fig. 10. According to this figure, execution of component B
invokes function n in component A. Using C++ notation, it will be implemented as B.
connect(&A, n). If the component is a design framework, we add an execution() function to
it to initiate the execution sequence. An invocation of this function initiates the execution of
all the connected components.

Fig. 10. Component interconnection.

4.2.2 A visual programming model

Many visual programming models have been proposed [12, 13, 15]. A visual program-
ming model can be as complex as a general-purpose programming language, with support for
complicated programming structures. This visual programming model provides users a
convenient way to produce powerful and complicated visual programs (or iconic programs)
for modeling low-level applications. Meanwhile, another type of visual programming model
provides only a limited set of programming structures, thus enabling users to produce simple
but reasonable visual programs (or iconic programs) for special domains. The visual pro-
gramming model proposed herein is of the latter type. Our choice was made on the basis of
programming-in-large and reuse-in-large practices. Writing a simple subroutine, such as
sorting or finding a square root, using visual or icon programming would be unnecessary
except for very special purposes. Instead, these simple routines should be implemented
using a high-level language and encapsulated as icons for use in higher-level applications.
In this manner, the power of a visual program can be enhanced. In the following, we intro-
duce a relatively simple visual programming model for program construction based on the
use of our RSCs and frameworks.

We use a computer processing model which contains three parts: an input unit, pro-
cessing unit, and output unit, as shown in Fig. 11, to present the visual programming model.

INPUT PROCESSING OUTPUT

output device
output-UI

input device
input-UI

Basic control structure
 - sequential
 - branch
 - loop

Design franework
Code/Data components

Fig. 11. The visual programming model.

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN876

The input unit handles all input devices and input-end user interfacing while the
output unit takes care of all output devices and output-end user interfacing. The processing
unit performs all operational flows according to application requirements. In the proposed
model, each device (user interface) in the input, output, and processing units is treated as a
component or as a combination of components. Simple control structures, including
sequential, branching, and looping, structures, are provided in the processing unit to de-
scribe the control flow. Icon types, such as frameworks and RSCs, are also introduced for
programming-in-large (or reuse-in-large) through interconnections among icons.

4.2.3 Control structure

The programming control structures are also represented as visualized icons. Two
levels of control structure are defined, the basic control structure and the system-level
control structure. Fig. 12 (a) shows that the basic control structure includes an if-then-else
structure, a do-loop structure, a case-switch structure and sequential flows in the compo-
nent layout. The system-level control structure is the design framework component shown
in Fig. 12(b).

Fig. 12. Control structure.

If condition

Then part

Else part

If.. Then.. Else

Do condition

Loop part

Do.. Loop

invoke

Sequential flow

Job 1

Job 2

Job 3

Case condition

Case.. Switch

Switch

Control Input
Conditions

else

IF

then

Design level compnent

Control Outout 1
(invoke subsystem 1)

Control Outout 2
(invoke subsystem 2)

Control Outout 3
(invoke subsystem 3)

4.2.4 Data types

Primitive data types, such as integers, characters, and floating points, provided in
conventional procedural programming languages are not recommended for programming-
in-large or reuse-in-large practices. As mentioned earlier, these data types introduce a great
deal of interconnection complexity and should only be used as icons for constructing reus-
able components or frameworks. Thus, our system uses extension data types and user-
defined data types as well as primitive data types. Extension data types contain not only
data, but also operations on the data. The RSCs discussed earlier are of this data type. User-
defined data contains more information than do RSCs, and interconnection information
(control flow) for several RSCs is provided; frameworks are examples of this kind of data.

Type conversion can be done implicitly or explicitly. Primitive data types are handled
by the compiler. All extension data type conversions are handled by the component object
itself. User-defined type objects may also need to perform type conversions. In the pro-
posed system, all conversion functions are defined and implemented using polymorphism
mechanisms. During parsing of component interconnections, the conversion functions are
invoked automatically.

(a) (b)

VISUAL SOFTWARE CONSTRUCTION APPROACH 877

4.2.5 A visual program example

An icon program consists of icons, links, and labels.
Icons are the bases of visual programs. The top-level icons represent the system

structure, relationships among subsystems. An icon can be any kind of RSC. The details of
a subsystem can be viewed by clicking on the icon representing the subsystems. In addition,
the body of an RSC can be viewed by clicking on the icon representing that component.
Connections between icons alone can define the semantic meanings of visual programs.

Links are used to interconnect components so that they to form visual programs.
Links represent message-passing and control transfers between components. Message
resolution is achieved by individual components. When designing RSC interfaces, all pos-
sible message-passing must be considered. Links can only be used to connect input and
output pins. The code generator detects illegal connection patterns, such as attempts to
connect two inputs.

Labels are used only for documentation purposes and can appear anywhere in icon
programs. The code generator skips all labels during source code-generation.

Fig. 13 shows a simple example of an icon program. This example program accepts
inputs from a keyboard, converts input characters from upper-case to lower-case, encodes
the input characters and finally outputs them to the screen.

4.3 A Visual Programming Environment (VPE)

In this section, we will present the environment used to produce the visual program
shown in Fig. 13.

The environment starts with a Component Retrieval System that allows users to locate
potential RSCs and frameworks for use in their applications. Similar to most database systems,
it provides functions like querying, inserting, updating, and deleting for RSC management.
Fig. 14 shows the user interface.

(a) Functions of the retrieval system (b) RSC querying, insertion, updating, and deleting
Fig. 14. Component retrieval system user interface.

Fig. 13. An example of an iconic program.

UpToLow

Encode

inputFromKeyboard

ProcessReceptacle

OutputToScreen

File

prochar

prochar

prochar

inchar

outchar

input

process

output

plug1
plug2
plug3
plug4
plug5

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN878

Fig. 14(a) shows the functions provided by the component retrieval system while Fig.
14(b) demonstrates how the system can be asked to locate a general-purpose RSC stack.
When the keyword for a desired component is input, the system responds with a list of
potential candidates. Fig. 15(a) shows matched the RSC STACK-ARRAY with its general
information given in the introduction field. Users can also more closely examine the matched
RSC by clicking on the view button on the right-hand side of the window. This opens a new
window that displays relevant information about the RSC, as shown in Fig. 15(b). This RSC
information, as described in Fig. 3, is stored in a *.doc file and is now seen in this window.
Furthermore, by clicking on the view *.H button, one can view the component header. The
test program can be viewed by clicking on view *.CPP.

(a) A matched RSC (b) Detailed information about an RSC
Fig. 15. A matched RSC with its relevant information.

Once the matched component has been examined and evaluated for application
suitability, the OK button is clicked to determine whether the match is appropriate; in addition,
an icon representing this matched RSC is created and added to the Icon Manager. If a
matched RSC requires modification, then the Text Editor is invoked to perform this task.

Eventually, a set of icons representing the matched RSCs for visual program construc-
tion will be present in the Icon Manager. These icons are displayed in the Visual Icon
Manger area shown in Fig. 16. The Visual Programming Draft is a hyper-text editor for
creating visual programs (or iconic programs). Programmers can drag icons from the Icon
Manager to the draft area and drag links to connect icons according to their interface
connections. Icons dragged into the draft area represent instances of matched
RSCs, and labels can be used to make these icons more understandable.

Fig. 16. The Icon Manager and the visual programming draft area.

VISUAL SOFTWARE CONSTRUCTION APPROACH 879

The icon program shown in Fig. 13 was constructed using the VPE shown in Fig. 17.
The internal form (script file) representing the icon program is then read and parsed by

the Code Generator to produce the corresponding source code. Table 1 lists the source code
for the icon program shown in Figs. 13 and 17.

If a programmer wants to change the input device from a keyboard to a file for
the program shown in Fig. 17 and the output device from a screen to a file, all he or
she has to do is replace the input and output icons with other input and output icons.
Fig. 18 shows such a replacement.

Fig. 17. An icon program example.

(a) (b)

Fig. 18. An example of icon replacement.

Reuse of the rest of the program structure can be accomplished through this kind of
simple replacement in a VPE system. Thus, an entire visual program can be treated as a
framework.

4.4 Visual Programs and Frameworks

Application frameworks are very important for the software industry and academia
since software systems are becoming increasingly complex. Designing frameworks is al-
ready a challenging task. Lack of an appropriate method for accumulating frameworks and
reusing them discourages software constructors from using them in their programming

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN880

work. The visual programming approach provides a natural method for framework accumu-
lation and reuse. The visual program depicted in Fig. 13 can be viewed as a framework
because it also gives the designer a relatively easy means of replacing or modifying icons to
produce another application program. The visual program depicted in Fig. 17 also provides
another example, indicating the frameworks’ ease of modification. Accumulating visual
programs simply involves creating other meaningful icons to represent the visual programs
and storing them in the Component Retrieval System for future reuse. Thus, a visual pro-
gramming approach makes reuse and accumulation of frameworks easy.

5. CONCLUSIONS

Software reuse is an effective means of increasing software productivity and quality.
Many reusable components have already been designed and used in various applications.
Framework design is also promising as a major programming paradigm for the next century.
However, reusable components and frameworks are still difficult to reuse unless they are
integrated into an innovative software construction approach.

Table 1. Sample source code.

#include “C:\SOFTIC\ICDATA\file.h”
#include “C:\SOFTIC\ICDATA\infromke.h”
#include “C:\SOFTIC\ICDATA\outtoscr.h”
#include “C:\SOFTIC\ICDATA\ProRecep.h”
#include “C:\SOFTIC\ICDATA\uptolow.h”
#include “C:\SOFTIC\ICDATA\encode.h”
#include <windows.h>
#pragma argsused
int PASCAL WinMain(HANDLE hInstance,

HHANDLE hPrevInstance,
LPSTR IpszCmdLine,
int cmdShow)

{
_InitEasyWin();
file file_0;
InputFromKeyboard InputFromKeyboard_1;
OutputToScreen OutputToScreen_2;
Process Receptacle ProcessReceptacle_3;
UpToLow UpToLow_4;
Encode Encode_5;
file_0.connect (& InputFromKeyboard_1,0);
file_0.connect(&Process Receptacle_3,1);
Process Receptace_3.connect(&Up ToLow_4,0);
Process Receptacle_3.connect (&Encode_5,1);
file_0.connect(& Output To Screen_2,2);
return file_0.execution();
}

VISUAL SOFTWARE CONSTRUCTION APPROACH 881

This study has presented a novel approach to developing a visual software construc-
tion system for reusing software components and frameworks. The proposed approach
addresses three important issues:

1. Reusable components and frameworks must be integrated into a software construction
process. Integration using visual programming is a natural choice since the visual pro-
gramming model offers the optimum means of describing programming-in-large and reuse-
in-large practice. Reusable components and frameworks can be encapsulated and visual-
ized as icons for higher-level programming using visual programming, thus making the
reuse of existing reusable components and frameworks in future application. Thus, reuse-
in-large can be achieved.

2. Reusable components and frameworks must be accumulated in a standardized format. In
addition, an appropriate classification structure and a naming system must be employed
to manage them. More specifically, a component-management system for these reusable
components and frameworks must be integrated into a visual programming model to
provide a visual programming environment for software constructors. When this envi-
ronment is used, a visual program can be treated as a new framework and can be accumu-
lated into the environment for future reuse.

3. Requirement specification can be visualized. Multimedia Reusable Components make
visual requirement presentation possible. The use of visual requirement specification
allows one to view requirements as animation sequences so that it is not necessary to read
or study voluminous requirement documents. This innovative software requirement rep-
resentation paradigm provides designers with a natural means of communicating with
users and, thus, receiving more accurate feedback from them concerning the require-
ments under consideration.

The visual software construction paradigm provides a new direction for academic
researchers and for software developers who wish to obtain better solutions for software
construction.

REFERENCES

1. Grady Booch, Object-Oriented Design with Applications, Benjamin/Commings Pub-
lishing Company, Inc., Redwood City, 1991.

2. Grady Booch, Software Components with Ada, Benjamin/Cummings Publishing Company,
Inc., Redwood City, 1987.

3. D. J. Chen and S. K. Huang, “Interface of reusable software components,” The Journal
of Object-Oriented Programming, Vol. 5, No. 8, 1993, pp. 42-53.

4. D. J. Chen and D. T. K. Chen, “An experimental study of using reusable software design
frameworks to achieve software reuse,” The Journal of Object-Oriented Programming,
Vol. 7, No. 2, 1994, pp. 56-68.

5. D. J. Chen and P. J. Lee, “On the study of software reuse using reusable C++ components,” The
Journal of System and Software, Vol. 20, No. 1, 1993, pp. 19-36.

6. W. C. Chen, “A reuse-based software construction paradigm for visualized reusable
components and frameworks,” a Ph.D. dissertation, Computer Science and Information
Engineering, National Chiao-Tung University, Taiwan, 1998.

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN882

7. B. Cox, Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley,
Reading, Mass, 1986.

8. P. Coad and E. Yourdon, Object-oriented Analysis, Prentice-Hall, New York, 1990.
9. M. E. Fayad, W. T. Tsai, and Fulghum, “Transition to object-oriented software

development,” Communication of the ACM, Vol. 39, No. 2, 1996.
10. P. Freeman, “A perspective on reusability,” The Computer Society of the IEEE, 1987, pp.

2-8.
11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, Reading, Mass, 1995.
12. M. Hirakawa, “HI-VISUAL iconic programming,” in Proceedings of IEEE Workshop on

Visual Language, 1987, pp. 305-314.
13. M. Hirakawa, “An iconic programming system, HI_VISUAL,” IEEE Transactions on

Software Engineering, Vol. 16, No. 10, pp. 1178-1184.
14. G. Y. Hsu and C. S. Koong, “A visual authoring tool for cartoon movie,” Technical

Report of the Best Wise International Computing Co., Taiwan, 1996.
15. T. D. Kimura, A. Apte, S. Sengupta, and J. W. Chen, “Form/formula-a visual program-

ming paradigm for user-definable user interfaces,” IEEE Computer, Vol. 28, No. 3, 1995,
pp. 27-35.

16. M. Lenz, H. A. Schmid, and P. F. Wolf, “Software Reuse through Building Blocks,” IEEE
Software, Vol. 4, No. 4, 1987, pp. 34-42.

17. C. L. Li, “An object-based icon programming methodology,” Master thesis, Computer
Science and Information Engineering, National Chiao-Tung University, Taiwan,1992.

18. M. D. Mcllroy, “Mass-produced software components,” in Software Engineering Con-
cepts and Techniques, NATO Conference on Software Engineering, 1969.

19. R. S. Pressman, Software Engineering-A practitioner’s Approach, McGraw-Hill company,
Inc., New York, 1997.

20. R. Prieto-Diza and P. Freeman, “Classifying software for reusability,” IEEE Software,
Vol. 1, No. 1, 1987, pp. 6-16.

21. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall, New York, 1991.

22. D. Rogerson, Inside COM, Microsoft Press, 1996.
23. http://www.javasoft.com/beans/index.html
24. G. Booch, “Designing an application framework,” Dr. Dobb’s Journal, Vol. 19,

No. 2, 1994, pp. 24-31.
25. R. E. Johnson, “How frameworks compare to other object-oriented reuse

techniques: Frameworks = Components + Patterns,” Communications of the ACM,
Vol. 40, No. 10, 1997, pp. 39-42.

26. M. E. Fayad and D. C. Schmidt, “Object-oriented application frameworks,” Com-
munications of the ACM, Vol. 40, No. 10, 1997, pp. 32-38.

27. Demeyer, Meijler, Nierstrasz, and Steyaert, “Design guidelines for tailorable
frameworks,” Communications of the ACM, Vol. 40, No. 10, 1997, pp. 60-64.

28. Baumer, Gryczan, Knoll, Lilienthal, Riehle, and ZZZullighoven, “Framework de-
velopment for large systems,” Communications of the ACM, Vol. 40, No. 10,
1997, pp. 52-59.

29. Brugali, Menga, and Aarsten, “The framework life span,” Commnuications of the ACM,
Vol. 40, No. 10, 1997, pp. 65-68.

VISUAL SOFTWARE CONSTRUCTION APPROACH 883

Deng-Jyi Chen () received the B.S. degree in Com-
puter Science from Missouri State University (Cape Girardeau), and
the M.S. and Ph.D. degrees in Computer Science from the Univer-
sity of Texas (Arlington) in 1983, 1985, and 1988, respectively. He is
now a professor at National Chiao-Tung University (Hsin Chu,
Taiwan). He has published nearly 100 referreed journal and confer-
ence papers in the areas of reliability and performance modeling of
distributed systems, computer networks, object-oriented systems,
and software reuse. Professor Chen works very closely with the
industrial sector and provides consulting services for many local
companies (both software and hardware companies). He has been
a leader in designing and implementing several commercial products,

some of which have been marketed around the world. Dr. Chen also has received research
grants yearly from the National Science Council Taiwan for the last several years and now
serves as a committee member in several academic and industrial organizations.

Chorng-Shiuh Koong () received his B.S. de-
grees in education from National Taiwan Normal University,
Taiwan, in 1989 and the M.S. degree in computer science
and information engineering from National Chiao-Tung
University, Taiwan, in 1995. Currently, he is a Ph.D. candidate
at National Chiao-Tung University, Taiwan. His research interests
include object-oriented technology, component technology, and
visual programming.

Wu-Chi Chen () received his B.S. and Ph.D. de-
grees in Computer Science and Information Engineering from
National Chiao Tung University(Hsinchu, Taiwan) in 1992 and
1998. Since then, he has joined the Taiwan Semiconductor
Manufacturing Co. as an Principal CIM Engineer. His research
interests include software engineering and object-oriented modeling.

Shih-Kun Huang () received his B.S., M.S. and Ph.D.
degrees in Computer Science and Information Engineering from Na-
tional Chiao-Tung University, Hsinchu, Taiwan, in 1989, 1991 and
1996, respectively. Since then, he has joined the Institute of Infor-
mation Science as an assistant research fellow. His research areas
include object-oriented technology and software security.

D. J. CHEN, C. S. KOONG, W. C. CHEN, S. K. HUANG AND N. W. P. VAN DIEPEN884

N.W.P. (Niek) van Diepen received his M.Sc. from the Uni-
versity of Utrecht in 1985. He then spent 3 years at the Center for
Mathematics and Computer Science in Amsterdam, working on
the ESPRIT project GIPE (Generating Interactive Programming
Environments). In 1988, he joined the University of Nijmegen in
The NWO(Netherlands Foundation for Scientific Research) project
STOP(Specification and Transformation Of Programs). He received
his Ph.D. degree there in 1994. He is employed as an Assistant
Professor at the University of Nijmegen, currently assisting at the
Polytechnical University of Arnhem-Nijmegen. His current research
interests are in Object-Orientation, especially modularization and

software library construction, and in transformational programming.

