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Abstract

Derman, Lieberman and Ross solved the problem of sequentially assigningn components with different reliabilities to a
consecutive-2 linear system to maximize the system reliability. Furthermore, they show that the optimal assignment is invariant,
i.e., it depends only on the ranking of the component reliabilities, but not their values. We study the same problem for the
consecutive-2 circular system and prove that an invariant optimal assignment does not exist. But we reduce the number of
candidates of an optimal assignment fromn! to bn/2c − 2. We also find the first-order invariant optimal assignment. 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

A linear (circular) consecutive-k system is a line
(cycle) of n components such that the system has
failed if and only if some consecutivek components
have all failed. Letpi denote the probability that
componenti is working and letqi = 1− pi denote
the probability that componenti has failed. Derman,
Lieberman and Ross (DLR) [1] studied two problems
of how to construct a consecutive-2 line withn given
components to maximize its reliability. They assume
that the state of a component becomes known once
it is added to the system. The first problem they
considered is to construct the line sequentially, adding
the components one by one and taking full advantage
of the knowledge of the states of components already
added. The second
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problem is to construct the line nonsequentially by
specifying the complete sequencing of components to-
gether.

Let

p= {p16 p26 · · ·6 pn}
denote the set of component reliabilities to be as-
signed. An optimal assignment is calledinvariant if
it depends only on the ranking ofpi , but not their
actual values. DLR gave an invariant assignment to
the first problem and conjectured an invariant solution
for the second. The conjecture was later independently
proved by Du and Hwang [2] and Malon [3]. The for-
mer actually proved the conjecture for the more gen-
eral circular system. A natural expectation is that the
remaining case out of the four possibilities, namely,
the sequential cycle, will also be invariant. In this pa-
per we show that this is not so; but we reduce the
search of an optimal cycle tobn/2c− 2 candidates in-
stead of the originaln!, and we give simple formulas
to compare these candidates.
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2. Reduction of the candidate set

Since our goal is to find an invariant assignment,
all algorithms considered here are assumed to be
dependent on thepi ’s only through their ranks. DLR
gave the following greedy algorithmG(n) for the
sequential line and proved its invariance.

Step 1. Assign component 1 as the initial component.

Step 2. Suppose componentj is the last component
assigned. If componentj is working, assign the
worst component from the remaining lot next. If
componentj fails, assign the best component from
the remaining lot next.

Note that the optimality of Step 2 is independent of
Step 1. Namely, if componenti is assigned first, the
subsequent optimal strategy depends only on the state
of that component, but not on its labeli. LetG(n; i)
be an extension ofG(n) to the case that componenti
is assigned first. ThenG(n; i) is invariant among those
algorithms where componenti is assigned first.

In the cycle case, after the initial component is
assigned to the system, both its neighbors can receive
the next assignment, and this duality of receivership
exists until the assignment of the last component. We
now modifyG(n; i) for the sequential cycle:

Step 1. Assign componenti as the initial component.

Step 2. If componenti is working, useG(n − 1) on
the setp\{pi}.

Step 3. If componenti fails, assign the best compo-
nentxi from the remaining lot to either neighbor of
componenti next. If xi is working, useG(n− 2; i)
on the remainingn− 2 components (starting by as-
signing the currently best componentyi to the other
neighbor ofi).

Note that whenever two consecutive components
both failed, the system fails no matter how the remain-
ing components are assigned. In particular, if eitherxi
or yi fails, then the system fails and subsequent assign-
ments are inconsequential.

Let P denote the probability function, and letR(A)
denote the reliability of a cycle constructed under
algorithmA.

Lemma 1. LetA denote an algorithm onp = {p1, . . . ,

pn} and letp′ be obtained fromp except changing one
pi to a largerp′i . Then

R(A onp′)
R(A onp)

6 p
′

p
.

Proof. Let S(i) denote a sequence of states of compo-
nents, excluding the state of componenti, on a par-
ticular realization ofA, and letsi denote the state of
componenti. Define

Wi = {S(i): S(i) ∪ si works

if and only if si is working},

W(i) = {S(i): S(i) ∪ si works regardless of whatsi is} .

Then

R(A onp′)
R(A onp)

= p
′
iP (Wi)+ P(W(i))

piP (Wi)+ P(W(i))
6
p′i
pi
. 2

Theorem 2. Among the class of sequential cycle
algorithms which start with componenti, G(n; i) is
invariant.

Proof. Theorem 2 is trivially true forn = 1,2,3. We
prove the generaln> 4 case.

Supposei is working. Then then-cycle is reduced
to the(n− 1)-line for whichG(n− 1) is invariant.

Let Aj be an algorithm which assigns component
j after the initial componenti has failed, letA′j be
obtained fromAj by switching componentj with
componentxi , and letAj be the part ofAj after
componentj . Then by Lemma 1,

R(Aj | componenti failed)

R(A′j | componenti failed)

= pjR(Aj onp\{pi,pj })
xiR(Aj onp\{pi, xi})

6 pj
xi

(
xi

pj

)
= 1.

Therefore we may assume thatpj = xi . Whenxi
is working, then-cycle is reduced to an(n − 1)-line
headed by a failing componenti. The optimality of
G(n− 2; i) has been established before.2

Theorem 2 reduces the number of candidates of an
optimal assignment fromn! to n. In the next section
we show that more than half of then candidates can
be further eliminated.
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3. Comparisons ofG(n; i)

Let Ri denote the reliability ofG(n; i), and let
Pj,k(i) denote the probability thatG(n; i) works
conditional on componentj working and componentk
failed. Then fori = 1, . . . , n− 1.

Lemma 3. (Ri+1−Ri)(Pi,i+1(i)− Pi+1,i (i))> 0.

Proof. Note thatG(i) andG(i + 1) differ only in
two positions, the first position and the positionG(i)
has componenti + 1 andG(i + 1) has componenti
(this is becausei + 1 has the same rank inG(i) as
i in G(i + 1) after ignoring the initial component).
HencePi+1,i (i + 1) = Pi,i+1(i) since the states of
the components in the two differing positions agree.
Similarly,Pi,i+1(i + 1)= Pi+1,i(i). Thus

Ri+1−Ri
= pi+1qiPi+1,i (i + 1)+ qi+1piPi,i+1(i + 1)

− pi+1qiPi+1,i (i)− qi+1piPi,i+1(i)

= pi+1qiPi,i+1(i)+ qi+1piPi+1,i (i)

− pi+1qiPi+1,i (i)− qi+1piPi,i+1(i)

= (pi+1qi − qi+1pi)
(
Pi,i+1(i)− Pi+1,i(i)

)
= (pi+1− pi)

(
Pi,i+1(i)− Pi+1,i (i)

)
.

ThereforeRi+1−Ri has the same sign asPi,i+1(i)−
Pi+1,i (i). 2

Next we give closed-form solutions ofPi,i+1(i) and
Pi+1,i (i). Consider the setN = {1, . . . , n} andS ⊂N .
Let (I, J ) be a partition ofN\S such that|I | = k.
Let Pk(k,n) denote the sum of

(
n−|S|
k

)
terms where

each term can be represented by
∏
i∈I qi

∏
j∈J pj with

a distinct (I, J ) (S can be omitted if empty). For
example,

P(1,3)= q1p2p3+ p1q2p3+ p1p2q3

and

P3(2,4)= q1q2p4+ q1p2q4+ p1q2q4.

We adopt the convention

y∏
j=x

pj = 1 if y < x.

Lemma 4.

Pi,i+1(i)=
m∑
k=0

P{i,i+1}(k, n− k − 1)
n∏

j=n−k
j 6=i,i+1

pj ,

wherem=min{n− i − 1, bn/2c− 1}.
Proof. Suppose thatk more components other than
i + 1 fail. Then thek + 1 largest components other
than i (which is already assigned) must be working
since each of them follows a failing component, except
when i + 1= n − k, then only thek largest need be
working since the failingi + 1 is followed by the
working i. If i + 1 is among thek largest, then the
system must fail. Thereforek 6 n− i−1. On the other
hand, no system can work with a majority of failing
components. Hencek 6 bn/2c − 1 (not countingi +
1). Thek failing components can be chosen arbitrarily
except that thek + 1 largest as well asi andi + 1 are
not candidates. 2
Lemma 5.

Pi+1,i(i)=
bn/2c−1∑
k=0

P{i,i+1}(k, n− 2− k)
n∏

j=n−1−k
j /∈{i,i+1}

pj .

Proof. i is first assigned and fails. The currently
two largest components must both be working, since
one follows i and the other is reserved for last (to
precedei). The rest of the argument is similar to
the proof of Lemma 4 except that the restrictionk 6
n− i − 1 is not needed sincei + 1 is working. 2
Theorem 6. For n > 6 an optimal assignment must
be amongG(n; i) for i ∈ {dn/2e + 1, dn/2e + 2, . . . ,
n− 2}.
Proof. By Lemmas 4 and 5, fori 6 dn/2e,
Pi,i+1(i)− Pi+1,i (i)

=
bn/2c−1∑
k=0

[
P{i,i+1}(k, n− k− 1)

n∏
j=n−k
j 6=i,i+1

pj

− P{i,i+1}(k, n− 2− k)
n∏

j=n−k−1
j 6=i,i+1

pj

]

> 0,
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since

P{i,i+1}(k, n− k − 1)> P{i,i+1}(k, n− 2− k)
and

n∏
j=n−k
j 6=i,i+1

pj >
n∏

j=n−k−1
j 6=i,i+1

pj .

Furthermore,

Pn−1,n−2(n− 1)

> P{n−2,n−1}(0, n− 2)pn + P{n−2,n−1}(1, n− 3)pn

= P{n−2,n−1}(0, n− 1)pn +P{n−2,n−1}(1, n− 2)pn

= Pn−2,n−1(n− 1).

Pn,n−1(n− 1)

> P{n−1,n}(0, n− 2)

= P{n−1,n}(0, n− 1)

= Pn−1,n(n− 1).

By Lemma 3, we haveRdn/2e+1 > Rdn/2e > · · ·> R1
andRn−2>Rn−1>Rn. 2

Note that we can use Lemmas 4 and 5 to compute
Ri+1−Ri for i = dn/2e+1, . . . , n−2, and determine
the optimalG(n; i) from thesebn/2c − 2 values.

4. The issue of invariance

For n = 1,2,3, all assignments are equivalent. For
n= 4,5, it is easily verified that bothG(n;n− 1) and
G(n;n − 2) are invariant. Forn = 6,7, Theorem 3
tells us thatG(n;n − 2) is invariant. Forn = 8,
Theorem 3 says thatG(8;5) andG(8;6) are the only
two candidates for optimality. We now compareR6
with R5, or equivalently,P5,6(5) with P6,5(5).

P5,6(5)− P6,5(5)

= ⌊P{5,6}(0,7)p8+ P{5,6}(1,6)p8p7

+ P{5,6}(2,5)p8p7
⌋

− [P{5,6}(0,6)p8p7+P{5,6}(1,5)p8p7

+P{5,6}(2,4)p8p7+ P{5,6}(3,3)p8p7p4
]

= [P{5,6}(0,7)p8− P{5,6}(0,6)p8p7
]

− P{5,6}(3,3)p8p7p4

= p8q7p4p3p2p1− p8p7p4q3q2q1

= p8p4(q7p3p2p1−p7q3q2q1).

Note that the difference is positive ifp1 → 1
(p1 tending to 1), and is negative ifp4 > p3 = 0.
Therefore we conclude

Theorem 7. No invariant assignment exists in general
for the sequential cycle problem.

A k-cutsetis a set ofk components whose failures
bring down the system. LetCk(A) denote the set of
k-cutsets for assignmentA. Santha and Zhang [4]
called assignmentA∗ to be first-order invariant if
lexicographically,(|C2(A

∗)|, |C3(A
∗)|, . . . , |Cn(A∗)|

)
6
(|C2(A)|, |C3(A)|, . . . , |Cn(A)|

)
for all A.

This definition makes sense whenpi → 1 for all i.
For example, if an assignment is less likely to contain
a 2-cutset than other assignments, then it is first-
order invariant, since the sum of probabilities of all
other cutsets tends to zero much faster than those
of 2-cutsets. Clearly, an invariant assignment must
be first-order invariant. In this section we prove that
G(n;n− 1) andG(n;n− 2) are first-order invariant.

Let S2 denote the set of all 2-cutsets and let
S2(A) denote the subset of 2-cutsets which fail the
algorithmA. Finally,

Lemma 8.

S2
(
G(n; i))= ⋃

j 6=xi
{{xi, j }} ∪ {{i, yi}}.

Proof. As soon as a failing component is assigned,
G(n; i) assignsxi next to it. If xi is also failing, then
G(n; i) does not succeed.

Also note that ifi is failing, thenG(n; i) assignsxi
andyi to its two sides. SoG(n; i) does not succeed if
i andyi both are failing.

The above also exhausts all possible failure cases.2
Lemma 9. For any algorithmA, |S2(A)| = n.

Proof. Regardless of the sequence in assigning, there
aren adjacent pairs of components, out of

(
n
2

)
possible

pairs, whose mutual failures cause the construction to
fail. 2
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Let P be a partial order of ordered pairs(x, y),
x > y, such that(x, y)> (w, z) if and only if x > w
and y > z. A setQ of q pairs is said todominate
another setQ′ of q pairs underP if and only if there
exists a permutation of pairs inQ′ such that theith
pair in Q is larger or equal to theith pair of Q′
for i = 1, . . . , q . Defineρi = qi/pi . While a 2-cutset
was previously written as an unordered pair, it can be
readily converted to an ordered pair as prescribed in
the beginning of this paragraph.

Lemma 10. Prob(S2(A)) > Prob(S2(B)) if S2(B)

dominatesS2(A).

Proof. Suppose(x, y) > (w, z) underD. Let K =∏n
i=1pi ,

Prob(x, y)=Kρxρy 6Kρwρz
= Prob(w, z). 2

Lemma 11. If IC(n) exists, then it is eitherG(n;
n− 1) or G(n;n− 2).

Proof. By Lemma 4,

S2
(
G(n;n))= ⋃

j 6=n−1

{(n− 1, j)} ∪ {(n,n− 2)}. 2

Theorem 12. G(n;n− 1) andG(n;n− 2) are first-
order invariant.

Proof. By Lemma 8,

S2
(
G(n;n))= ( ⋃

j 6=n−1

(n− 1, j)

)
∪ (n,n− 2),

S2
(
G(n;n− 1)

)= S2
(
G(n;n− 2)

)
=
( ⋃
j 6=n−1

(n, j)

)
∪ (n− 1, n− 2),

and

S2
(
G(n; i))= (⋃

j 6=n
(n, j)

)
∪ (i, n− 1)

for 16 i 6 n− 3.

ThusS2(G(n;n−1))= S2(G(n;n−2)) dominates
S2(G(n; i)) for all i, Theorem 12 now follows from
Lemma 10. 2
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