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Kaluza-Klein induced gravity inflation

W. F. Kao*
Institute of Physics, Chiao Tung University, Hsin Chu, Taiwan
~Received 23 November 1999; published 20 September 2000!

A D-dimensional induced gravity theory is studied carefully in a 41(D24) dimensional Friedmann-
Robertson-Walker space-time. We try to extract information about the symmetry-breaking potential in search
of an inflationary solution with a nonexpanding internal space. We find that the induced gravity model imposes
strong constraints on the form of the symmetry-breaking potential in order to generate an acceptable inflation-
ary universe. These constraints are analyzed carefully in this paper.

PACS number~s!: 04.50.1h, 98.80.Cq
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I. INTRODUCTION

The scale-invariant model explains the origin of the sc
parameters such as the gravitational constant, cosmolo
constant, as well as the masses for the fermion fields.
cordingly, all dimensionful parameters in the Einstein L
grangian are replaced by an appropriate scalar measu
field with the proper power according to their conformal d
mensions.

Scale invariance also appears to be very important in v
ous branches of physics such as QCD@1# and many other
inflationary models@2–4#. Local scale symmetry has als
been suggested to be related to the missing Higgs proble
electroweak theory@5# as well as many other research inte
ests @6,7#. It is also argued that scale-invariant effecti
theory has to do with physics near the fixed points
renormalization-group trajectory@6#.

On the other hand, higher dimensional Kaluza-Kle
theory@8–10# has been a focus of research interest for a lo
time. In addition, Kaluza-Klein theory should be related
the evolution of our early Universe if the compactificatio
process is completed during the early stage of the Unive
Hence one is naturally led to the question of whether
scale-invariant effective action is manifest before the dim
sional reduction process takes place. Therefore, we pro
to study the effect of aD-dimensional induced gravity in th
very early universe.

One notes that there have been studies based o
D-dimensional Friedmann-Robertson-Walker~DFRW! met-
ric

ds2[ĝMNdzMdzN52dt21a2~ t !F 1

12kr2
dr21r 2dVD21G ,

~1.1!

in search of a physically acceptable low-energy effect
theory @10–14#. Here dVn denotes then-dimensional solid
angle with appropriate angular coordinates. Note, howe
that the internal and external spaces will inflate all togethe
a(t) undergoes an exponentially expanding process un
the DFRW metric. Hence it would be interesting to see i
more general 41d dimensional FRW (4DFRW) space
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capable of inducing inflating external space and contrac
internal space at the same time. Hered[D24 denotes the
dimension of the internal space. This kind of generalizat
is in fact a dimensional reduction fromMD→R13F33Fd

with Fn denoting then-dimensional maximally symmetric
space@15#.

In this paper, we will show that an induced inflationa
solution with expanding external space and contracting in
nal space will require a very special symmetry-breaking s
lar potential. The explicit form of the symmetry-breakin
potential required by the expanding solution with expand
external space and constant internal space will also
solved. In addition, we will also show that the most favo
able solution appears to be the same as the result of DF
space for the induced conventional-f4 model. Our result in-
dicates that the compactification process must have b
completed before the inflationary process unless
symmetry-breaking potential takes an unordinary form.

This paper will be organized as follows:~i! In Sec. II, we
will introduce the D-dimensional induced gravity theory
TheD-dimensional equations of motion will also be compa
tified into 41d dimensional in this section.~ii ! We will also
solve the equations of motion for an inflationary solution
the limit of slow-rollover approach in Sec. III. It will be
shown first that the existence of a solution with expand
external space and contracting internal space will impos
number of constraints on the coupled symmetry-breaking
tential. In particular, a solution with expanding extern
space and constant internal space is also solved while se
ing for the possible candidate for the scalar potential.~iii !
The conventionalf4 model with a coupled spontaneou
symmetry breaking~SSB! f4 potential is solved and ana
lyzed in Sec. IV.~iv! Finally, conclusions are drawn in Se
V.

II. INDUCED GRAVITY IN D DIMENSION

In this paper we will consider the following induced gra
ity action:

S52E dDzAĝF1

2
ef2R̂1

1

2
]Mf]Mf1V~f!G . ~2.1!

The scalar fieldf in Eq. ~2.1! is the measuring field designe
to replace the dimensionful Newtonian constant as it
©2000 The American Physical Society09-1
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peared in the four-dimensional-induced gravity models. O
should replace all dimensionful coupling constants with
propriate scalar fields according to their dimensions. Af
this replacement, one can show that, apart from a poss
symmetry-breaking potentialV, the action~2.1! is invariant
under the following scale transformation:gMN→L2gMN ,
f→L (12D/2)f.

We will denoteD541d from now on in this paper. Here
d5D24 is the dimension of the internal space in t
Kaluza-Klein theory we are going to study in this paper. W
will also use a hat notation,R̂MN , to represent the physica
variables inD dimension and the nonhatted variable,Rab ,
will represent the same physical variables evaluated sole
the four-dimensional physical external space. Barred n
tion, R̄mn , will also be employed to denote the same physi
variables evaluated ind-dimensional internal space. Not
that by the same physical variableswe mean that they are
defined by the same notation except the metric is replace
the appropriate metric defined in its own space. Furtherm
we will use capital indicesM ,N,••• (50,1,2, . . . ,D21) to
denote theD-dimensional space-time indices. Also low
case Latin indices from the beginning (a,b,c, . . . ) of the
alphabet will denote the four-dimensional space time indi
(a,b,c50,1,2,3). In addition,i , j ,k,l (51,2,3) labels the
spatial 3-manifold. Finally, we will use lower case Lat
indices from the middle (m,n, . . . ) of thealphabet to label
the d-dimensional compactified internal space.

Note that the Kaluza-Klein dimensional reduction proce
we will adopt in this paper is the following 41d dimen-
sional Friedmann-Robertson-Walker metric (4DFRW
@15,16#

ds2[ĝMNdzMdzN52dt21a2~ t !hi j ~x!dxidxj

1b2~ t !h̄mn~y!dymdyn. ~2.2!

Here hi j dxidxj[(12k1r 2)21dr21r 2dV3 and h̄mndymdyn

[(12k2s2)21ds21s2dVd with k1 , k250,61 denoting
the signature of the external space and internal space, res
tively.

Note that if we adopt the compactification ansatzf(z)
5f(x)kd/2, the compactified four-dimensional effective Ei
stein action, except the SSBf4 potential term, will remain
scale invariant under the four-dimensional scale transfor
tion: gab(x)→L(x)2gab(x), f(x)→L(x)(22D)/2f(x). This
shows that this is a consistent and scale-invariant way
carry out the compactification process. Note also thatk is a
dimension-one constant parameter such that*ddykd is di-
mensionless and will be set as 1 for latter convenience. N
that we will also use the samef notation forf(z) andf(x)
for convenience.

The equations of motion can be obtained from varying
action ~2.1! with respect tof and ĝMN , respectively. As a
result, one has

efR̂2DM]Mf1
]

]f
V~f!50, ~2.3!
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ef2ĜMN5e~DM]N2ĝMNDP]P!f2

1T̂MN
f . ~2.4!

Here ĜMN[ 1
2 R̂ĝMN2R̂MN defines the Einstein tenso

Moreover, T̂f
MN[]Mf]Nf2ĝMN@ 1

2 ]Pf]Pf1V(f)# is the
energy momentum tensor associated withf. Furthermore,
the curvature tensorR̂MNOP is defined by @DM ,DN#ÂO

5R̂ONM
P ÂP . In addition, the Ricci tensor and scalar curv

ture are defined byR̂ON[R̂ONP
P and R̂[R̂ONĝON, respec-

tively.
For latter convenience, we will definef2[ew, a[ea, b

[eb, V(f)[U(w) throughout this paper. Hence, one c
bring Eqs.~2.3! and~2.4! into a more comprehensive form i
terms of the new variables and parameters defined ear
Indeed, Eqs.~2.3! and ~2.4! can be written as

ĜMN5DM]Nw1]Mw]Nw

2ĝMN~DP]Pw1]Pw]Pw!2T̂MN
w , ~2.5!

R̂5
1

4e
~]Mw]Mw12DP]Pw!2

8

e
e2w

]U~w!

]w
.

~2.6!

Hence one has

R̂5
1

4e
~]aw]aw1Da]aw!2

2

e
e2w]wU~w!, ~2.7!

Ĝab5~]aw]bw1Da]bw!2gab~]cw]cw1DP]Pw!2Tab
w ,
~2.8!

Ĝmn5Dm]nw2ḡmn~]cw]cw1DP]Pw!2T̄mn
w . ~2.9!

Here we have defined the generalized energy momen
tensor forw and T̂MN

w as

T̂MN
w 5

1

4e S 1

2
ĝMN]Pw]Pw2]Mw]Nw D1

V

e
e2wĝMN .

~2.10!

Therefore, one has

Tab
w 5

1

4e S 1

2
gab]

cw]cw2]aw]bw D1
1

e
e2wU~w!gab ,

~2.11!

T̄mn
w 5

1

2

1

4e
ḡmn]

cw]cw1
1

e
e2wU~w!ḡmn , ~2.12!

respectively. In addition, with the compactified metric

ds2[ĝMNdzMdzN5gab~z!dxadxb1ḡmn~z!dymdyn,
~2.13!

and by settingf(z)5f(x), one can derive the following
compactified identities for the curvature terms:
9-2
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R̂5R12dDa]ab1d~d11!]ab]ab2d~d21!k2e22b,
~2.14!

Ĝab5Gab1tab , ~2.15!

Ĝmn5
1

2
ḡmn@R12~d21!Da]ab

1d~d21!]ab]ab2~d21!~d22!k2e22b#.

~2.16!

Here the generalized energy momentum tensortab is given
by

tab[
1

2
gab@2dDc]

cb1d~d11!]cb]cb2d~d21!k2e22b#

2d~Da]bb1]ab]bb!. ~2.17!

Note thatĝMNĜMN5(D/221)R̂. Hence one can obtain th
following equation ofw:

]aw]aw1Da]aw1d]ab]aw5k3

e2w

e
@~D22!]wU2DU#,

~2.18!

by eliminating theR̂ term in the trace ofĜMN Eq. ~2.5! and
the w Eq. ~2.7!. Here one has setk354e/@4(D21)e1D

22#. Finally, one can show that the trace of theĜmn Eq.
~2.9!, ḡmnĜmn , and the trace of theĜmn Eq. ~2.16! gives two
constraint equations related toR. One can eliminate theseR
terms and obtain the following equation forb(t):

d]ab]ab1Da]ab2~d21!k2e22b

5S 11
1

4e D @]aw]aw1Da]aw1d]ab]aw#

2]ab]aw1
e2w

e
@U2]wU#. ~2.19!

Therefore, we will take Eq.~2.19! as the independentb
equation. This will soon be shown to be helpful in our ana
sis below. Finally, one can show that theGtt component of
Eq. ~2.8!, the w equation~2.18!, and theb equation~2.19!
becomes

a821
k1

a2
1da8b81

d~d21!

6
~b821k2e22b!

1a8w81
d

3
b8w8

5
1

24e
w821

U

3e
e2w, ~2.20!

w913a8w81db8w81w82
08400
-

52
k3

e
e2w@~D22!]wU2DU#, ~2.21!

b913a8b81db821~d21!k2e22b1b8w8

5
k3

e
e2wF]wU1S 11

1

2e DUG . ~2.22!

Note also that theGi j component of Eq.~2.8! can be deduced
from the four-dimensional Bianchi identityDaGab50 asso-
ciated with the four-dimensional FRW metric. Hence it is
fact redundant. Therefore, Eqs.~2.20!–~2.22! are in fact the
complete set of equations of motion one needs for solvinga,
b, andw.

III. INFLATIONARY UNIVERSE

If one assumes the slow-rollover approximation, name
a8/a@uw8u, one can show that

a821da8b81
d~d21!

6
b82

5
U

3e
e2w, ~3.1!

3a8b81db825
k3

e
e2wF]wU1S 11

1

2e DUG , ~3.2!

~3a81db8!w85
k3

e
e2w@~d14!U2~d12!]wU#.

~3.3!

Here we have setk15k250 for simplicity. Note that the
issue of the noncompact internal space has recently been
subject of renewed interest@9#. An exotic class of Kaluza-
Klein models in which the internal space is neither comp
nor even of finite volume was considered and gravity is u
to trap particles near a four-dimensional submanifold of
higher dimensional spacetime.

Moreover, we have also assumed thatuw9u!a8uw8u and
ub9u!b82. We will show shortly that these assumptions c
be met rather easily.

We will assume for the moment during the slow-rollov
period thata5a0t and b52ka0t for some positive real
numberk and a0. This kind of solution represents a brie
moment of inflating scale factora accompanied by a con
tracting internal scale factorb. This will be helpful in finding
a possible constraint on the form of the symmetry-break
potential one would require for a more realistic model. O
can also assume thatU;U0[V(f5f0), while f;f0 dur-
ing the inflationary phase. Therefore, one can show that E
~3.1!–~3.3! can be brought to the following form:

d~d21!k226dk165 k̃, ~3.4!

k~dk23!5
k̃k3

4
~s2s2!, ~3.5!
9-3
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dk235
~d12!k̃k3a0

4w08
~s2s1!.

~3.6!

Here k̃[2U0 /ea0
2f0

2, w08[w8(t0), s2[2221/e, and s1

[2(d14)/(d12). In addition, we have also defineds
[f0(]fU)0/U0 as the scaling factor ofU evaluated atf
5f0.

We will first study the case whered.1. Note that Eq.
~3.4! indicates that d(d21)k226dk16[d(d21)(k
2k1)(k2k2).0 under the assumption thatU is positive
everywhere. Here we have definedk6[3/(d21)
6A3d(d12)/d(d21) as the roots of thek equation. There-
fore, one has eitherk.k1 or k,k2 from thek inequality. In
addition, Eqs.~3.5! and ~3.6! give

a05
s2s2

k~d12!~s2s1!
w08 . ~3.7!

This shows thatw08(s2s1)(s2s2).0, sincek is assumed
to be positive.

Moreover, one also assumes thatdU(f)/dt,0 such that
the scalar field is rolling down from some initial valuef0 to
the minimum potential energy statefm . This means that
sw08,0. Therefore, one finds that there are only two kinds
combination capable of supporting this process. The first
is ~1! w08,0, 0,s,s1 and the second one is~2! w08.0, s
.s2 . One can further rule out case~2! from the assumption
that a0@uw08u. Indeed, Eq.~3.7! indicates that the slow
rollover assumption is equivalent tous2s2u@k(d12)us
2s1u. Hence case~1! can be shown to give a constraint

s@
k~d12!s11s2

k~d12!11
. ~3.8!

This can easily be achieved provided thats1@s2 . Note that
this is true if e!1 @4#. Similarly, case~2! will give a con-
tradictory results2@s1 . Therefore, case~2! is ruled out.

In addition, case~1! and Eq.~3.6! shows thatdk23.0.
Hence the constraint onk obtained earlier is further restricte
to the case wherek.k1 . This is because 3/d,k,k2 leads
to a contradiction 3.d(d12).

In short, the induced Kaluza-Klein compactification a
mits chaotic inflation only if the symmetry-breaking pote
tial obeys a number of constraints listed earlier. They are

~a! s1@s2 , ~3.9!

~b! s1.s@@k~d12!s11s2#/@k~d12!11#, ~3.10!

~c! w08,0, ~3.11!

~d! k.k1 . ~3.12!

For example, one would have~a! 8/5@s2 , ~b! 8/5.s
@(5k1s2)/(8k11), and ~c! k.1 as the constraint onk
ands for the case whered56 or equivalentlyD510.
08400
f
e

-

One can easily construct an effective symmetry-break
potential by expanding the potential around the initial po
f0. Explicitly, it will take the form U5U01sU0(f2f0)
1••• around the initial point. For example, one can sho
that the conventionalf4 model with U5(l/8)(f22v2)2

does not satisfy the constraint obtained earlier. Indeed,
can show that Eq.~3.6! gives

L.
l

8~d14!
~f0

22v2!@df0
21~d14!v2# ~3.13!

for the conventionalf4 model with an additional positive
definite cosmological constant termL. This clearly shows
that the chaotic inflation conditionf0

2.v2 is inconsistent
with the case whereL50. Note that the no-hair conjectur
states that cosmologies with a positive cosmological cons
would approach the de Sitter solution asymptotically@17#.
Even some counter examples are found, and are show
hold for very general conditions@18#. Our result appears to
favor the above conjecture with the inclusion of the high
dimensional space. Therefore, the conventionalf4 model
with vanishing cosmological constant cannot support an
flationary solution with expanding external space and c
tracting internal space. We will solve the conventionalf4

model later in Sec. IV.
For the case whered51, the situation is rather different

Equation~3.4! implies thatk,1 for positiveU0. In addition,
Eq. ~3.5! gives s,s2(,0), while Eq. ~3.6! implies w08.0
~new inflationary solution!. In addition, the slow-rollover as
sumption indicates thats22s@k(1023s). Therefore, one
obtains (3k21)s@10k2s2(.0). This implies thatk,1/3.
In summary, one has~a! s,s2(,0), ~b! k,1/3, and~c!
w08.0. Therefore, the five-dimensional Kaluza-Klein ne
inflationary solution with expanding external space and c
tracting internal space can also be arranged if the field
rameters are chosen appropriately.

One can also study the case where the internal-space
factor remains constant, i.e.,b5b0 @14# or equivalentlyk
50 in the early universe. In this case, the equations w
become

a821
k1

a2
1

d~d21!

6

k2

b0
2 1a8w8

5
1

24e
w821

U

3e
e2w, ~3.14!

w913a8w81w8252
k3

e
e2w@~D22!]wU2DU#,

~3.15!

~d21!
k2

b0
25

k3

e
e2wF]wU1S 1

2e
11DUG .

~3.16!

Therefore, one finds that there is a strong constraint~3.16!
left over for theb equation. This equation says that]wU
1(111/2e)U50 for a flat internal space~i.e., k250). One
can then show that either~i! the potentialU has to be a
special fractional polynomial functional off, namely, U
5k0f2(211/e) with a proportional constantk0, or ~ii ! the
9-4
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dynamics of the scalar field has to be frozen, namely,
scalar field becomes a constantf5f0. One can show tha
the first case would imply thata8;w8/2 under the constrain
e!1. This contradicts the slow rollover approximation. O
the other hand, the case~ii ! implies thatU(w0)5]wU(w0)
50. Hence one hasa8252k1 because of Eq.~3.14!. There-
fore, one needsk1521 in order to admit a power-law infla
tion. One can hence tune the field parameters to ind
enough inflation with an expanding external space and c
stant internal space. But this model cannot tell us when
inflationary phase should come to an end. One would hav
expect that this induced gravity model remains valid o
during the inflationary period and leave the problem to ot
resolutions.

On the other hand, one can show that the constraint~3.16!

~D25!
k2e

b0
2k3

f25]wU1S 11
1

2e DU ~3.17!

implies f5f0 for the casek2Þ0 unless

U5k0f2221/4e1
2~D25!k2e2

~114e!b0
2k3

f2. ~3.18!

If f5f0, Eq. ~3.15! implies that

@~D22!]wU2DU#f0
50. ~3.19!

Equations~3.17! and ~3.19! mean that all field parameter
and initial conditions are constrained by these equations
addition, Eq.~3.14! tells us that

a82;~D25!
k2

3b0
2 ~3.20!

independent of the form of potentialU. Of course, the initial
value of the scalar fieldf0 is determined by the form o
potential and the two constraints just derived. This solut
is an inflationary solution with expanding external space a
constant internal space as long ask2(D25).0 andb0!1.
One can certainly tuneb0 to induce enough inflation with
expanding external space and constant internal space.
this solution cannot tell us how to exit the inflationary pha
at this point either. One would then have to expect again
this kind of induced gravity model would not remain effe
tive as soon as the inflationary process is completed.

On the other hand, Eqs.~3.14! and ~3.15! imply that

a825~116e!A1B, ~3.21!

a8w854eA12B, ~3.22!

under the slow-rollover approximation ifU is given by Eq.
~3.18!. Here

A5
~D25!k2

3b0
2~114e!

, ~3.23!
08400
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B5
k0

3ef0
411/4e

~3.24!

for f;f0 in this inflationary phase. Therefore, one c
choosee!1 and B!A in order to be consistent with th
assumption thata8@uw8u. In addition, one can chooseA
.0 sincea82.0. This implies thatk251 for D>5. In ad-
dition, A@B implies thatk0b0

2!(D25)ef0
411/4e which can

be achieved by tuning the field parameters appropriat
Moreover, one still needs to make sure that the potentiaU
given by Eq.~3.18! has at least a local minimumfm far
away from the initial dataf0 such that inflation can exit in
due time.

Fortunately, a local minimum always exists for a lar
class of parameters. Indeed, one can show that

k0b0
2;~D25!~D22!e2fm

411/4e ~3.25!

from ]fUuf5fm
50. Hence, one only needs

efm
411/4e!

2

D22
f0

411/4e . ~3.26!

In addition, the requirementU9ufm
.0 can be made valid

very easily.
Therefore, the inflationary process can properly work w

the assumptionb5b0 for the case whereFd5Sd11, and this
has to come along with the potential of the form given by E
~3.18!.

IV. CONVENTIONAL f4 MODEL

One can also work on the model with a spontaneous s
metry breaking~SSB! f4 potentialU5(l/8)(ew2v2)2. This
sort of potential will be referred to as the conventionalf4

model in this paper. It is straightforward to show that]wU
5(l/4)(ew2v2)ew. Hence Eq.~3.3! becomes

~3a81db8!w852
k3l

8e
e2w~ew2v2!@dew1~d14!v2#.

~4.1!

This indicates that 3a1db is always an increasing functio
as long as thew field is rolling down to its true vacuumew

5v2. It also indicates thatf cannot go far away from its
local minimum, hence it should oscillate aroundf5v after
the inflation is over. We will come back to this point shortl
Moreover, Eq.~3.2! becomes

3a8b81db825
2U

~d12!e
e2w ~4.2!

if e!1 and uf22v2u/f2@4e. These assumptions can b
adjusted rather easily. Together with Eq.~3.1!, one finds that

2a821~d22!a8b82db825~a82b8!~2a81db8!;0.

~4.3!

This means thata85b8 because the equationa852(d/
2)b8 contradicts Eq.~4.2!. Hence,b(t) increases along with
9-5
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the expandinga(t) in the inflationary era under the slow
rollover approximation. Therefore, one has shown that
conventionalf4 model supports DFRW space instead of t
4DFRW space. Hence the solution with expanding exter
space and contracting internal space cannot be found u
the slow-rollover approximation. We will still, howeve
study the DFRW solution in detail in this section for com
pleteness. Note that the presence of a nonvanishing cos
logical constant in the conventionalf4 model will not affect
Eq. ~4.3! under the same slow-rollover approximation.

Note that Eq.~4.2! gives us

a8;A lv4

8~d12!~d13!

v
f0

, ~4.4!

a;a0expSA lv4

8~d12!~d13!

v
f0

D .

~4.5!

Here one has set12 ev251 such that the gravitational con
stant measured today is set as 1 in the Planck unit. Moreo
f0, set to be positive, denotes the initial value of thef field.
Moreover, Eq.~4.1! gives

f8;A l~d14!2

2~d12!~d13!
v, ~4.6!

f;f01A l~d14!2

2~d12!~d13!
vt. ~4.7!

Here we can see that the assumptionsuw9u!a8uw8u and
ub9u!b82 are both satisfied without imposing any furth
constraints.

One can further derive a few inequalities from the slo
rollover assumptiona8/a@uw8u. First of all, they give

v2@4~d14!. ~4.8!

Note that the cosmological constant term2 1
8 lv4 at initial

time should be less than 1, in the Planck unit, in order t
the quantum effect can be neglected. We will be using
Planck unit from now on. In addition, if the scale factora(t)
is capable of expanding some 60 e-fold in a time interva
roughly DT;108 Planck units, one should have the follow
ing inequality:

lv4

8
>~d12!~d13!

f0
2

v2 33.6310213. ~4.9!

Inequality ~4.9! can be made valid rather easily. Indee
these inequalities can be easily satisfied by choosing largv2

~hence smalle) and al around the order of 10217 as in Ref.
@4#. Hence one shows that the slow-rollover approximation
indeed a good approach to this expanding solution.

Note that we can also extract information abouta, b, and
w when w→v near the end of the expansion. This can
done by analyzing Eqs.~2.20!–~2.22! by assumingew5j
1v2 with j!v2. Moreover, one can show that Eqs.~2.21!–
~2.22! become
08400
e

al
er

o-

er,

-

t
e

f

,

s

e

] t~e3a1db1ww8!52
k3l

8e
e3a1db~ew2v2!

3@dew1~d14!v2#, ~4.10!

] t~e3a1db1wb8!5
k3l

8e
e3a1db~ew2v2!

3F S 31
1

2e Dew2S 11
1

2e D v2G .
~4.11!

Hence Eqs.~4.10!,~4.11! become

] t~e3a1dbj8!52mv~d12!e3a1dbj, ~4.12!

] t@e3a1dbb8~j1v2!#5mve3a1dbj, ~4.13!

as one takes the limitew5j1v2. Heremv[k3(lv4/8).
Moreover, Eqs.~2.20!–~2.22! can be interpreted as a s

of equations that allow one to expressa(t) and b(t) as
functions of j(t). Therefore, one can expanda and b as
polynomials ofj, i.e., one can write

a~ t !5a0~ t !1a1~ t !j~ t !1a2~ t !j2~ t !1••• ~4.14!

b~ t !5b0~ t !1b1~ t !j~ t !1b2~ t !j2~ t !1•••. ~4.15!

Therefore, the lowest~first! order inj of Eq. ~4.12! is

] t~e3a01db0j8!52mv~d12!e3a01db0j. ~4.16!

Moreover, the zeroth order inj of Eq. ~4.13! can be shown
to be

] t@e3a01db0b08#50. ~4.17!

This means that] t@edb0#5const3e23a0. Therefore, one has
] t@edb0#;0 since e23a0 is very close to 0 in the post
expansion era. Therefore, one can assume thatedb0 is chang-
ing very slowly asf2→v2. In addition, the zeroth order inj
of Eq. ~2.20! is

a08
21da08b081

d22d

6
b08

2;0. ~4.18!

This gives

a0852
A3d6Ad212d

2A3
b08;0 ~4.19!

to this order of the limit. Hence, Eq.~4.16! becomes an equa
tion for a simple harmonic oscillator

j952mv~d12!j. ~4.20!
9-6
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Note that the left-hand side of Eq.~4.20! approaches
2lv2j in the limit e!1. In short, one finds thatf field
indeed oscillates about the local minimum of the symme
breaking potentialU. Furthermore, Eqs.~4.19! indicate that
a08b08,0 asf approaches the local minimum ofU. There-
fore, b(t) in fact starts decreasing ifa(t) remains increasing
at later time. Note that above analysis is only a rough e
mate, but it gives us a rough picture of what is going
when thej field approaches zero.

V. CONCLUSIONS

In summary, aD-dimensional induced gravity model i
4DFRW space is studied carefully. We present a careful
detailed analysis for the compactification process. T
model is then solved for the inflationary solution in the slo
rollover approach. A number of constraints on the symme
breaking potential are found. These constraints are der
from the search for a inflationary solution with expandi
external space and contracting, compactified internal spa

The result indicates that a possible form of the symme
breaking potential, prescribed bys, is constrained by Eqs
~3.4!–~3.6! due to the field equations. Here,s
[f0(]fU)0/U0 signifies the scaling factor ofU evaluated at
f5f0. The cases whered.1 andd51 are analyzed sepa
rately. Explicitly, constraints to the coupled potential a
,

-

-

a

.

v.
ng

08400
-

i-

d
is
-
-

ed

e.
-

listed in Eqs.~3.9!–~3.12! for the case whered.1. In par-
ticular, one shows that these constraints read~a! 8/5@s2 ,
~b! 8/5.s@(5k1s2)/(8k11), and ~c! k.1 in the limit
where d56. It was then shown that the conventionalf4

model with an additional cosmological constant term fails
satisfy the above constraints. On the other hand, one sh
that ~a! s,s2(,0), ~b! k,1/3, and~c! w08.0 for the case
whered51. In addition, we also solve the case where t
internal scale factorb remains constant during the inflation
ary phase.

An expanding solution is also found and analyzed for
conventionalf4 model. In order to generate a solution wi
expanding external-space inflation in the very early univer
one finds that the internal space is expanding too under
slow-rollover approximation. Therefore, this indicates th
dimensional reduction has to be completed before expan
external space starts to expand. With properly chosen
parameters and boundary conditions of the scalar field,
shows that enough expansion can be easily achieved reg
less of the negative impact of the expanding internal spac
the conventionalf4 model.
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