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A D-dimensional induced gravity theory is studied carefully in & (& —4) dimensional Friedmann-
Robertson-Walker space-time. We try to extract information about the symmetry-breaking potential in search
of an inflationary solution with a nonexpanding internal space. We find that the induced gravity model imposes
strong constraints on the form of the symmetry-breaking potential in order to generate an acceptable inflation-
ary universe. These constraints are analyzed carefully in this paper.

PACS numbeps): 04.50+h, 98.80.Cq

[. INTRODUCTION capable of inducing inflating external space and contracting
internal space at the same time. Here D — 4 denotes the
The scale-invariant model explains the origin of the scaledimension of the internal space. This kind of generalization
parameters such as the gravitational constant, cosmologici in fact a dimensional reduction from®—R!x F3x F¢
constant, as well as the masses for the fermion fields. Acwith F" denoting then-dimensional maximally symmetric
cordingly, all dimensionful parameters in the Einstein La-spacg15].
grangian are replaced by an appropriate scalar measuring In this paper, we will show that an induced inflationary
field with the proper power according to their conformal di- solution with expanding external space and contracting inter-
mensions. nal space will require a very special symmetry-breaking sca-
Scale invariance also appears to be very important in varilar potential. The explicit form of the symmetry-breaking
ous branches of physics such as QCI) and many other potential required by the expanding solution with expanding
inflationary modelg[2—4]. Local scale symmetry has also external space and constant internal space will also be
been suggested to be related to the missing Higgs problem solved. In addition, we will also show that the most favor-
electroweak theory5] as well as many other research inter- able solution appears to be the same as the result of DFRW
ests[6,7]. It is also argued that scale-invariant effective space for the induced conventionaf-model. Our result in-
theory has to do with physics near the fixed points ofdicates that the compactification process must have been
renormalization-group trajectof]. completed before the inflationary process unless the
On the other hand, higher dimensional Kaluza-Kleinsymmetry-breaking potential takes an unordinary form.
theory[8-10] has been a focus of research interest for a long This paper will be organized as follow§) In Sec. I, we
time. In addition, Kaluza-Klein theory should be related towill introduce the D-dimensional induced gravity theory.
the evolution of our early Universe if the compactification The D-dimensional equations of motion will also be compac-
process is completed during the early stage of the Universeified into 4+ d dimensional in this sectiorii) We will also
Hence one is naturally led to the question of whether thesolve the equations of motion for an inflationary solution in
scale-invariant effective action is manifest before the dimenthe limit of slow-rollover approach in Sec. Ill. It will be
sional reduction process takes place. Therefore, we proposhown first that the existence of a solution with expanding
to study the effect of &-dimensional induced gravity in the external space and contracting internal space will impose a
very early universe. number of constraints on the coupled symmetry-breaking po-
One notes that there have been studies based on tential. In particular, a solution with expanding external
D-dimensional Friedmann-Robertson-Walk@FRW) met-  space and constant internal space is also solved while search-
ric ing for the possible candidate for the scalar potentiil)
The conventional¢* model with a coupled spontaneous
symmetry breakingSSB ¢* potential is solved and ana-
' lyzed in Sec. IV.(iv) Finally, conclusions are drawn in Sec.

d?=gyndZVdZN=—dt?+a%(t) dr2+r2dQp_,

2

1—kr
(1.2

in search of a physically acceptable low-energy effective Il. INDUCED GRAVITY IN D DIMENSION
theory[10-14. Hered(), denotes ther-dimensional solid

angle with appropriate angular coordinates. Note, however, In this paper we will consider the following induced grav-
that the internal and external spaces will inflate all together ifty action:

a(t) undergoes an exponentially expanding process under

the DFRW metric. Hence it would be interesting to see if a S— _J’ dDZ\/E

1 .1
Y ~ M
more general 4d dimensional FRW (4DFRW) space is 2'5(;S R+ 23 $mP+V(4)|. (2D

The scalar fieldp in Eq.(2.1) is the measuring field designed
*Email address: wfgore@cc.nctu.edu.tw to replace the dimensionful Newtonian constant as it ap-
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peared in the four-d!mens!onal-mduce_d gravity model_s. One E¢2éMN: E(DMaN_éMNDP&P)d)z
should replace all dimensionful coupling constants with ap-
propriate scalar fields according to their dimensions. After +-‘|-$|N_ (2.4

this replacement, one can show that, apart from a possible
symmetry-breaking potentiadl, the action(Z.l) is invariant  Here GMNE%QQMN_I’\?MN defines the Einstein tensor.
under the following scale transformatiomyy— A2gyn . Moreover ?XNEﬁM¢ﬁN¢—@MN[%ﬁP¢ﬁp¢+V(¢)] is the

b—AL-PD g ‘ _
We will denoteD =4+ d from now on in this paper. Here energy momentum tensor associated with Furthermore,

d=D-4 is the dimension of the internal space in thethe curvature tensoRynop is defined by[Dy.DylAo
Kaluza-Klein theory we are going to study in this paper. We=RgywAp . In addition, the Ricci tensor and scalar curva-

will also use a hat notatioryy, to represent the physical ture are defined byRon=R5,pr and R=Rong°V, respec-
variables inD dimension and the nonhatted variabie,,, tively.

will represent the same physical variables evaluated solely in For latter convenience, we will defing?’=e®, a=e®, b

the four-dimensional physical external space. Barred nota=e?, V(¢$)=U(¢) throughout this paper. Hence, one can
tion, Ry, will also be employed to denote the same physicalring Egs.(2.3 and(2.4) into a more comprehensive form in
variables evaluated im-dimensional internal space. Note terms of the new variables and parameters defined earlier.
that bythe same physical variablese mean that they are Indeed, Eqs(2.3) and(2.4) can be written as

defined by the same notation except the metric is replaced by .

the appropriate metric defined in its own space. Furthermore, ~ Gun=Dwmdne+duedne

we will use capital indice$!,N,--- (=0,1,2...,D—1) to

_A P P _F
denote theD-dimensional space-time indices. Also lower Iun(D dpe+ 3" 0dpe) — Thin, (2.9
case Latin indices from the beginning,b,c, ...) of the 1 8 U
alphabet will denote the four-dimensional space time indices B_ — (M P _° 7(,;3 (¢)
Lo R (" @dwe+2D"dpp)— —€ :
(a,b,c=0,1,2,3). In addition,i,j,k,1(=1,2,3) labels the de € Je
spatial 3-manifold. Finally, we will use lower case Latin (2.6)

indices from the middlert,n, .. .) of thealphabet to label
the d-dimensional compactified internal space.
Note that the Kaluza-Klein dimensional reduction process

Hence one has

~ 2
we will adopt in this paper is the following 4d dimen- R= 4—(07a(p&a(p+ D.d%¢)——e ¢3,U(¢), 2.7
sional Friedmann-Robertson-Walker metric (4DFRW) € €
[15,16 i
Gap=(9a¢db®+ Dadhp) — Yan(0°@dcp+ D dpe) = TE,,
A o 2.8
ds?=gyndZdZN= —dt?+a?(t)h;;(x)dx'dx! 28
+b2(t)ﬁmn(y)dymdyn_ (2.2 émn:Dman(xp_gmn(07(:‘»0'5'c(»0"'DPO"P‘P)_-I—?%n- (2.9

o . Here we have defined the generalized energy momentum
Here h;dx'dx'=(1-k,r?)~*dr’+r?dQz and h,dy™dy"  tensor fore and 7§, as
=(1—k,s?) lds’+s%dQy with k;, k,=0,+1 denoting

the signature of the external space and internal space, respec- . 1/1. o v .
tively. TﬁN:E 29undp@d @ = dupdng |+ —€ “Gun.
Note that if we adopt the compactification anseigz) (2.10

= ¢(x) k%2, the compactified four-dimensional effective Ein-
stein action, except the SSB* potential term, will remain  Therefore, one has
scale invariant under the four-dimensional scale transforma-

tion: gap(X) = A(X)°Gan(X), $(x)—A(x)?~P2¢(x). This o _1(1 ¢ _ 1
shows that this is a consistent and scale-invariant way to 1 ab~ z¢ | 2 9ab? ¢9c@ = da@dpe |+ Z€ “U(¢)Gap,
carry out the compactification process. Note also th a (2.11

dimension-one constant parameter such tfdfty«<® is di-
mensionless and will be set as 1 for latter convenience. Note —, 1 1— 1 e —
that we will also use the samg notation for¢(z) and ¢(x) Tnn=5 79mnd ¢dept+ —& *U(¢)gmn, (212
for convenience.
The equations of motion can be obtained from varying therespectively. In addition, with the compactified metric

action (2.1) with respect to¢ and gy, respectively. As a

result, one has ds’=gyndZMd 2= gap(2) dXPAX° + g o 2)dy™dy",
(2.13
. a i - - -
_ M 7 _ and by settingé(z) = ¢(x), one can derive the following
€PR-Dud"é+ (9¢>V(¢) 0. @23 compactified identities for the curvature terms:

084009-2



KALUZA-KLEIN INDUCED GRAVITY INFLATION

R=R+2dD,?B+d(d+1)3,85*B—d(d—1)k,e 25,

(2.19
éab: Gabttap, (2.15
~ 1—
Gmnzzgmn[R'l' 2(d— 1)Da[7a,8
+d(d—1)9,8¢*B—(d—1)(d— 2)k2e‘25].
(2.19

Here the generalized energy momentum tengglis given
by

1
tp= Egab[Zd D°B+d(d+1)d.8°B—d(d—1)k,e 2#]

_d(Daabﬁ+‘9aIB‘9bB)- (2-17)

Note thatgMNG,,y=(D/2—1)R. Hence one can obtain the
following equation ofe:

e_‘P
a0 2@+ D, %0+ dd,Bd%¢= K3T[(D -2)d,U—-DU],

(2.18

by eliminating theR term in the trace o6,y Eq. (2.5 and
the ¢ EQ. (2.7). Here one has set;=4¢/[4(D—-1)e+D
—2]. Finally, one can show that the trace of t8e,, Eq.
(2.9, g™"G,,,,, and the trace of th& ., Eq. (2.16) gives two
constraint equations related B One can eliminate thede
terms and obtain the following equation fo¢t):

dd,B2B+D,02B—(d—1)k,e 2P
1
1+ Te [0a00%@+ D020+ ddB0%¢]

ef‘P

—9,80%¢+ T[U_&<PU]' (2.19

Therefore, we will take Eq(2.19 as the independeng

equation. This will soon be shown to be helpful in our analy-

sis below. Finally, one can show that tf&g; component of
Eq. (2.8), the ¢ equation(2.18), and theB equation(2.19
becomes

d(d—1)
6

k
a'2+— +da’ B+ (B'2+k,e 2P)
a

d
+a/(P!+§ﬁl(Pl

1 /2+£e—<p’

=249 T3e (220

¢/r+3ar¢r+dﬁ/¢/+¢)/2
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=—%e“"[(D—2)(9¢,U—DU], 2.21)
B'+3a’ B +dB'?+(d—1)ke 2P+ B¢’

el g Ut 14 —|U 2.2

—?e &<P + +Z . ( . 2)

Note also that th&;; component of Eq(2.8) can be deduced
from the four-dimensional Bianchi identif9 ,G3"=0 asso-
ciated with the four-dimensional FRW metric. Hence it is in
fact redundant. Therefore, Eq2.20—(2.22 are in fact the
complete set of equations of motion one needs for solwing

B, ande.

IIl. INFLATIONARY UNIVERSE

If one assumes the slow-rollover approximation, namely,
a’'la>|¢’|, one can show that

d(d—1)

a'2+da'B'+ 6 BrZ
_Y e 3.1
_ﬁe ] ( . )
3 'B’+d/3’2=5e*<° a,U+ 1+i U (3.2
@ € ¢ 2€ ’ ’
(3a’+d,8’)<p’=%e_‘P[(d+4)U—(d+2)a¢U].
(3.3

Here we have sek;=k,=0 for simplicity. Note that the
issue of the noncompact internal space has recently been the
subject of renewed interefd]. An exotic class of Kaluza-
Klein models in which the internal space is neither compact
nor even of finite volume was considered and gravity is used
to trap particles near a four-dimensional submanifold of the
higher dimensional spacetime.

Moreover, we have also assumed that|<a'|¢’| and
|8"|<B’2. We will show shortly that these assumptions can
be met rather easily.

We will assume for the moment during the slow-rollover
period thata= agt and B=—kayt for some positive real
numberk and «y. This kind of solution represents a brief
moment of inflating scale factam accompanied by a con-
tracting internal scale factdx. This will be helpful in finding
a possible constraint on the form of the symmetry-breaking
potential one would require for a more realistic model. One
can also assume thblt~U =V(¢= ¢g), while ¢~ ¢ dur-
ing the inflationary phase. Therefore, one can show that Egs.
(3.1)—(3.3) can be brought to the following form:

d(d—1)k?—6dk+6=K, (3.9

kK3
k(dk—3)=T(s—s_), (3.5
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(d+2)kkzarg
=—————(s—s.).
4eq

dk—3
(3.6

Here k=2Uqy/eadd3, op=¢'(to), S.=—2—1/e, ands,
=2(d+4)/(d+2). In addition, we have also definesl
= ¢po(d4sU)o/U, as the scaling factor of) evaluated aip
= do.

We will first study the case wheré>1. Note that Eq.
(3.4 indicates that d(d—1)k?—6dk+6=d(d—1)(k
—k;)(k—k_)>0 under the assumption théat is positive
everywhere. Here we have definek.=3/(d—1)
+43d(d+2)/d(d—1) as the roots of thk equation. There-
fore, one has eithde>k_ or k<k_ from thek inequality. In
addition, Eqs(3.5) and(3.6) give

S—s_
07K (d+2)(s—s,) PO 3.7
This shows thatpg(s—s,)(s—s_)>0, sincek is assumed
to be positive.
Moreover, one also assumes tlldi( ¢)/dt<<0 such that
the scalar field is rolling down from some initial valdg to
the minimum potential energy staig,,. This means that

PHYSICAL REVIEW D 62 084009

One can easily construct an effective symmetry-breaking
potential by expanding the potential around the initial point
¢o. Explicitly, it will take the formU=Uy+sUy(¢p— ¢q)
+--- around the initial point. For example, one can show
that the conventionalp* model with U=(\/8)(4%—v?)?
does not satisfy the constraint obtained earlier. Indeed, one
can show that Eq(3.6) gives

AN (@2 v [dgRt (d+4)?]

8(d+4) (313

for the conventionakp* model with an additional positive
definite cosmological constant terk. This clearly shows
that the chaotic inflation conditiom3>v? is inconsistent
with the case wherd =0. Note that the no-hair conjecture
states that cosmologies with a positive cosmological constant
would approach the de Sitter solution asymptotically].
Even some counter examples are found, and are shown to
hold for very general conditionsl8]. Our result appears to
favor the above conjecture with the inclusion of the higher
dimensional space. Therefore, the conventiopél model
with vanishing cosmological constant cannot support an in-
flationary solution with expanding external space and con-
tracting internal space. We will solve the conventiot!
model later in Sec. IV.

For the case wherd=1, the situation is rather different.
Equation(3.4) implies thatk<<1 for positiveU,. In addition,

s¢py<0. Therefore, one finds that there are only two kinds oqu_ (3.5 givess<s_(<0), while Eq.(3.6) implies ¢;>0
combination capable of supporting this process. The first ong,e\y inflationary solutiop In addition, the slow-rollover as-

is (1) ¢4<0, 0<s<s, and the second one {&) ¢;>0, s
>s_. One can further rule out ca¢®) from the assumption
that ap>|¢(|. Indeed, Eq.(3.7) indicates that the slow-
rollover assumption is equivalent ts—s_|>k(d+2)|s
—s,|. Hence casél) can be shown to give a constraint

k(d+2)s, +s_

—_ (3.9

k(d+2)+1

This can easily be achieved provided that>s_ . Note that

this is true if e<1 [4]. Similarly, case(2) will give a con-

tradictory results_>s, . Therefore, cas€) is ruled out.
In addition, casdél) and Eq.(3.6) shows thadk—3>0.

Hence the constraint dnobtained earlier is further restricted

to the case wherk>k, . This is because 8<k<k_ leads
to a contradiction 3-d(d+2).

In short, the induced Kaluza-Klein compactification ad-
mits chaotic inflation only if the symmetry-breaking poten-
tial obeys a number of constraints listed earlier. They are

(a) sy>s_, (3.9
(b) s,>s>[k(d+2)s, +s_]/[k(d+2)+1], (3.10
(€) ¢o<0, (3.1D
(d) k>ky. (3.12

For example, one would havé) 8/5>s_, (b) 8/5>s
>(5k+s_)/(8k+1), and(c) k>1 as the constraint ok
ands for the case wherd=6 or equivalentlyD = 10.

sumption indicates that_ —s>k(10—3s). Therefore, one
obtains (kX—1)s>10k—s_(>0). This implies thak<1/3.
In summary, one haga) s<s_(<0), (b) k<1/3, and(c)
©,>0. Therefore, the five-dimensional Kaluza-Klein new
inflationary solution with expanding external space and con-
tracting internal space can also be arranged if the field pa-
rameters are chosen appropriately.

One can also study the case where the internal-space scale
factor remains constant, i.eb=b, [14] or equivalentlyk
=0 in the early universe. In this case, the equations will
become

k, d(d—-1)k
12 _1 _2 o
a 22 6 bg-l—ago
e Y 3.1
T 22¢% T3 (3.14
K
(p"+3a'<p'+<p'2=—few[(D—z)a@u—DU],
(3.15
d-1) 2= 3¢ s Ut 2 +1lu
( — )Eg—?e (94, 2_6 .
(3.16

Therefore, one finds that there is a strong constredrit6
left over for theb equation. This equation says thatU
+(1+ 1/2e)U =0 for a flat internal spacé.e., k,=0). One
can then show that eithdi) the potentialU has to be a
special fractional polynomial functional ap, namely, U
=k~ ") with a proportional constark,, or (ii) the
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dynamics of the scalar field has to be frozen, namely, the Ko

scalar field becomes a constapt ¢y. One can show that

the first case would imply that’ ~ ¢’ /2 under the constraint
e<1. This contradicts the slow rollover approximation. On

the other hand, the cag@) implies thatU(¢q)=d,U(¢o)
=0. Hence one haa’'?= —k; because of Eq3.14. There-

fore, one needk;= —1 in order to admit a power-law infla-
tion. One can hence tune the field parameters to induc
enough inflation with an expanding external space and co

(3.29

36¢é+ 1/4e

for ¢~ ¢ in this inflationary phase. Therefore, one can
choosee<1 andB<A in order to be consistent with the
assumption thar’>|¢’|. In addition, one can choos&
>0 sincea’?>0. This implies thak,=1 for D=5. In ad-
dition, A>B implies thatkyb3< (D —5)e¢g /4 which can

stant internal space. But this model cannot tell us when th@¢ achieved by tuning the field parameters appropriately.

inflationary phase should come to an end. One would have t

Moreover, one still needs to make sure that the potehtial

expect that this induced gravity model remains valid only9iven by Eq.(3.18 has at least a local minimung, far
during the inflationary period and leave the problem to othe@Way from the initial datap, such that inflation can exit in

resolutions.
On the other hand, one can show that the constfain6)

(D-5) kfe $?=0 U+(1+i U (3.17
bgks b 2e
implies ¢= ¢ for the case&k,#0 unless
U=koep 2 Y —?ﬁ;z);g:: $2. (319
If ¢= g, EQ. (3.15 implies that
[(D-2)3,U~DU], =0. (3.19

due time.
Fortunately, a local minimum always exists for a large
class of parameters. Indeed, one can show that

kobg~(D—5)(D —2) ey (3.29
from a¢U|¢:¢m=0. Hence, one only needs
4+1/4¢ 2 4+1/4e
Ed)m < mgﬁo . (32@

In addition, the requiremenrit)”| ¢,,>0 can be made valid
very easily.

Therefore, the inflationary process can properly work with
the assumptiob= b, for the case wher9=S""* and this
has to come along with the potential of the form given by Eq.

Equations(3.17) and (3.19 mean that all field parameters (3.18.
and initial conditions are constrained by these equations. In

addition, Eq.(3.14 tells us that

ka

12__ _ _‘

(3.20

independent of the form of potentil. Of course, the initial
value of the scalar fieldp, is determined by the form of

potential and the two constraints just derived. This solution
is an inflationary solution with expanding external space and

constant internal space as longlkg¢D —5)>0 andby<1.
One can certainly tuné, to induce enough inflation with

IV. CONVENTIONAL ¢* MODEL

One can also work on the model with a spontaneous sym-
metry breakingSSB ¢* potentialU = (\/8) (e®—v?)2. This
sort of potential will be referred to as the conventiogd
model in this paper. It is straightforward to show tlagt)
=(\/4)(e®—v?)e®. Hence Eq(3.3 becomes

Kg)\

(3a'+dB") e’ = Be

e ¢(e*—v?)[de’+ (d+4)v?].
(4.1)

expanding external space and constant internal space. BEfiS indicates that 8+dg is always an increasing function
this solution cannot tell us how to exit the inflationary phase2s long as the field is rolling down to its true vacuura®
at this point either. One would then have to expect again that v>. It also indicates thatp cannot go far away from its
this kind of induced gravity model would not remain effec- local minimum, hence it should oscillate arouse=v after

tive as soon as the inflationary process is completed.
On the other hand, Eq§3.14) and (3.15 imply that

a'’=(1+6€)A+B, (3.21)

a' o' =4eA+ 2B, (3.22

under the slow-rollover approximation i is given by Eq.
(3.18. Here

(D—5)k,

T 3b3(1+4e)’ (3.23

the inflation is over. We will come back to this point shortly.
Moreover, Eq.(3.2) becomes

2U
(d+2)e

3a’B'+dp'?= e ¢ 4.2

if e<1 and|¢p?—v?|/p?>>4e. These assumptions can be
adjusted rather easily. Together with E§.1), one finds that
2a'2+(d=2)a’' B’ —dB'?=(a’'—B')(2a’ +dB’)~0.
4.3

This means thatv' =3’ because the equation’=—(d/
2)B’ contradicts Eq(4.2). Hence b(t) increases along with
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the expandinga(t) in the inflationary era under the slow-
rollover approximation. Therefore, one has shown that the d(e
conventional$* model supports DFRW space instead of the
4DFRW space. Hence the solution with expanding external x[def+(d+4)v?], (4.10
space and contracting internal space cannot be found under

the slow-rollover approximation. We will still, however, K\

study the DFRW solution in detail in this section for com-  g,(e3**98*¢p )= sie&'*dﬁ(e“’—vz)

pleteness. Note that the presence of a nonvanishing cosmo- €

3a+dﬁ+¢¢/): _ K8L)\e3a+dﬂ(e<p_l)2)
€

logical constant in the conventiong* model will not affect 1 1
Eq. (4.3) under the same slow-rollover approximation. X| |3+ e e‘P—(1+ e v2|.
Note that Eq.(4.2) gives us
(4.11
At v
a'~\lg—Fm—= —> (4.9
8(d+2)(d+3) ¢, Hence Eqs(4.10,(4.11) become
Ao? v a3 tIBE ) = —m (d+2)e3* ¢, (412
878N Ngd+2)(d+3) ¢/

(4.9 o> (é+v?)]=m, e ¢, (4.13

2_ 1 I -
H[erni rcT:ne ha:sds?dev i_l stuchltri]r?';hthclaalgrr]av;taggns/: cronv as one takes the limi¢= &+ v2. Herem,=x3(\v*/8).
sta easured foday IS set as € Flanck unit. Moreover, Moreover, Eqs(2.20—(2.22 can be interpreted as a set

Iao, set to bI(Ea p&silt)ivg, denotes the initial value of théeld. of equations that allow one to expresgt) and B(t) as
Oreover, £q.a.) gives functions of ¢(t). Therefore, one can expand and 8 as

N(d+4)2 polynomials ofé, i.e., one can write
' ~\555 53, (4.6)
2(d+2)(d+3)

a(t)=ag(t) + ar(DE() +ax(t) () +- -+ (4.19
N(d+4)2 B ,
b~ o+ mvt- (4.7 B()=Bo(t)+ B1(1) &)+ B(1) (D) +---. (419

Here we can see that the assumptiopé|<a'|e’| and  Therefore, the lowedfirst) order in£ of Eq. (4.12 is
|B"|<B'? are both satisfied without imposing any further

constraints. gy(e3x0tdbogy= —m (d+2)e3*dos, (4.1
One can further derive a few inequalities from the slow-
rollover assumptiora’/a>|¢’|. First of all, they give Moreover, the zeroth order i& of Eq. (4.13 can be shown
to be
v’>4(d+4). (4.9
&30 %opy1=0. (4.17)

Note that the cosmological constant term; Av* at initial
time should be less than 1, in the Planck unit, in order tha
the quantum effect can be neglected. We will be using th

Planck unit from now on. In addition, if the scale faca(t) xpansion era. Therefore, one can assumesfifatis chang-
is capable of expanding some 60 e-fold in a time interval Oing very slowly. ash?—v? ,In addition, the zeroth order if
roughly AT~ 10% Planck units, one should have the follow- of Eq. (2.20 is ' ’

ing inequality:

This means tha#[ e%%°] = constx e 3%, Therefore, one has
@ e%0]~0 sincee 3% is very close to 0 in the post-

2 2_

Av? o 1 al?+da)Bi+ $2~0 (4.18
?>(d+2)(d+3)7><3.6><10‘3. (4.9 0 oFor e O '

Inequality (4.9) can be made valid rather easily. Indeed, This gives
these inequalities can be easily satisfied by choosing latge

(hence smalk) and ax around the order of 10 as in Ref. J3d= Jd%F 2d
[4]. Hence one shows that the slow-rollover approximation is ap=— —————=LF¢~0 (4.19
indeed a good approach to this expanding solution. 2\3

Note that we can also extract information abaytd, and
¢ when ¢—v near the end of the expansion. This can beto this order of the limit. Hence, E¢4.16) becomes an equa-
done by analyzing Eqs2.20—(2.22 by assuminge®=¢  tion for a simple harmonic oscillator
+v? with £<v?. Moreover, one can show that Eqg8.21)—
(2.22 become &'=—m,(d+2)¢. (4.20

084009-6
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Note that the left-hand side of Eq4.20 approaches listed in Egs.(3.9—(3.12 for the case wherd>1. In par-
—\v2& in the limit e<1. In short, one finds thap field ticular, one shows that these constraints réads/5>s_ ,
indeed oscillates about the local minimum of the symmetry{b) 8/5>s>(5k+s_)/(8k+1), and(c) k>1 in the limit
breaking potentiall. Furthermore, Eqs4.19 indicate that whered=6. It was then shown that the conventionat
apBy<0 as¢ approaches the local minimum of. There- model with an additional cosmological constant term fails to
fore, b(t) in fact starts decreasing #(t) remains increasing satisfy the above constraints. On the other hand, one shows
at later time. Note that above analysis is only a rough estithat (a) s<s_(<0), (b) k<1/3, and(c) ¢;,>0 for the case
mate, but it gives us a rough picture of what is going onwhered=1. In addition, we also solve the case where the
when the¢ field approaches zero. internal scale factob remains constant during the inflation-
ary phase.

An expanding solution is also found and analyzed for the
. . . . . conventionalg* model. In order to generate a solution with

In summary, aD-dimensional induced gravity model in expanding external-space inflation in the very early universe,
4DFRW space is studied carefully. We present a careful ange finds that the internal space is expanding too under the
detailed analysis for the compactification process. Thisjow-rollover approximation. Therefore, this indicates that
model is then solved for the inflationary solution in the slow- gimensional reduction has to be completed before expanding
rollover approach. A number of constraints on the symmetryyternal space starts to expand. With properly chosen free
breaking potential are found. These constraints are deriveﬁarameters and boundary conditions of the scalar field, one
from the search for a inflationary solution with expanding ghows that enough expansion can be easily achieved regard-

external space and contracting, compactified internal spacqess of the negative impact of the expanding internal space in
The result indicates that a possible form of the symmetry;pq conventionaly* model.

breaking potential, prescribed ks is constrained by Egs.
(3.H—(3.6) due to the field equations. Heres
= ¢o(94U)0/ Uy signifies the scaling factor &f evaluated at
¢ = ¢o. The cases wheré>1 andd=1 are analyzed sepa- This work is supported in part by the National Science
rately. Explicitly, constraints to the coupled potential areCouncil under Contract No. NSC88-2112-M009-001.

V. CONCLUSIONS
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