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Abstract

In this paper a least-squares ®nite element method for the Timoshenko beam

problem is proposed and analyzed. The method is shown to be convergent and stable

without requiring extra smoothness of the exact solutions. For su�ciently regular exact

solutions, the method achieves optimal order of convergence in the H 1-norm for all the

unknowns (displacement, rotation, shear, moment), uniformly in the small parameter

which is generally proportional to the ratio of thickness to length. Thus the locking

phenomenon disappears as the parameter tends to zero. A sharp a posteriori error es-

timator which is exact in the energy norm and equivalent in the H 1-norm is also brie¯y

discussed. Ó 2000 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

The locking phenomenon is mainly concerned in the ®nite element analysis
for parameter-dependent problems [2,5]. In this paper we shall propose and
analyze a ®nite element method based on the least-squares principles for
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approximating the solution of the Timoshenko beam problem in its ®rst-order
system formulation. The method avoids the locking problem as the thickness of
the beam tends to zero, and achieves optimal order error estimates for all the
unknowns (displacement, rotation, shear, moment) in the H 1-norm.

Finite element analysis of the Timoshenko beam problem has been fre-
quently used as a starting point for a better understanding of the much more
complex problem of constructing accurate ®nite element approximations to the
Reissner±Mindlin plate problem. It is well-known that some bad behaviors
may occur such as the locking phenomenon when we solve these problems with
standard Galerkin ®nite element methods [2,19,26,27]. That is, the convergence
results of the standard ®nite element approximations deteriorate as the small
parameters (which depend on the thickness of the beam and the plate for the
Timoshenko beam model and the Reissner±Mindlin plate model, respectively)
tend to zero. The most widely used e�ective approach to overcome the di�-
culty is based on the reduced integration technique. A complete analysis for the
Timoshenko beam problem by using this technique has been addressed in [2].
Recently, a modi®ed reduced integration method with linear ®nite elements is
proposed and analyzed by Cheng et al. [19]. The method presented in [19] uses
the reduced integration technique to compute the term involving the small
parameter and adds a bubble function space to the rotation to increase the
solution accuracy. This method can also be applied to solve the circular arch
problem and the Reissner±Mindlin plate problem. Another way to eliminate
the locking phenomenon is to use the p and hÿ p versions of the ®nite element
method for which optimal error estimates are established in [25].

In the present investigation we provide an alternate way to avoid the
di�culty by exploiting the least-squares principles on a ®rst-order system
formulation of the Timoshenko beam problem. We ®rst introduce a quadratic
least-squares functional Q over a function space V consisting of functions
which satisfy the boundary conditions of the problem. The functional is de®ned
to be the sum of the squared L2-norms of the residuals in the di�erential
equations. Then the exact solution must be the unique zero minimizer of the
functional Q over V. Therefore, the least-squares ®nite element approximate
solution is de®ned to be the minimizer of Q over a ®nite-dimensional subspace
Vp

h of V. Mathematical analyses show this approach can eliminate the locking
phenomenon.

Over the past decade, the use of least-squares principles in connection with
®nite element techniques has been extensively applied to the approximations in
many di�erent ®elds such as ¯uid dynamics [9,12,13,16±18], elasticity
[14,29,30], electromagnetism [15,24], and semiconductor device physics [8]. The
approach o�ers certain advantages, especially for large-scale computations. It
leads to minimization problems rather than saddle point problems led by the
mixed ®nite element approach. A single continuous piecewise polynomial space
can be used for the approximation of all unknowns, and accurate approxi-
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mations of all unknowns can be simultaneously obtained. The resulting alge-
braic system is symmetric and positive de®nite. In addition, the value of the
least-squares functional of the approximate solution provides a practical and
sharp a posteriori error estimator at no additional cost [21,23,28]. This feature
is very important in adaptive computations.

The layout of the remainder of the paper is as follows. In Section 2, we
introduce the ®rst-order system formulation for the Timoshenko beam prob-
lem and we then derive important a priori estimates for the system. The least-
squares ®nite element method is given in Section 3. Then the method is proved
to be convergent and stable in Section 4, where optimal error estimates in the
H 1-norm are also established. Finally, in Section 5, we brie¯y discuss the sharp
a posteriori error estimator for the least-squares approach.

2. The Timoshenko beam problem

In this paper we shall consider the in-plane bending of a clamped uniform
beam of length L, cross-section A, moment of inertia I , Young's modulus E,
and shear modulus G, subjected to a distributed load p��x�, and a distributed
moment m��x�, with �x 2 �0; L� representing the independent variable. According
to the Timoshenko beam theory, this problem is governed by the following
system of ordinary di�erential equations of ®rst-order (cf. [27]):

ÿ dQ
d�x
� p in �0;L�; �2:1�

ÿ dM
d�x
ÿ Q � m in �0; L�; �2:2�

ÿ Q
jGA

� dw
d�x
ÿ h � 0 in �0; L�; �2:3�

ÿM
EI
� dh

d�x
� 0 in �0; L�; �2:4�

supplemented with the boundary conditions:

w�0� � w�L� � 0; �2:5�
h�0� � h�L� � 0; �2:6�

where Q��x� is the shear force; M��x� the bending moment; w��x� the transverse
displacement; h��x� the cross-section rotation; and j the shear correction factor.

To explicate the dependence of this problem on a small parameter,

e2 � EI
jGAL2

; �2:7�
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we introduce the following change of variables:

x � �x
L
; �2:8�

u1 � w
L
; u2 � h; �2:9�

r1 � QL2

EI
; r2 � ML

EI
; �2:10�

f1 � pL3

EI
; f2 � mL2

EI
; �2:11�

which reduces the original problem to ®nding u�x� � �u1�x�; u2�x�� and r�x� �
�r1�x�; r2�x��, x 2 �0; 1� satisfying

ÿ r01 � f1 in �0; 1�; �2:12�
ÿ r02 ÿ r1 � f2 in �0; 1�; �2:13�
ÿ e2r1 � u01 ÿ u2 � 0 in �0; 1�; �2:14�
ÿ r2 � u02 � 0 in �0; 1�; �2:15�

with the boundary conditions

u1�0� � u1�1� � 0; �2:16�
u2�0� � u2�1� � 0; �2:17�

where the prime superscript denotes di�erentiation with respect to the nondi-
mensional variable x. We observe that the nondimensional problem (2.12)±
(2.17) depends explicitly on a parameter e. In general, e is a small parameter
proportional to the ratio of the thickness to length. For instance, in the rect-
angular cross-section case [26],

e2 � E
12jG

T
L

� �2

;

where T represents the thickness of the beam. Thus in most realistic applica-
tions, e.g., for thin beams, 0 < e� 1, and the construction of accurate ®nite
element approximations is delicate.

We need some function spaces throughout this paper. The classical Sobolev
spaces Hr�0; 1� with their associated norms k � kr are employed [11,20]. As
usual, we denote by ��; ��0 and k � k0 the conventional inner product and norm
on the Hilbert space L2�0; 1� of square-integrable functions. The space H 1�0; 1�
of functions which together with their ®rst derivatives are square-integrable, is
a Hilbert space with the inner product ��; ��1, where

�u; v�1 �
Z 1

0

�uv� u0v0�dx; u; v 2 H 1�0; 1�:
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The norm generated by this inner product is denoted by k � k1; that is,
kvk1 � �v; v�1=2

1 . We denote by H 1
0 �0; 1� the subspace of H 1�0; 1� consisting of

functions which vanish at the ends of the interval. For the product space
�H 1�0; 1��4, the corresponding inner product and norm are also denoted by
��; ��1 and k � k1, respectively, when there is no chance of confusion.

We shall use C with or without subscripts in this paper to denote a generic
positive constant, possibly di�erent at di�erent occurrences, that is independent
of the parameter e and the mesh parameter h introduced in the next section.

The following regularity result plays an important role in the theoretical
analysis later.

Theorem 2.1. Let �v;x� � �v1; v2;x1;x2� 2 �H 1
0 �0; 1��2 � �H 1�0; 1��2. Then there

exist two positive constants C1 and C2 both independent of the parameter e such
that

C1 kv1k2
1

�
� kv2k2

1 � kx1k2
1 � kx2k2

1

�
6Q�v;x; 0� �2:18�

and

Q�v;x; 0�6C2 kv1k2
1

�
� kv2k2

1 � kx1k2
1 � kx2k2

1

�
; �2:19�

where

Q�v;x; 0� :� kx01k2
0 � kx02 � x1k2

0 � ke2x1 ÿ v01 � v2k2
0 � kx2 ÿ v02k2

0:

Proof. Upper bound (2.19) is straightforward from the triangle and Cauchy±
Schwarz inequalities. To prove the lower bound (2.18), we ®rst de®ne

g1 :� ÿ x01; �2:20�
g2 :� ÿ x02 ÿ x1; �2:21�
g3 :� ÿ e2x1 � v01 ÿ v2; �2:22�
g4 :� ÿ x2 � v02; �2:23�

in �0; 1�. Then from the ®rst Eq. (2.20), we ®nd

x1�x� � ÿG1�x� � c1;

where

G1�x� :�
Z x

0

g1�t�dt; x 2 �0; 1�; c1 :� x1�0�:
Integrating the second Eq. (2.21), we have

x2�x� � ÿG2�x� �
Z x

0

G1�t�dt ÿ c1x� c2;

where

G2�x� :�
Z x

0

g2�t�dt; x 2 �0; 1�; c2 :� x2�0�:
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Solving the last Eq. (2.23) together with the boundary condition v2�0� � 0, we
obtain

v2�x� � ÿ
Z x

0

G2�s�ds�
Z x

0

Z s

0

G1�t�dt dsÿ 1

2
c1x2 � c2x� G4�x�;

where

G4�x� :�
Z x

0

g4�t�dt; x; s 2 �0; 1�:

Finally, from the third Eq. (2.22) and the boundary condition v1�0� � 0, we
®nd for x; y; s 2 �0; 1�

v1�x� � ÿe2

Z x

0

G1�t�dt � e2c1x� G3�x� ÿ
Z x

0

Z y

0

G2�s�dsdy

�
Z x

0

Z y

0

Z s

0

G1�t�dt dsdy ÿ 1

6
c1x3 � 1

2
c2x2 �

Z x

0

G4�y�dy;

where

G3�x� :�
Z x

0

g3�t�dt; x 2 �0; 1�:

Utilizing the boundary conditions v2�1� � 0 and v1�1� � 0, we get the following
2� 2 linear system of equations in the unknowns c1 and c2:

ÿ 1

2
c1 � c2 �

Z 1

0

G2�s�dsÿ
Z 1

0

Z s

0

G1�t�dt dsÿ G4�1�

�e2 ÿ 1

6
�c1 � 1

2
c2 � e2

Z 1

0

G1�t�dt ÿ G3�1� �
Z 1

0

Z y

0

G2�s�dsdy

ÿ
Z 1

0

Z y

0

Z s

0

G1�t�dt dsdy ÿ
Z 1

0

G4�y�dy:

Solving this linear system, we can ®nd the following estimates for c1 and c2,
respectively,

jc1j6C
X4

i�1

kgik0;

jc2j6C
X4

i�1

kgik0

for some constant C independent of the parameter e. Now it is easy to see that

kvik2
16CQ�v;x; 0�;

kxik2
16CQ�v;x; 0�;

68 J. Jou, S.-Y. Yang / Appl. Math. Comput. 115 (2000) 63±75



for i � 1; 2. Thus the assertion (2.18) follows immediately and this completes
the proof. �

3. The least-squares ®nite element method

In this section we introduce the least-squares ®nite element method for
problem (2.12)±(2.17). De®ne a function space V for our problem by

V � H 1
0 �0; 1� � H 1

0 �0; 1� � H 1�0; 1� � H 1�0; 1� �3:1�
and then de®ne a quadratic least-squares energy functional Q: V! R by

Q�v;x; f� � k ÿ x01 ÿ f1k2
0 � k ÿ x02 ÿ x1 ÿ f2k2

0 � k ÿ e2x1 � v01 ÿ v2k2
0

� k ÿ x2 � v02k2
0; �3:2�

where v � �v1; v2�, x � �x1;x2�, and f � �f1; f2�. Note that the quadratic en-
ergy functional Q�v;x; f� is de®ned to be the sum of the squared L2-norms of
the residuals in the di�erential equations. Obviously, the exact solution �u; r� 2
V of problem (2.12)±(2.17) is the unique zero minimizer of the functional Q on
V, that is,

Q�u; r; f� � 0 � min Q�v;x; f�: �v;x� 2Vf g: �3:3�
Applying the variational techniques, we can ®nd that (3.3) is equivalent to

B��u; r�; �v;x�� �F��v;x�� 8 �v;x� 2V; �3:4�
where the bilinear form B��; �� and the linear form F��� are de®ned, respec-
tively, by

B��v;x�; �z; .�� �
Z 1

0

�x01.01 � �x02 � x1��.02 � .1�

� �ÿe2x1 � v01 ÿ v2��ÿe2.1 � z01 ÿ z2�

� �ÿx2 � v02��ÿ.2 � z02��dx; �3:5�

F��v;x�� �
Z 1

0

ÿÿ x01f1 � � ÿ x02 ÿ x1�f2

�
dx �3:6�

for all �v;x�, �z; .� 2V.
It is evidently that B��; �� is symmetric and continuous (bounded) on V�V

and, for each given f 2 �L2�0; 1��2, F��� is also continuous (bounded) on V.
Furthermore, by (2.18) and (2.19), we have
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C1 kv1k2
1

�
�kv2k2

1�kx1k2
1�kx2k2

1

�
6B��v;x�; �v;x��
�Q�v;x;0�
6C2 kv1k2

1

�
�kv2k2

1�kx1k2
1�kx2k2

1

�
�3:7�

for all �v;x� 2V. Thus B��; �� is coercive on V�V and

k�v;x�kB � B��v;x�; �v;x��� �1=2 8 �v;x� 2V �3:8�

de®ne a new norm on V which is equivalent to the H 1-norm.
For the purpose of discretization we shall use ®nite element spaces de®ned

with reference to partitions of �0; 1�. Let Th be a partition of �0; 1� such that the
interval �0; 1� is partitioned into subintervals Ii � �xiÿ1; xi�, i � 1; . . . ;N , with
0 � x0 < x1 < � � � < xN � 1. The mesh parameter h is de®ned by
h � maxfjxi ÿ xiÿ1j: i � 1; . . . ;Ng. We denote by Pp

h, p P 1 integer, the space
of continuous functions on �0; 1� whose restrictions to Ii, i � 1; � � � ;N , are
polynomials of degree p, that is,

Pp
h � v 2 C0�0; 1�: vjIi

is a polynomial of degree p
� 	

:

De®ne

~P
p

h � Pp
h \ H 1

0 �0; 1�:
Then we will seek the least-squares ®nite element approximations in the fol-
lowing ®nite-dimensional subspace of V,

Vp
h � ~P

p

h � ~P
p

h �Pp
h �Pp

h: �3:9�
By the interpolation theory, the ®nite element space possesses the following
approximation property: for any �v;x� 2V \ �Hp�1�0; 1��4, there exists
�vh;xh� 2Vp

h such that

k�v;x� ÿ �vh;xh�k16Chpk�v;x�kp�1; �3:10�
where the positive constant C is independent of �v;x� and the mesh
parameter h.

The least-squares ®nite element method for problem (2.12)±(2.17) is then the
following.

Find �uh; rh� 2Vp
h such that

B��uh; rh�; �vh;xh�� �F��vh;xh�� 8 �vh;xh� 2Vp
h: �3:11�

Applying the Lax±Milgram theorem [11,20], we know that the approximation
problem (3.11) has a unique solution. Once a basis for the space Vp

h is chosen,
the matrix associated with problem (3.11) can easily be shown to be symmetric
and positive de®nite.
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4. Stability, convergence and error estimates

Let �u; r� 2V be the exact solution of problem (2.12)±(2.17) with the given
function f 2 �L2�0; 1��2. We ®rst prove the stability of the least-squares ®nite
element solution �uh; rh� 2Vp

h.

Theorem 4.1. The unique solution �uh; rh� 2Vp
h of problem (3.11) is stable in the

H 1-norm in the following sense:

k�uh;rh�k16Ckfk0; �4:1�
where the positive constant C is independent of e and h.

Proof. By (3.7), (3.8) and (3.11), we have

C1k�uh; rh�k2
16 k�uh; rh�k2

B

� B��uh; rh�; �uh; rh��
�F��uh; rh��
6 kfk0k�uh; rh�kB
6Ckfk0k�uh; rh�k1;

which implies (4.1). This completes the proof. �

Estimate (4.1) indicates that the least-squares ®nite element solution �uh; rh�
is stable with respect to the H 1-norm, that is, when we change the given data
function f slightly in the L2-norm, the least-squares solution �uh; rh� changes
only slightly in the H 1-norm.

We now introduce some function spaces which will be used to prove the next
theorem. Let C10 �0; 1� denote the linear space of in®nitely di�erentiable func-
tions with compact support in �0; 1�, and let C1�0; 1� denote the restrictions of
the functions in C10 �R� to �0; 1�. Then it is obvious that the product space

S :� �C10 �0; 1��2 � �C1�0; 1��2 �4:2�
is dense in V with respect to the H 1-norm.

Now utilizing the standard density argument [20], we can obtain the fol-
lowing results for the convergence.

Theorem 4.2. The least-squares ®nite element solution �uh; rh� is convergent in the
H 1-norm without requiring any extra regularity assumption on the exact solution
�u; r�, that is,

lim
h!0
k�u; r� ÿ �uh;rh�k1 � 0: �4:3�

Moreover, if the exact solution �u; r� 2V \ �Hp�1�0; 1��4, then we have the
following error estimate:
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k�u; r� ÿ �uh; rh�k16Chpk�u; r�kp�1; �4:4�
where C is a positive constant independent of e and h.

Proof. Subtracting the equation in (3.11) from the equation in (3.4), we get the
following orthogonality relation:

B��u; r� ÿ �uh; rh�; �vh;xh�� � 0 8 �vh;xh� 2Vp
h: �4:5�

Using (3.7), (4.5) and the Cauchy±Schwarz inequality, we obtain

k�u; r� ÿ �uh; rh�k2
16

1

C1

k�u; r� ÿ �uh; rh�k2
B

� 1

C1

B��u; r� ÿ �uh; rh�; �u; r� ÿ �uh; rh��

� 1

C1

B��u; r� ÿ �uh; rh�; �u; r� ÿ �vh;xh��

6 C
C1

k�u; r� ÿ �uh; rh�k1k�u; r� ÿ �vh;xh�k1

for all �vh;xh� 2Vp
h. Thus,

k�u; r� ÿ �uh; rh�k16Ck�u; r� ÿ �vh;xh�k1 8 �vh;xh� 2Vp
h: �4:6�

Now, since the subspace S �V \ �Hp�1�0; 1��4 is dense in V with respect to
the H 1-norm, for any d > 0, there exists �~u; ~r� 2S independent of h such that

k�u; r� ÿ �~u; ~r�k1 <
d

2C
; �4:7�

where C is the same constant as in (4.6). For this ®xed su�ciently smooth
function �~u; ~r� 2S � �H p�1�0; 1��4, by the approximation property (3.10), we
can ®nd �~uh; ~rh� 2Vp

h so that,

k�~u; ~r� ÿ �~uh; ~rh�k16Chpk�~u; ~r�kp�1;

which implies, for su�ciently small h,

k�~u; ~r� ÿ �~uh; ~rh�k1 <
d

2C
; �4:8�

where C is the same constant as in (4.6). Combining inequalities (4.7) and (4.8)
with (4.6), we immediately obtain

06 k�u; r� ÿ �uh; rh�k16Ck�u; r� ÿ �~uh; ~rh�k1

6C k�u; r�
�

ÿ �~u; ~r�k1 � k�~u; ~r� ÿ �~uh; ~rh�k1

�
< d;

which implies (4.3).
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We now assume that �u; r� 2V \ �H p�1�0; 1��4. By (4.6) and the approxi-
mation property (3.10) of the ®nite element space Vp

h, we can obtain (4.4)
immediately. This completes the proof. �

Since the energy norm k � kB is equivalent to the H 1-norm, from (4.3), we can
conclude the following consequence.

Corollary 4.3. Let �uh; rh� � �u1h; u2h; r1h; r2h� be the least-squares ®nite element
solution. Then

lim
h!0
kÿ ÿ r01h ÿ f1k0 � k ÿ r02h ÿ r1h ÿ f2k0 �

k ÿ e2r1h � u01h ÿ u2hk0 � k ÿ r2h � u02hk0

� � 0:

�4:9�

Remark 4.4. The error estimate (4.4) is optimal in the H 1-norm with
respect to the order of approximation of the ®nite element space Vp

h. Under
suitable assumptions (cf. [22]), it is quite possible to derive the optimal error
estimates in the L2-norm for all the unknowns by using the Aubin±Nitsche
trick.

5. An equivalent a posteriori error estimator in the H1-norm

The use of a posteriori error estimators has become an accepted tool for
assessing and controlling computational errors in adaptive computations. One
of the most important advantageous features of the least-squares ®nite element
approach is that the square root of the value of the least-squares functional of
the approximate solution provides a practical and sharp a posteriori error
estimator at no additional cost [21,23,28]. This is quite di�erent from the
previous error estimators, see [1,3,4,6,7,10,31] for example.

In this section we shall brie¯y show that the simple estimator is indeed an
exact error estimator in the energy norm, k � kB. Thus, it is an equivalent error
estimator in the H 1-norm. Let �uh; rh� � �u1h; u2h; r1h; r2h� be the least-squares
®nite element solution. For all subintervals Ii 2Th, let QIi�uh; rh; f� denote the
value of quadratic least-squares functional of the approximate solution re-
stricted on Ii, that is,

QIi�uh; rh; f� �
Z

Ii

�ÿr01h ÿ f1�2 dx�
Z

Ii

�ÿr02h ÿ r1h ÿ f2�2 dx

�
Z

Ii

�ÿe2r1h � u01h ÿ u2h�2 dx�
Z

Ii

�ÿr2h � u02h�2 dx
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for all Ii 2Th. Then

QIi�uh; rh; f� �
Z

Ii

�ÿr01h ÿ �ÿr01��2 dx�
Z

Ii

�ÿr02h ÿ r1h ÿ �ÿr02 ÿ r1��2 dx

�
Z

Ii

�ÿe2r1h � u01h ÿ u2h ÿ �ÿe2r1 � u01 ÿ u2��2 dx

�
Z

Ii

�ÿr2h � u02h ÿ �ÿr2 � u02��2 dx

� k�u; r� ÿ �uh; rh�k2
B;Ii
;

where k � kB;Ii
denotes the energy norm restricted on Ii. Therefore, the com-

putable value �QIi�uh; rh; f��1=2
de®nes an ``exact'' error indicator of the sub-

interval Ii which assesses the quality of the approximate solution �uh; rh� in that
subinterval Ii and indicates whether the element needs to be re®ned, dere®ned
or unchanged. Taking the summation,

Q�uh; rh; f�� �1=2 �
X

Ii2Th

QIi�uh; rh; f�
 !1=2

� k�u; r� ÿ �uh; rh�kB;

we get an exact a posteriori error estimator �Q�uh; rh; f��1=2
, which can serve as

one of the major stopping criteria for an entire adaptive process. In general, the
e�ectivity index de®ned by

H � Q�uh; rh; f�� �1=2

k�u; r� ÿ �uh; rh�kB
is then used to quantify the quality of the estimator and hence the quality of the
approximate solution �uh; rh�. In our case, H exactly equals 1.
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