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Glint noise may arise in a target tracking system. The

non-Gaussian behavior of glint noise can severely degrade

the tracking performance. Measurement preprocessing at the

front-end of the tracker is an effective method to reduce glint

noise. The preprocessor proposed by Hewer, Martin, and Zeh,

which used the computationally intensive M-estimator, may

not be suitable for practical implementation. An alternative

method employing the median filter is studied here. The median

filter is well known for its simplicity and robustness. However,

the efficiency of the median filter can be seriously degraded if

input samples are not identically distributed. This is what we

may encounter in the tracking problem. A feedback median

filter is then proposed to overcome this impediment without

substantially increasing complexity. Simulations show that the

new preprocessor can greatly improve tracking performance in

the glint noise environment.
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I. INTRODUCTION

The Kalman filter is widely applied in target
tracking problems. It is known to be the linear optimal
filter in the white Gaussian noise environment. In
some radar applications [1–9], the measurement
noise may deviate from the Gaussian assumption.
For instance, complex targets can cause irregular
electromagnetic wave reflection. This phenomenon
varies the target center in a radar and gives rise to
outliers in angle tracking, known as “target glint.”
The glint noise has a long-tailed distribution [1, 2] and
can severely degrade the Kalman filter performance.
Kalman filtering with non-Gaussian noise has been
a difficult problem. In 1975, Masreliez [10, 11]
introduced a score function based scheme. While
this approach looks promising, he encountered some
implementation problems. Wu [4, 5] developed an
efficient method to approximate the score function
and applied it to target tracking problems. He also
incorporated the Masreliez filter into the interacting
multiple model (IMM) algorithm and obtained
a nonlinear IMM algorithm [6]. Daeipour and
Bar-shalom [9] characterized glint noise as a mixture
of two Gaussian components and used two different
models to represent the noise arising from these two
Gaussian components. By doing so, they were able to
apply the original IMM tracking algorithm.
When the radar pulse repetition rate is higher

than the requisite tracking rate, a tracking system
can provide more measurement data than that it can
process. In this case, there is a simple approach to
deal with glint noise: we can preprocess a batch
of measurements and then forward the results to
the Kalman filter. One intuitive thought to perform
preprocessing may be the use of sample averaging.
It can be easily shown that this simple operation is
optimal when the target is still and the measurement
noise is Gaussian. Wang and Varshney [12, 13]
used the maximum likelihood (ML) estimation as
the preprocessing algorithm to enhance tracking
performance. They considered the case where the
target has a constant velocity and the measurement
noise is Gaussian. They found that the optimal
estimate is also the averaging operation. When the
measurement noise is non-Gaussian, averaging
is not optimal anymore. Hewer, Martin, and Zeh
[1] proposed to use the robust M-estimator as the
preprocessing scheme. They showed that the Kalman
filter performance can be greatly enhanced. Although
the robust algorithm is effective, it requires intensive
computations. In addition, this approach assumed that
the target position is constant in the preprocessing
batch, which may not hold in all situations.
An alternative technique using the median filter

is studied here. Due to its simplicity and good
properties, the median filter is widely used in
image processing [14—17]. There are three distinct
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properties not shared by the averaging filter. First,
it can preserve abrupt changes of signals. Second,
it can remove impulsive noise. Third, it has high
filtering efficiency for long tailed distributed noise.
Since the distribution of glint noise is long-tailed
and the target may maneuver, the median filter is
then a good choice for preprocessing. Some other
order statistic filters such as the alpha-trimmed mean
filter and the modified trimmed mean filter [18, 21],
can also be used [8]. However, the median filter is
preferable due to its simple structure. Also, some
fast median algorithms have been developed [22—25]
making efficient implementation possible. The basic
assumption for using the M-estimator and the median
filter is that measurements are independent and
identically distributed (IID). When this assumption
is violated, the filtering efficiency is reduced. In the
tracking problem, this will occur when the target
velocity is high and the measurement noise level is
relatively low. We have theoretically analyzed the
output variance of the median filter and verified that
for a fixed noise variance, the output variance will
increase as the target velocity increases. To remedy
this problem, a new structure named the feedback
median filter is proposed. This structure is shown
to be robust and does not substantially increase
complexity. Simulations show that the proposed
structure can greatly improve tracking accuracy.
We briefly describe the median filter and its

useful properties in Section II. Incorporating the
median filter to preprocessing is shown in Section
III. In Section IV, we give some analytic results for
evaluating the median filter performance. Simulation
results are shown in Section V and the conclusion is
drawn in Section VI.

II. MEDIAN FILTER

Let fX1,X2, : : : ,Xng be n random variables. We
arrange the observations in ascending order such that

X(1) · X(2) · ¢¢ ¢ · X(n): (1)

The random variable X(i), i= 1,2, : : : ,n is called the
ith order statistic of the n random variables. For
convenience, we assume that n= 2m¡ 1 is an odd
number. Let Xn = fX1,X2, : : : ,Xng be the collection
of these random variables. The output of the median
filter is defined as

median(Xn) = X(m): (2)

As we can see, the median filter is a nonlinear filter.
Thus, its behavior is much different from that of
the averaging filter. In what follows, we describe
some important properties of the median filter. These
properties are used in the later development of our
algorithm.

PROPERTY 1 (Scale and Translation Invariance) For
any input random sequence xn = fx1,x2, : : : ,xng where
n= 2m¡1, we have
median(c ¢ xn+ df1g) = c ¢median(xn)+ d = c ¢ x(m) + d:

(3)

A special case is that xn is a linear trend signal.
From Property 1, we can easily see that in this case,
the output signal equals to the input signal. This is
called the linear trend preservation property. Proof of
Property 1 can be found in [21].

PROPERTY 2 (Filtering Efficiency) [19, 20] Let
xn = fxig and xi = c+ vi, where c is a desired constant
signal, and vi is zero-mean white noise. If vi has a
Laplacian distribution, then median(xn) is the optimal
estimate of c in the ML sense.

This property reveals that the median filter is
suitable for filtering long-tailed distributed noise. In
many cases, images are subject to impulse-like noise.
This is another reason why the median filter is widely
used in image processing. The distribution of glint
noise is known to be long tailed. Median filtering is
then adequate in the tracking problem. Hereinafter, we
consider the output distribution of the median filter.
Assume that X1,X2, : : : ,Xn are IID with probability
density function (pdf) f(x) and cumulative distribution
function (cdf) F(x), and Y1,Y2, : : : ,Yn are their order
statistics. The joint pdf of Y1,Y2, : : : ,Yn is found to be
[27]

f(y1,y2, : : : ,yn)

= n!f(y1)f(y2) : : :f(yn), a· Y1 · Y2 · ¢¢ ¢ · Yn · b
= 0, elsewhere

(4)

where a and b are two constants bounding Xi. Let Ym
be the median of fY1,Y2, : : : ,Yng. The pdf of Ym can be
obtained

gm(y) =
Z b

yn¡1

Z b

yn¡2
¢ ¢ ¢
Z b

ym

Z ym

a

¢ ¢ ¢
Z y3

a

Z y2

a

£f(y1,y2, : : : ,yn)dy1 : : :dym¡1dym+1 : : :dyn

= n
µ
n¡ 1
m¡ 1

¶
F(y)m¡1[1¡F(y)]n¡mf(y),

a· y · b: (5)

The cdf of Ym is

Gm(y) = PrfYm · yg
= Prfat least m samples of the Xi

are less than or equal to yg

=
nX
i=m

µ
n

i

¶
Fi(y)[1¡F(y)]n¡i: (6)
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For the IID random variables, the moments and
product moments of order statistics can be expressed
in terms of elementary functions for n· 5 [28]. By
repeated integration by parts, many higher moments
can be obtained.
If X1,X2, : : : ,Xn are independent but not IID, then

the cdf of Ym is given by [29]

Gm(y) =
nX
i=m

X
Si

iY
l=1

Fjl (y)
nY

l=i+1

[1¡Fjl (y)] (7)

where fi(x) and Fi(x) are the pdf and cdf of Xi,
respectively, and the summation Si extends over all
permutations (j1,j2, : : : ,jn) of 1,2, : : : ,n for which j1 <
j2 < ¢ ¢ ¢< ji and ji+1 < ji+2 < ¢ ¢ ¢< jn. For example,
using (7) to evaluate the cdf of the median of three
samples fX1,X2,X3g, we have
G2(y) = F1(y)F2(y)[1¡F3(y)] +F1(y)F3(y)[1¡F2(y)]

+F2(y)F3(y)[1¡F1(y)]+F1(y)F2(y)F3(y): (8)
Previous results for calculating moments of the
median output for IID random variables cannot be
applied here. Although we have another approach
to deal with this problem for some low moments
[30], a more direct method is to use numerical
integration. The mean ¹Ym and the variance ¾

2
Ym
of Ym,

by definition, are given as follows:

¹Ym =
Z 1

¡1
ygm(y)dy (9)

and

¾2Ym =
Z 1

¡1
y2gm(y)dy¡¹2Ym (10)

respectively. The mean of the median output of
zero-mean IID Gaussian random variables is shown
to be zero [29]. The same result can be obtained for
some zero-mean non-IID random variables, which is
described below.

PROPERTY 3 Let fXi, i= 1,2, : : : ,ng be n IID random
variables with the same zero-mean symmetric pdf, and
f®j , j = 1,2, : : : ,ng be a monotonic and antisymmetric
sequence, i.e., ®1 · ®2 · ¢¢ ¢ · ®n, ®(n+1)=2 = 0, and
®j =¡®n¡j+1, j = 1,2, : : : , (n¡ 1)=2. Construct a new
sequence Zi = Xi+®i, i= 1,2, : : : ,n. Then, the mean
of the median(fZig) is zero. Proof of this property is
straightforward and thus omitted. An application of this
property is presented in the following section.

In this paragraph, we discuss the computational
complexity of median filtering. As we can see, if
the sample size is large, the ranking operations in
median filtering can be complicated. Fortunately, a
fast algorithm called the threshold decomposition has
been developed [18—21]. This algorithm applies to
discrete-valued signals and no ranking operations are
required. With this method, an m-level signal can be
decomposed into the sum of m-1 binary signals, each

Fig. 1. Batch preprocessing.

Fig. 2. Direct structure for median preprocessing.

of the binary signals is median filtered separately,
and then the results are linearly combined to form the
output signal. Since median filtering of binary samples
is found by counting the number of 1s of the samples,
the implementation of these filters become much
simpler. If the sample value is continuous, we then
perform quantization. The number of the quantization
level becomes a tradeoff between hardware complexity
and filtering performance.

III. TARGET TRACKING WITH MEDIAN
PREPROCESSING

Let the input to the preprocessor be divided
into successive batches, the batch centered
at the measurement zk be denoted as z

n
k =

fzk¡l, : : : ,zk, : : : ,zk+lg where n= 2l+1, and the output
be denoted as yk. The next input batch is then z

n
k+n =

fzk+n¡l, : : : ,zk+n, : : : ,zk+n+lg and the corresponding
output is yk+1. Since the preprocessed data are
nonoverlapped, if input noise is white, the output
noise will also be white. This white assumption is
essential for Kalman filtering. The preprocessing
scheme is shown in Fig. 1.
Assume that the target dynamics and natural

spherical observation model have been decoupled
into independent channels in their corresponding axes.
Consider a one-dimensional tracker, and assume that
only position measurements are available. The target
position and the noisy position measurement can be
described by the following equations:

xk+1 = xk + vkT+
1
2akT

2 (11)

zk = xk + ºk (12)

where T is the sampling period, vk and ak are the
velocity and acceleration of the target, respectively,
zk is the measurement, and ºk is white zero-mean
measurement noise. An intuitive structure to apply
median filtering is shown in Fig. 2. We call this the
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median filtering with the direct structure or the direct
median filtering. From Property 1, the output yk can
be written by

yk =median(z
n
k )

= xk +median

0BBBBBBBBBBBBBB@

2666666666666664

(xk¡l¡ xk)+ ºk¡l
...

(xk¡1¡ xk)+ ºk¡1
0+ ºk

(xk+1¡ xk)+ ºk+1
...

(xk+l¡ xk)+ ºk+l

3777777777777775

1CCCCCCCCCCCCCCA
(13)

= xk +uk: (14)

Consider the situation that the target has a constant
velocity or that vkÀ akT. The third term in the
right-hand side of (11) can be ignored and the process
uk becomes

uk ¼median

0BBBBBBBBBBBBBB@

2666666666666664

¡l¢1 + ºk¡l
...

¡¢1 + ºk¡1
0+ ºk
¢1 + ºk+1

...

l¢1 + ºk+l

3777777777777775

1CCCCCCCCCCCCCCA
(15)

where
¢1 = vkT: (16)

Here ¢1 in (15) cannot be moved out from the
median operation because the linear trend preservation
in Property 1 can only hold for deterministic signals.
From Property 3, we know that Efukg= 0. If ¢1 = 0
and ºk is a white Gaussian process with variance ¾

2
º ,

the variance of uk was found to be [31]

Efu2kg ¼ ¼¾2º=2(n+¼=2¡ 1): (17)

If ¢1 6= 0, which is the practical case, no theoretical
results are available. As we show in the next section,
Efu2kg is larger than that in (17). The larger the
¢1, the larger Efu2kg we obtain. In other words,
if the target velocity is higher, the performance
of the median filter is poorer. For non-Gaussian
measurement noise, the same observation can be
obtained.
The increased variance of uk degrades the

performance of the Kalman tracking algorithm. Here
we propose a new structure, as shown in Fig. 3, to
overcome this problem. The idea is to suppress ¢1
by some estimated value ¢̂1. From (16), we see that
¢1 is directly related to the velocity vk. Thus, we can

Fig. 3. Feedback structure for median preprocessing.

subtract vk from its predicted value, denoted as vk,
obtained from the Kalman tracking algorithm. This
makes the process uk become

u0k ¼median

0BBBBBBBBBBBBBB@

2666666666666664

¡l¢2 + ºk¡l
...

¡¢2 + ºk¡1
0+ ºk
¢2 + ºk+1

...

l¢2 + ºk+l

3777777777777775

1CCCCCCCCCCCCCCA
(18)

where
¢2 = (vk ¡ vk)T: (19)

The velocity prediction vk is calculated by

vk = v̂k¡n+ nTâk¡n (20)

where v̂k¡n and âk¡n correspond to the estimates of
the Kalman tracking algorithm in the previous batch.
When the predicted velocity approaches the actual
velocity, the variance of u0k will be reduced to that
in (17) for Gaussian noise. This condition can be
approximately achieved when the tracking algorithm
is performing well. In general condition, we can
expect that vk ¡ vk < vk such that ¢2 <¢1. Hence,
the tracking performance of the new structure will
be better than the direct structure in Fig. 2. Note that
¢1 is deterministic for a constant velocity target,
but ¢2 is random. We call the new structure median
filtering with a feedback structure, or feedback median
filtering.

IV. VARIANCE ANALYSIS

In this section, we analyze the variances of uk and
u0k in the glint noise environment (including Gaussian
noise as a special case). Before we do this, we first
have to find a model for glint noise. There are many
models describing the long-tailed nature of glint noise
distribution. A simple model that is frequently used
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is called the scaled-contaminated model (SCM). This
model is commonly used to accommodate outliers in
statistical practice [32, 33] and also used to describe
glint noise in [1, 6, 9]. The SCM is expressed by a
mixture of two Gaussian components. One Gaussian
component is with large variance and small occurring
probability while the other is with small variance
and large occurring probability. Let ºk be glint noise
described by the SCM. Then,

Nv(0,¾
2
0,¾

2
1) = ²N(0,¾

2
0)+ (1¡ ²)N(0,¾21) (21)

where ¾21 ¿ ¾20 and ² < 1 is a small positive value.
Note that when ²= 0, the SCM is reduced to the
Gaussian distribution.
We first consider the variance of uk (i.e., the

results of the direct median preprocessing). For
notational consistency, we denote the cdf of uk as
Gm(y) and the pdf as gm(y). Thus, the variance of
uk can be obtained by (7) and (10). Here, we use
numerical integration to solve (10). The required
distribution functions Fi(y) in (7) are the cdfs of the
vector entries inside the median operation in (15).
Their pdf’s are given by

fi(y) =
²q
2¼¾20

exp
½
¡ [y¡ (i¡ l¡1)¢1]

2

2¾20

¾

+
1¡ ²q
2¼¾21

exp
½
¡ [y¡ (i¡ l¡ 1)¢1]

2

2¾21

¾
,

i= 1,2, : : : ,n: (22)

Using the definition of the error function

erf(y)
¢
=
2p
¼

Z y

0
e¡t

2
dt (23)

and the relationZ y

¡1

1p
2¼¾

exp
·
¡ (t¡¹)

2

2¾2

¸
dt= 1

2

·
1+erf

µ
y¡¹p
2¾

¶¸
(24)

we can express Fi(y) by

Fi(y) =
²

2

"
1+erf

Ã
y¡ (i¡ l¡ 1)¢1p

2¾0

!#

+
1¡ ²
2

"
1+erf

Ã
y¡ (i¡ l¡ 1)¢1p

2¾1

!#
,

i= 1,2, : : : ,n: (25)

Apparently, the median output variance ¾2u is a
function of ¢1. The relations between the median
output standard deviation (STD) and ¢1 are plotted
in Figs. 4 and 5 for Gaussian noise and glint noise,
respectively. In these figures, the mean filtering
corresponds to measurement averaging. The x-axis is
¢1 and the y-axis is the output STD. The batch size is

Fig. 4. Output STD of direct median filering with Gaussian
noise.

Fig. 5. Output STD of direct median filtering with glint noise.

five. In Fig. 4, the STD of Gaussian noise is 100m. In
Fig. 5, the SCM parameters are ¾1 = 100m, ¾0 = 7¾1,
and ²= 0:1. As we can see from Fig. 4, the output
STD of mean filtering is not affected by the target
velocity and it is smaller than that of median filtering.
This is expected since the mean filter is the optimal
filter for Gaussian noise. Note that the STD of the
median output increases as ¢1 increases. Finally, the
output becomes the middle sample in the batch and
the STD becomes the noise STD. For glint noise, the
median filter has much smaller output STD than the
mean filter for small ¢1. However, as ¢1 increases,
the median output STD increases. This behavior is
similar to that for Gaussian noise. When ¢1 > 150m,
the output STD of the median filter is larger than that
of the mean filter. These results indicate that the direct
median filtering is inadequate.
We now examine the performance of feedback

median filtering. We have noted that ¢2 is a random
variable and correlated to outputs of the tracking
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algorithm. As a consequence, assessing the variance
of u0k requires some more work. First, we utilize the
following equalities

Efu0kg= E¢2fEºfu0k j¢2gg (26)

Efu02k g= E¢2fEºfu02k j¢2gg: (27)

The significance of (26) and (27) is that it allows
us to evaluate the variance of u0k using previous
results. As we discussed above, it is simple to see that
Eºfu0k j¢2g is zero. The variance of u0k conditioned
on ¢2 is then Eºfu02k j¢2g. Due to the conditioning
operation, ¢2 can be treated as a constant. Thus,
(18) is identical to (15), and (22) and (25) can be
directly applied by substituting ¢1 with ¢2. Now, if
we assume that the distribution of ¢2 is known, the
second expectation operation in (26) and (27) can be
performed. Let the STD of ¢2 be ½. Then, we have
Efu0kg= 0 and

¾2u0(½) =
Z 1

¡1

·Z 1

¡1
y2gm(y;¢2)dy

¸
f(¢2;½)d¢2

=
Z 1

¡1
¾2u(¢2)f(¢2;½)d¢2 (28)

where gm(y;¢2) is the pdf of u
0
k conditioned on ¢2,

and f(¢2;½) is the pdf of ¢2 with STD ½. From (18),
we see that if the variance of ¢2 is small compared
with that of noise, u0k is just the median of noise
samples fºk¡l, : : : ,ºk+lg. As outliers are removed by
the median filtering, it is then reasonable to assume
that u0k is a Gaussian process. Notice that u

0
k is the

new measurement noise to the Kalman filter. Since the
Kalman filter yields linear unbiased state estimates,
zero-mean Gaussian measurement noise will result
in zero-mean Gaussian estimation errors. Hence
one can approximate ¢2 by a zero-mean Gaussian
random variable. In practice, ½ can be estimated from
the corresponding entry of the covariance matrix in
the Kalman filter. We elaborate on this in the next
section.
In Figs. 6 and 7, the relations of ¾u0 and ½

are plotted for Gaussian noise and glint noise,
respectively. For comparison purposes, we also plot
the relations of ¾u and ¢1 in the same figures. Note
that ¢1 and ½ have the same unit. We first note that
¾u0 increases as ½ increases. Thus, ½ plays the same
role as ¢1 in the direct structure. The other important
observation is that ¾u0(½) is less than ¾u(¢1) for
the same ½ and ¢1. As we mentioned, ½ is usually
less than ¢1 for the same inputs. This indicates
that ¾0u may be much smaller than ¾u. Also note
that due to the feedback structure, u0k is not white
anymore. Since ¢2 is obtained after preprocessing and
Kalman filtering, ½ can be much smaller than ¾2º .
Thus, we can consider that the non-white effect is
small.

Fig. 6. Output STD of feedback median filtering with Gaussian
noise (output STD of direct median filtering is shown for

comparison).

Fig. 7. Output STD of direct median filtering with glint
noise (output STD of direct median filtering is shown for

comparison).

V. SIMULATION RESULTS

In this section, we carry out some simulations to
evaluate the performance of the proposed algorithm.
We only consider a 1-D tracking problem where
the system models are described in (11) and (12).
Let the total tracking interval be 150 s. The initial
target velocity is 120 m/s. Maneuvering occurs from
the 60th second to 80th second with the constant
acceleration 20 m/s2. After maneuvering, the velocity
changes from 120 m/s to 540 m/s. From (16), we find
that ¢1 = 36 before maneuvering and ¢1 = 162 after
maneuvering.
The IMM algorithm is used to track the

maneuvering target. The IMM algorithm consists
of a two-order model for nonmaneuvering and
a third-order model for maneuvering [34]. The
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state-space models can be written as·
x

v

¸
k+1

=
·
1 T

0 1

¸·
x

v

¸
k

+
· 1
2T

2

T

¸
wk (29)

264xv
a

375
k+1

=

2641 T 1
2T

2

0 1 T

0 0 1

375
264xv
a

375
k

+

264
1
6T

3

1
2T

2

T

375wmk :
(30)

The process noise variances are chosen as E[wkwk] =
0 (m/s2)2 and E[wmk w

m
k ] = 20

2 (m/s2)2. The Markovian
transition probability matrix in our two-model IMM
algorithm is set as follows:

[pij] =
·
0:95 0:05

0:05 0:95

¸
: (31)

As (31) shows, the transition probability of the same
model between two sample batches is 95%. A larger
p12 yields less tracking error when the target is
maneuvering, but renders a higher error penalty when
the target is nonmaneuvering.
Another parameter yet to be determined is the

output STD of the preprocessor. For direct median
filtering, we assume that the actual target velocity is
known and find the corresponding output STD from
Figs. 4 and 5. Note that this is just for comparison
purposes since we cannot know the actual target
velocity in practice. For feedback median filtering,
we use the STD of the velocity estimation error in the
Kalman filter to approximate ½ and find the output
variance from Figs. 6 and 7.
We compare the tracking performances of

preprocessors using mean filtering, direct median
filtering, and feedback median filtering. Two sets
of experiments are conducted to demonstrate the
effectiveness of our feedback median filtering for
Gaussian noise and glint noise. The performance is
compared using the root mean squares error (RMSE)
criterion, which is defined as follows:

RMSE(k) =

vuut 1
N

NX
i=1

(xk ¡ x̂ik)2,

k = 1,2, : : : ,100; N = 500 (32)

where x̂ik denotes the state estimate of the ith Monte
Carlo run for the kth sample. We carry out 500 Monte
Carlo runs and report the averaged RMSE.
In the first set of experiments, we let the

measurement sampling period be 0.3 s and the
batch size be five. We add white Gaussian noise
with STD = 100m to the tracking trajectory. The
tracking results are shown in Fig. 8. We can see
that the performance of the median filter with the
direct structure is seriously degraded when the target
velocity is high. This is consistent with the results

Fig. 8. RMSE comparison of position tracking with Gaussian
noise.

Fig. 9. RMSE comparison of position tracking with glint noise.

in Fig. 4. Since the velocity increases constantly
during target maneuvering, the tracking behavior in
this period becomes peculiar. The tracking error first
increases due to the suddenly target maneuvering.
Then the number of observations increases, the error
decreases. However, as the maneuvering continues,
the target velocity becomes higher and higher and the
median filter performance becomes worse and worse.
The error increases again. The median preprocessor
with the feedback structure has compensated for
the degradation due to velocity. As described, the
mean filter is optimal in this case. However, the
performance difference between the mean filtering and
the feedback median filtering is small.
Then, we examine the tracking results with glint

noise. We set the parameters of the SCM as ¾1 =
100m, ¾0 = 7¾1, and ²= 0:1. Here, we assume that
these parameters are known to the tracker. If these
parameters are unknown, we can identify them in
advance, using algorithms such as those in [7]. In
Fig. 9, we compare tracking performance for all
preprocessing schemes. As we can see, the mean filter
is inadequate here. The median-based filters perform
better. Before maneuvering, the performance of the
feedback median filter is similar to that of the
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Fig. 10. RMSE comparison of position tracking with Gaussian
noise.

direct median filter. However, the performance of the
feedback median filter is much better when the target
velocity is high.
In the second set of experiments, we let the

sampling period be 0.0714 s and the batch size be 21.
Note that the time span for a batch is the same as that
in the first set of experiments. For the direct median
filtering, the output STD functions in Figs. 4 and 5
are not valid anymore since the batch size is different
now. To understand the batch size effect, we carry
out simulations finding the relationship between the
output STD and the batch size (the time span remains
the same). We have the following observations. First,
the output STD decreases as the batch size increases.
This is not surprising since we have more data in
a batch. Second, the output STD increases as the
target velocity increases no matter what block size
is used. This indicates that direct median filtering will
always suffer in the non-IID problems. Only when the
time span of the batch is small will this problem be
alleviated.
In this set of experiments, we add the robust

M-estimator preprocessing algorithm used in [1] for
additional comparison. Being an iterative algorithm,
the M-estimator requires intensive computations.
As we mentioned, it is not suitable for practical
implementation. The parameter c in [1] is chosen as 3
in our simulations. Fig. 10 shows tracking results for
Gaussian noise and Fig. 11 for glint noise. From these
figures, we can see that performance of the robust
M-estimator is similar to that of the direct median
filtering scheme. As the direct median filtering,
the M-estimator is strongly affected by the target
velocity. In contract, feedback median filtering is
not sensitive to the target velocity. Based on these
results, we conclude that while the feedback median
preprocessing can provide best tracking performance
for glint noise, it also has similar performance to
the mean filter for Gaussian noise. Thus, this is a
robust preprocessing scheme for maneuvering target
tracking.

Fig. 11. RMSE comparison of position tracking with glint noise.

VI. CONCLUSION

In this paper, we suggest the median filter as
a preprocessor in place of the complicated robust
M-estimator proposed by Hewer, Martin, and Zeh
[1]. Due to its superior capabilities for preserving
abrupt signal changes and rejecting impulse-like
noise, the median filter is suitable for the tracking
application. The simple structure is another advantage
facilitating real-time implementation. When the target
velocity is high, direct application of the median
filter does not yield good results. We have proposed
a feedback scheme that can solve this problem
without substantially increasing complexity. The
effect of non-IID inputs is also theoretically analyzed.
Simulations show that our scheme is robust and
suitable for real-time implementation. It can provide
satisfactory results either in the Gaussian noise or in
the glint noise environment.
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