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Abstract

A new LDA-based face recognition system is presented in this paper. Linear discriminant analysis (LDA) is one of the
most popular linear projection techniques for feature extraction. The major drawback of applying LDA is that it may
encounter the small sample size problem. In this paper, we propose a new LDA-based technique which can solve the small
sample size problem. We also prove that the most expressive vectors derived in the null space of the within-class scatter
matrix using principal component analysis (PCA) are equal to the optimal discriminant vectors derived in the original
space using LDA. The experimental results show that the new LDA process improves the performance of a face
recognition system signi"cantly. ( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Face recognition has been a very hot research topic in
recent years [1}4]. A complete face recognition system
includes two steps, i.e., face detection [5,6] and face
recognition [7,8]. In this paper, attention will be focused
on the face recognition part. In the last 10 years, a great
number of successful face recognition systems have been
developed and reported in the literature [7}13]. Among
these works, the systems reported in Refs. [7,10}13] all
adopted the linear discriminant analysis (LDA) approach
to enhance class separability of all sample images for
recognition purposes. LDA is one of the most popular
linear projection techniques for feature extraction.
It "nds the set of the most discriminant projection

vectors which can map high-dimensional samples onto
a low-dimensional space. Using the set of projection
vectors determined by LDA as the projection axes, all
projected samples will form the maximum between-class
scatter and the minimum within-class scatter simulta-
neously in the projective feature space. The major draw-
back of applying LDA is that it may encounter the
so-called small sample size problem [14]. This problem
arises whenever the number of samples is smaller than
the dimensionality of the samples. Under these circum-
stances, the sample scatter matrix may become singular,
and the execution of LDA may encounter computational
di$culty.

In recent years, many researchers have noticed this
problem and tried to solve it using di!erent methods. In
Ref. [11], Goudail et al. proposed a technique which
calculated 25 local autocorrelation coe$cients from each
sample image to achieve dimensionality reduction. Sim-
ilarly, Swets and Weng [12] applied the PCA approach
to accomplish reduction of image dimensionality. Besides
image dimensionality reduction, some researchers have
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tried to overcome the computational di$culty directly
using linear algebra. Instead of calculating eigenvalues
and eigenvectors from an n]n matrix, Fukunaga [14]
proposed a more e$cient algorithm and calculated eig-
envalues and eigenvectors from an m]m matrix, where
n is the dimensionality of the samples and m is the rank of
the within-class scatter matrix S

w
. In Ref. [15], Tian et al.

used a positive pseudoinverse matrix S`
w

instead of calcu-
lating the matrix S~1

w
. For the same purpose, Hong and

Yang [16] tried to add the singular value perturbation in
S
w

and made S
w

a nonsingular matrix. In Ref. [17],
Cheng et al. proposed another method based on the
principle of rank decomposition of matrices. The above
three methods are all based on the conventional Fisher's
criterion function. In 1992, Liu et al. [18] modi"ed the
conventional Fisher's criterion function and conducted
a number of researches [10,18,19] based on the new
criterion function. They used the total scatter matrix
S
t
("S

b
#S

w
) as the divisor of the original Fisher's func-

tion instead of merely using the within-class scatter
matrix. They then proposed another algorithm based on
the Foley}Sammon transform [20] to select the set of the
most discriminant projection vectors. It is known that
the purpose of an LDA process is to maximize the be-
tween-class scatter while simultaneously minimizing the
within-class scatter. When the small sample size problem
occurs, the within-class scatter matrix S

w
is singular. The

theory of linear algebra tells us that it is possible to "nd
some projection vectors q@s such that qtS

w
q"0 and

qtS
b
qO0. Under the above special circumstances, the

modi"ed Fisher's criterion function proposed by Liu
et al. [10] will de"nitely reach its maximum value, i.e., 1.
However, an arbitrary projection vector q satisfying the
maximum value of the modi"ed Fisher's criterion cannot
guarantee maximum class separability unless qtS

b
q is

further maximized. Liu et al.'s [10] approach also su!ers
from the stability problem because the eigenvalues deter-
mined using their method may be very close to each
other. This problem will result in instability of the projec-
tion vector determination process. Another drawback of
Liu et al.'s approach is that their method still has to
calculate an inverse matrix. Most of the time, calculation
of an inverse matrix is believed to be a bottleneck which
reduces e$ciency.

In this paper, a more e$cient, accurate, and stable
method is proposed to calculate the most discriminant
projection vectors based on the modi"ed Fisher's cri-
terion. For feature extraction, a two-stage procedure is
devised. In the "rst stage, the homogeneous regions of
a face image are grouped into the same partition based
on geometric characteristics, such as the eyes, nose, and
mouth. For each partition, we use the mean gray value of
all the pixels within the partition to represent it. There-
fore, every face image is reduced to a feature vector. In
the second stage, we use the feature vectors extracted in
the "rst stage to determine the set of the most dis-

criminant projection axes based on a new LDA process.
The proposed new LDA process starts by calculating the
projection vectors in the null space of the within-class
scatter matrix S

w
. This null space can be spanned by

those eigenvectors corresponding to the set of zero eigen-
values of S

w
. If this subspace does not exist, i.e., S

w
is

nonsingular, then S
t

is also nonsingular. Under these
circumstances, we choose those eigenvectors correspond-
ing to the set of the largest eigenvalues of the matrix
(S

b
#S

w
)~1S

b
as the most discriminant vector set; other-

wise, the small sample size problem will occur, in which
case we will choose the vector set that maximizes the
between-class scatter of the transformed samples as the
projection axes. Since the within-class scatter of all
the samples is zero in the null space of S

w
, the projection

vector that can satisfy the objective of an LDA process is
the one that can maximize the between-class scatter.
A similar concept has been mentioned in Ref. [13]. How-
ever, they did not show any investigation results, nor did
they draw any conclusions concerning the concept. We
have conducted a series of experiments and compared
our results with those of Liu et al.'s approach [10] and
the template matching approach. The experimental re-
sults have shown that our method is superior to both Liu
et al.'s approach and the template matching approach
in terms of recognition accuracy. Furthermore, we have
also proved that our method is better than Liu et al.'s
approach in terms of training e$ciency as well as stabil-
ity. This indicates that the new LDA process signi"cantly
improves the performance of a face recognition system.

The organization of the rest of this paper is as follows:
In Section 2, the complete two-phase feature extraction
procedure will be introduced. Experimental results in-
cluding those of database construction, experiments on
the small sample size problem, and comparisons with two
well-known approaches, will be presented in Section 3.
Finally, concluding remarks will be given in Section 4.

2. Feature extraction

In this section, we shall describe in detail the proposed
feature extraction technique, which includes two phases:
pixel grouping and generalized LDA based on the modi-
"ed Fisher's function.

2.1. Pixel grouping

According to the conclusion drawn in Ref. [21], a
statistics-based face recognition system should base its
recognition solely on the `purea face portion. In order
to ful"ll this requirement, we have built a face-only
database using a previously developed morphology-
based "lter [6]. Using this morphological "lter, the eye-
analogue segments are grouped into pairs and used to
locate potential face regions. Thus, every constituent of
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Fig. 1. Examples of normalized face-only images. The top two
rows of images are of the same person, and the bottom two rows
are of another person.

Fig. 2. Illustration of the pixel grouping process. N normalized
face images are piled up and aligned into the same orientation.
Suppose the image size is P]P; then P2 N-dimensional vectors
are obtained, and the elements of a vector are the gray values of
the pixels in N di!erent images.

the face-only database is the face portion containing only
the eyes, nose and mouth. Some examples of this face
database are shown in Fig. 1. In order to execute pixel
grouping, the above-mentioned face-only images are
transformed into normalized sizes. Let the training
database be comprised of N normalized face-only images
of size P]P. We pile up these N images and align them
into the same orientation, as shown in Fig. 2. Therefore,
we obtain P2 N-dimensional vectors whose elements are
the gray values of the pixels. These P2 N-dimensional
vectors are then clustered into m groups using the k-
means clustering method, where m is the resolution of the
transformed images. After clustering, each image is par-
titioned into m groups, and each pixel is assigned to one
of the groups. For each image, we calculate the average
gray value of each group and use these m mean values
to represent the whole image. Thus, the P2-dimensional
images are now reduced to m-dimensional with m;P2.
Fig. 3 shows some examples of the transformed images.
The images in the leftmost column are the original im-
ages of size 60]60, and the others are the transformed
images with increasing resolutions of 25, 26, 27, and 28,
respectively, from left to right. After pixel grouping, we
use the transformed images to execute the second phase
} generalized LDA.

2.2. Generalized LDA

The purpose of pixel grouping is to reduce the dimen-
sionality of the samples and to extract geometric features;
however, it does not take class separability into consid-
eration at all. In the literature [10}12], LDA is a well-
known technique for dealing with the class separability
problem. LDA can be used to determine the set of the

most discriminant projection axes. After projecting all
the samples onto these axes, the projected samples will
form the maximum between-class scatter and the min-
imum within-class scatter in the projective feature space.
In what follows, we shall "rst introduce the LDA ap-
proach and some related works. In the second subsec-
tion, we shall describe our approach in detail.

2.2.1. Conventional LDA and its potential problem
Let the training set comprise K classes, where each

class contains M samples. In LDA, one has to determine
the mapping

xJ k
m
"Atxk

m
, (1)

where xk
m

denotes the n-dimensional feature vector
extracted from the mth sample of the kth class, and
xJ k
m

denotes the d-dimensional projective feature vector of
xk
m

transformed by the n]d transformation matrix A.
One way to "nd the mapping A is to use Fisher's criterion
[22]:

F(q)"
qtS

b
q

qtS
w
q
, (2)

where q3Rn, S
b
"+K

k/1
(xN k!xN )(xN k!xN )t, and S

w
"+K

k/1+M
m/1

(xk
m
!xN k)(xk

m
!xN k)t are the between-class scatter

matrix and within-class scatter matrix, respectively,
where xN k"1/M+M

m/1
xk
m

and xN "1/KM+K
k/1

+M
m/1

xk
m
.
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Fig. 3. Results obtained after performing pixel grouping. The
images in the leftmost column are the original images, and the
others are the transformed images with the increasing resolu-
tions of 25, 26, 27, and 28, from left to right.

The column vectors of A can be chosen from the set of qJ 's,
where

qJ "arg max
q|Rn

F(q). (3)

After projecting all the xk
m
's (where k"1,2, K;

m"1,2, M) onto the qJ axis, the projected samples, xJ k
m
's

(k"1,2, K; m"1,2, M), will form the maximum be-
tween-class scatter and the minimum within-class scatter.
The vector qJ is called the optimal discriminant projection
vector. According to linear algebra, all qJ @s can be eigen-
vectors corresponding to the set of largest eigenvalues of
S~1
w

S
b
. The major drawback of applying the LDA ap-

proach is that it may encounter the small sample size
problem [14]. The small sample size problem occurs
whenever the number of samples is smaller than the

dimensionality of the samples. Whenever this happens,
the matrix S

w
becomes singular, and the computation of

S~1
w

becomes complex and di$cult. Liu et al. seriously
addressed the problem in [10,18,19]. One of their e!orts
was to propose a modi"ed Fisher's criterion function,
FK (q), to replace the original Fisher's function, F(q). They
have proved [19] that FK (q) is exactly equivalent to F(q).
That is,

arg max
q|Rn

FK (q)"arg max
q|Rn

F(q). (4)

In what follows, we shall directly describe two theorems
of Ref. [19] which are related to our work.

Theorem 1. Suppose that R is a set in the n-dimensional
space, ∀x3R, f (x)*0, g(x)*0, and f (x)#g(x)'0. Let
h
1
(x)"f (x)/g(x), and h

2
(x)"f (x)/( f (x)#g(x)). Then,

h
1
(x) has the maximum (including positive inxnity) at point

x
0

in R iw h
2
(x) has the maximum at point x

0
[19].

Theorem 2. The Fisher's criterion function F(q) can be
replaced by

FK (q)"
qtS

b
q

qtS
w
q#qtS

b
q

(5)

in the course of solving the discriminant vectors of the
optimal set [19].

From the above two theorems, we know that F(q) and
FK (q) are functionally equivalent in terms of solving the
optimal set of projection axes (or discriminant vectors).
Therefore, one can choose either F(q) or FK (q) to derive the
optimal projection axes. In this paper, we propose a new
method to calculate the optimal projection axes based on
FK (q). According to the normal process of LDA, the solu-
tions of maxq|Rn FK (q) should be the eigenvectors corre-
sponding to the set of the largest eigenvalues of the
matrix (S

b
#S

w
)~1S

b
. If the small sample size problem

occurs at this point, the eigenvectors of (S
b
#S

w
)~1S

b
will be very di$cult to compute due to the singularity
problem. In order to avoid direct computation of
(S

b
#S

w
)~1S

b
, Liu et al. [19] suggested deriving the dis-

criminant vectors in the complementary subspace of the
null space of S

t
(S

t
"S

b
#S

w
, which denotes a total scat-

ter matrix), where the null space of S
t
is spanned by the

eigenvectors corresponding to the zero eigenvalues of S
t
.

Since the total scatter matrix S@
t
in the complementary

subspace is nonsingular, it is feasible to follow the normal
LDA process to derive the discriminant vectors in this
subspace. However, there are still some critical problems
associated with this approach. The "rst problem with Liu
et al.'s approach is the validity of the discriminant vector
set problem. It is known that the purpose of LDA is to
maximize the between-class scatter while minimizing the
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within-class scatter simultaneously. In the special case
where qtS

w
q"0 and qtS

b
qO0, Eq. (5) will de"nitely

reach the maximum value of FK (q). However, an arbitrary
projection vector q satisfying the above conditions can-
not guarantee derivation of the maximum qtS

b
q value.

Under these circumstances, a correct LDA process can-
not be completed because only the within-class scatter is
minimized while the between-class scatter is not surely
maximized. The second problem associated with Liu
et al.'s approach is the stability problem. In Ref. [23], the
author stated that an eigenvector will be very sensitive to
small perturbation if its corresponding eigenvalue is close
to another eigenvalue of the same matrix. Unfortunately,
in Ref. [18], the matrix used to derive the optimal projec-
tion vector su!ers from the above-mentioned problem. In
other words, their optimal projection vector determina-
tion process may be severely in#uenced whenever a small
perturbation is added. The third problem associated with
Liu et al.'s approach [18] is the singularity problem. This
is because their approach still has to calculate the inverse
of the matrix S@

t
. In this paper, we propose a more

e$cient, accurate, and stable method to derive the most
discriminant vectors from LDA based on the modi"ed
Fisher's criterion. In the proposed approach, we calculate
the projection vectors in the null space of the within-class
scatter matrix S

w
because the projection vectors found in

this subspace can make all the projected samples form
zero within-class scatter. Furthermore, we will also prove
that "nding the optimal projection vector in the original
sample space is equivalent to calculating the most expres-
sive vector [12] (via principal component analysis) in the
above-mentioned subspace. In what follows, we shall
describe the proposed method in detail.

2.2.2. The proposed method
Let the database comprise K classes, where each class

contains M distinct samples, and let xk
m

be an n-dimen-
sional column vector which denotes the feature vector
extracted from the mth sample of the kth class. Suppose
S
w

and S
b
are, respectively, the within-class scatter matrix

and the between-class scatter matrix of xk
m
's (where

k"1,2, K; m"1,2, M), and suppose the total scatter
matrix S

t
"S

w
#S

b
. According to linear algebra [24]

and the de"nitions of the matrices S
t
, S

w
, and

S
b
, rank(S

t
))rank(S

b
)#rank(S

w
), where rank(S

t
)"

min(n, KM!1), rank(S
b
)"min(n, K!1), and rank(S

w
)

"min(n, K](M!1)). In this paper, we shall determine
a set of discriminant projection vectors from the null
subspace of S

w
. Therefore, the rank of S

w
certainly is the

major focus of this research. Suppose the rank of S
w

is r,
i.e., r"min(n, K](M!1)). If r"n, this implies that
K](M!1)*nNKM*n#KNKM!1*n#K
!1*n. The above inequality means that the rank of
S
t
is equal to n. Consequently, if S

w
is nonsingular, then

S
t
is nonsingular, too. Under these circumstances, there

will be no singularity problem when the matrix S~1
t

S
b
is

computed in the normal LDA process. On the other
hand, if r is smaller than n, the small sample size problem
will occur. For this case, we propose a new method to
derive the optimal projection vectors.

Fig. 4 illustrates graphically the process of deriving the
optimal projection vectors when r(n. In the top part of
Fig. 4, < stands for the original sample space, and ¹ rep-
resents a linear transformation: ¹(x)"S

w
x, x3<. Since

the rank of S
w

is smaller than the dimensionality of
<(r(n), there must exist a subspace <

0
L< such that

<
0
"spanMa

i
D S

w
a
i
"0, for i"1,2, n!rN. <

0
here is

called the null space of S
w
. In the bottom part of Fig. 4,

the #ow chart of the discriminant vector determination
process is illustrated. Let Q"[a

1
,2,a

n~r
]. First, all

samples X's are transformed from < into its subspace
<

0
through the transformation QQt. Then, the eigenvec-

tors corresponding to the largest eigenvalues of the be-
tween-class scatter matrix SI

b
(a new matrix formed by the

transformed samples) in the subspace <
0

are selected as
the most discriminant vectors. In what follows, we shall
describe our approach in detail.

First of all, Lemma 1 shows the subspace where we can
derive the discriminant vectors based on maximizing the
modi"ed Fisher's criterion.

Lemma 1. Suppose <
0
"spanMa

i
DS

w
a
i
"0, a

i
3Rn, i"

1,2, n!rN, where n is the dimensionality of samples, S
w

is
the within-class scatter matrix of the samples, and r is the
rank of S

w
. Let S

b
denote the between-class scatter matrix of

the samples. For each qJ 3l
0

which satisxes qJ tS
b
qJ O0, it

will maximize the function FK (q)"qtS
b
q/(qtS

b
q#qtS

w
q).

Proof. 1. Since both S
b

and S
w

are real symmetric,
qtS

b
q*0 and qtS

w
q*0, for all q3Rn, it follows that

0)qtS
b
q)qtS

b
q#qtS

w
qN0)FK (q)

"

qtS
b
q

qtS
b
q#qtS

w
q
)1.

It is obvious that FK (q)"1 if and only if qtS
b
qO0 and

qtS
w
q"0.

2. For each q(3<
0
, qJ can be represented as a linear

combination of the set Ma
i
N, i.e., qJ "+n~r

i/1
a
i
a
i
, where a

i
is

the projection coe$cient of qJ with respect to a
i
. There-

fore, we have

S
w
qJ "S

w

n~r
+
i/1

a
i
a
i
"

n~r
+
i/1

a
i
S
w
a
i
"0NqJ tS

w
qJ "0.

From 1. and 2., we can conclude that for each qJ 3<
0

which satis"es qJ tS
b
qJ O0, the function FK (q) will be maxi-

mized.
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Fig. 4. Illustration of the projection vector set determination process. At the top of the "gure, ¹ is a linear transformation from < to
=: ¹(x)"S

w
x, x3<.<

0
is the null space of S

w
. In the middle of the "gure, X stands for the original sample set, and XI is the transformed

sample feature set of X obtained through the transformation QQt, where Q"[a
1
,2,a

n~r
], n is the dimensionality of the samples, r is the

rank of S
w
, and S

w
a
i
"0 for each a

i
. The most discriminant vectors for LDA can be computed from the between-class scatter matrix, SM

b
,

of XI .

Lemma 1 has a critical issue related to LDA. That is,
when the small sample size problem occurs, an arbitrary
vector qJ 3<

0
that maximizes FK (q) is not necessarily the

optimal discriminant vector of LDA. This is because
under the above situation, qJ tS

b
qJ is not guaranteed to

reach the maximal value. Therefore, one can conclude
that it is not su$cient to derive the discriminant vector
set simply based on the modi"ed Fisher's criterion when
the small sample size problem occurs. In what follows,
Lemma 2 will show that the within-class scatter matrix of
all the transformed samples in <

0
is a complete zero

matrix. Lemma 2 is very important because once it is
proved correct, determination of the discriminant vector
set no longer depends on the total scatter matrix. Instead,
the discriminant vector set can be derived directly from
the between-class scatter matrix.

Lemma 2. Let QQt be a transformation which transforms
the samples in < into a subspace <

0
, where Q"

[a
1
,2, a

n~r
] is an n](n!r) matrix and each a

i
satisxes

S
w
a
i
"0, for i"1,2, n!r; and where the subspace

<
0

is spanned by the orthonormal set of a
i
's. If all the

samples are transformed into the subspace<
0

through QQt,
then the within-class scatter matrix SI

w
of the transformed

samples in <
0

is a complete zero matrix.

Proof. suppose xk
m

is the feature vector extracted from
the mth sample of the kth class, and that the data-
base comprised K classes, where each class contains M
samples. Let yk

m
denote the transformed feature vector

of xk
m

through the transformation QQt. That is,
yk
m
"QQtxk

m
, yN k"QQtxN k, and yN "QQtxN , where xN k"1/

M+M
m/1

xk
m

and x6 "1/KM+K
k/1

+M
m/1

xk
m

Thus,

SI
w
"

K
+
k/1

M
+

m/1

(yk
m
!yN k)(yk

m
!yN k)t

"

K
+
k/1

M
+

m/1

(QQtxk
m
!QQtxN k)(QQtxk

m
!QQtxN k)t

"QQt
K
+
k/1

M
+

m/1

(xk
m
!xN k)(xk

m
!xN k)QQt

"QQtS
w
QQt"0, since S

w
Q"0. (6)

We have mentioned earlier that the LDA process is
used to determine the set of the most discriminant projec-
tion axes for all the samples. After projection, all the
projected samples form the minimum within-class scatter
and the maximum between-class scatter. Lemma 1 tells
us that for any qJ 3<

0
, as long as it satis"es qJ tS

b
qJ O0, the

modi"ed Fisher's criterion, FK (q), will be maximized to 1.
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However, Lemma 1 also tells us that we should add
another criterion to perform LDA, not just depend on
the Fisher's criterion. Lemma 2, on the other hand, tells
us that the selection of qJ 3<

0
enforces SI

w
"0. That is to

say: SI
t
"SI

w
#SI

b
"SI

b
. Since SI

w
is consistently equal to 0,

we have to select a set of projection axes that can maxi-
mize the between-class scatter in<

0
. From the above two

lemmas, we know that maximizing the between-class
scatter in <

0
is equal to maximizing the total scatter in

<
0
. Under these circumstances, we can apply the princi-

pal component analysis (PCA) method [25] to derive the
set of the most discriminant projection vectors and ful"ll
the requirement of LDA. The physical meaning of PCA is
to "nd a set of the most expressive projection vectors
such that the projected samples retain the most informa-
tion about the original samples. The most expressive
vectors derived from a PCA process are the l eigenvectors
corresponding to the l largest eigenvalues of SI

t
, where

(+ l
i/1

j
i
/ +n

i/1
j
i
)*p, n is the dimensionality of samples,

and j
i
represents the eigenvalue ordered in the ith place

in SI
t
. Basically, j

i
is in the decreasing order from 1 to n. If

p"0.95, a good enough representation is obtained [26].
In what follows, we shall show the proposed method in
Theorem 3 based on the above two lemmas.

Theorem 3. Suppose that Q"[a
1
,2, a

n~r
], and that a

i
's

are the eigenvectors corresponding to the zero eigenvalues
of the within-class scatter matrix S

w
in the original feature

space<, where n is the dimensionality of the feature vectors
and r is the rank of S

w
. Let <

0
denote the subspace spanned

by the set of eigenvectors a
1
,2,a

n~r
. If r is smaller than n,

the most expressive vector qJ in <
0

obtained through the
transformation QQt will be the most discriminant vector
in <.

Proof. 1. From Lemma 2, we know that the within-class
scatter matrix SI

w
in <

0
is a complete zero matrix. Thus,

the between-class scatter matrix SI
b
in <

0
is equal to the

total scatter matrix SI
t
in <

0
.

2. The most expressive projection vector qJ in <
0

satis-
"es qJ tSI

b
qJ '0. Suppose S

b
"SI

b
#SK

b
, where S

b
, SI

b
, and SK

b
are all real symmetric. Then,

qJ tS
b
qJ "qJ tSI

b
qJ #qJ tSK

b
qJ *qJ tSI

b
qJ '0NqJ tS

b
qJ O0.

3. We can show that qJ is the optimal solution within
<

0
that can maximize FK (q). Since the most expressive

projection vector qJ in<
0
can maximize the value of qJ tS

b
qJ ,

and qJ tS
w
qJ "0 is known, we can conclude that the most

expressive projection vector in <
0

is the most dis-
criminant projection vector in < for LDA.

After projecting all the samples onto the projective
feature space based on Theorem 3, a Euclidean distance
classi"er is used to perform classi"cation in the projec-
tive feature space.

The proposed algorithm
Input: N n-dimensional vectors.
Output: The optimal discriminant vector set of all N

input vectors.
Algorithm:

Step 1. Calculate the within-class scatter S
w

and the
between-class scatter S

b
.

Step 2. Suppose the rank of S
w

is r. If r"n, then the
discriminant set is the eigenvectors corresponding to the
set of the largest eigenvalues of matrix (S

b
#S

w
)~1S

b
;

otherwise, go on to the next step.
Step 3. Perform the singular value decomposition of

S
w

as S
w
";+<t, where U"V because S

w
is symmetric.

Step 4. Let <"[l
1
,2,l

r
, l

r`1
,2,l

n
] and Q"[l

r`1
,

2,l
n
]. (It has been shown in Ref. [24] that the null space

of S
w

can be spanned by l
r`1

,2,l
n
).

Step 5. Compute SI
b
, where SI

b
"QQtS

b
(QQt)t.

Step 6. Calculate the eigenvectors corresponding to the
set of the largest eigenvalues of SI

b
and use them to form

the most discriminant vector set for LDA.

3. Experimental results

3.1. Database construction and feature extraction

The facial image database contained 128 persons
(classes), in which for each person, 10 di!erent face im-
ages with frontal views were obtained. The process for
collecting facial images was as follows: after asking the
persons to sit down in front of a CCD camera, with
neutral expression and slightly head moving in frontal
views, a 30-s period was recorded on videotape under
well-controlled lighting condition. Later, a frame grabber
was used to grab 10 image frames from the videotape and
stored them with resolution of 155]175 pixels. Accord-
ing to the conclusion drawn in Ref. [21], which stated
that a statistics-based face recognition system should
base its recognition solely on the `purea face portion,
a face-only database was built using a previously de-
veloped morphology-based "lter [6]. Part of the
database is shown in Fig. 1. For pixel grouping, each
database image was transformed into a normalized size,
60]60. Then, all the 1280 database images (128]10)
were piled up and aligned into the same orientation.
After this process, 3600 1280-dimensional vectors were
obtained. These vectors were then clustered into
m groups (where m stands for the required resolution)
using the K-means clustering method. For each image,
the average gray value of each group was calculated, and
then these m mean values were used to represent the
whole image. Therefore, the dimensionality of each image
was reduced from 3600 to m dimensions. Since m is
a variable which stands for the dimensionality of
the feature vectors of experimentation, we designed an
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Table 1
Face recognition results obtained by applying di!erent num-
bers of features extracted from images. The training database
contains 128 persons, where each person contains six distinct
samples

Number of
features

Number of
projection
axes used

Recognition
rate (%)

Training
time (S)

m"32 29 95.28 0.3039
m"64 53 96.27 1.1253
m"128 70 97.54 3.5746
m"256 98 97.34 17.1670

Fig. 5. Experimental results obtained using our method under
the small sample size problem. The &#' sign means that each
class in the database contains 2 samples. The &]' sign and &s'
sign mean each class in the database contains three and six
samples, respectively.

experiment to decide the best value of m for subsequent
experiments. For this experiment, we chose a training
database containing 128 persons, with six frontal view
samples for each person. For testing purposes, we used
a 128-person testing database. Within the database, we
obtained 10 samples for each person. Since the database
used was a large database, the projection vectors for
LDA could be directly computed from S~1

t
S
b
. Table 1

showed a set of experimental results obtained by ap-
plying di!erent m values (m"32, 64, 128, and 256). The
data shown in the second column of Table 1 are the
number of projection axes used at a certain resolution.
The number of projection axes adopted was decided by
checking the p value mentioned in Section 2.2.2. If
p reached 0.95, then we used its corresponding number of
projection axes as the maximum number of projection
axes. Therefore, for m"32 and 64, the corresponding
number of projection axes adopted as 29 and 53, respec-
tively. From Table 1, we "nd that m"128 was the most
suitable number of features in terms of recognition rate
and training e$ciency. Therefore, in the subsequent sets
of experiments, this number (m"128) was globally used.

3.2. Experiments on the small sample size problem

In order to evaluate how our method interacts with the
small sample size problem, including problems like the
number of samples in each class and the total number of
classes used, we conducted a set of experiments and show
the results in Fig. 5. The horizontal axis in Fig. 5 repres-
ents the number of classes used for recognition, and the
vertical axis represents the corresponding recognition
rate. The &#', &]', and &s' signs in Fig. 5 indicate there
were 2, 3, and 6 samples in each class, respectively, for
experimentation. The results shown in Fig. 5 re#ect that
the proposed approach performed fairly well when the
size of the database was small. However, when K (the
number of classes) multiplied the M!1 (the number of
samples minus 1) was close to n(n"128), the perfor-

mance dropped signi"cantly. This phenomenon was es-
pecially true for the case where M"6. In Section 2.2.2,
we have mentioned that the information for deriving the
most discriminant vectors depended on the null space
of S

w
, <

0
. The dimension of <

0
, dim(<

0
), was equal to

n!(KM!K), where n is equal to 128, K is the number
of classes and M is the number of samples in each class.
When M"6 and K approached 25, K(M!1) was very
close to n(128). Under these circumstances, the recogni-
tion rate dropped signi"cantly (see Fig. 5). The reason for
this phenomenon emerged was the low value of dim(<

0
).

When the dim(<
0
) value was small, not many spaces were

available for deriving the discriminant projection axes;
hence, the recognition rate dropped. Inspecting another
curve (the &#' sign) in Fig. 5, it is seen that since there
were only two samples in each class, the corresponding
curve of the recognition rate is not as monotonous as
those for the cases that contained 3 and 6 samples in
a class. This part of the experiment provided a good
guide for making better decisions regarding the number
of samples in each class and the number of classes in
a database. When one wants to solve the small sample
size problem with good performance, the above experi-
mental results can be used as a good reference.

3.3. Comparison with other approaches

In order to demonstrate the e!ectiveness of our ap-
proach, we conducted a series of experiments and com-
pared our results with those obtained using two other
well-known approaches. Fig. 6 shows the experimental
results obtained using our approach, Liu et al.'s ap-
proach [10] and the template matching approach. The
horizontal axes and vertical axes in Fig. 6 represent the
number of classes in the database and the corresponding
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Fig. 6. The experimental results obtained using our method (&#' sign), Liu's method (&]' sign), and template matching (&s' sign). The
horizontal axis represents the number of classes in the database, and the vertical axis stands for the recognition rate. (a) The results
obtained when each class contains only two samples; (b) the results obtained when each class contains three samples; (c) the results
obtained when each class contains six samples.

recognition rate, respectively. In addition, the &#',&]'
and &s' signs shown in Fig. 6 stand for the recognition
results obtained using our approach, Liu et al.'s ap-
proach, and the template-matching approach, respective-
ly. Furthermore, the data shown in Fig. 6(a)}(c) are the
experimental results obtained when each class contained,
respectively, 2, 3, and 6 samples. Among the three ap-
proaches, the template-matching approach performed
recognition based solely on the original feature vectors.
Therefore, there was no LDA involved in this process.
Furthermore, from the data shown in Fig. 6, it is obvious
that Liu et al.'s approach was the worst. Basically, the
most serious problem which occurred in Liu's approach
was the degraded discriminating capability. Although the

derived discriminant vectors maximized the modi"ed
Fisher's criterion function, the optimal class separability
condition, which is the objective of an LDA process, was
not surely satis"ed. Therefore, the projection axes deter-
mined by Liu et al.'s approach could not guarantee to
provide the best class separability of all the database
samples. Therefore, it is no wonder that the performance
of Liu et al.'s approach was even worse than that of the
template-matching approach. On the other hand, our
approach was apparently superior because we forced the
within-class scatter in the subspace to be zero. This
constraint restricted the problem to a small domain,
hence, it could be solved in a much easier way. Another
advantage of our approach is that we do not need to
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Fig. 7. Training time required by our method (&#' sign) and Liu's method (&]' sign). The horizontal axis represents the number of classes
in the database, and the vertical axis stands for the training time. (a) The results obtained when each class contains only two samples; (b)
the results obtained when each class contains three samples; (c) the results obtained when each class contains six samples.

compute the inverse matrix. In Liu et al. [10], computa-
tion of the inverse matrix is indispensable. However,
since we project all the samples onto an appropriate
subspace, the computation of the inverse matrix, which is
considered a time bottleneck, can be avoided.

Another advantage of our approach over Liu et al.'s
approach is the training time requirement. Fig. 7 shows
three sets of experiments; in each set of experiments we
used di!erent numbers of samples in a class (2 in (a), 3
in (b), and 6 in (c)). The &#' and &]' signs represent,
respectively, the results obtained using our approach and
Liu et al.'s approach. From Fig. 7(a)}(c), it is obvious that
the training time required by Liu et al.'s approach grew
exponentially when the database was augmented. The
reason for this outcome was the projection axes deter-
mination process. In Liu et al.'s method, the projection

axes are determined iteratively. In each iteration, their
algorithm has to derive the projection vector in a recal-
culated subspace. Therefore, their training time is expo-
nentially proportional to the number of classes adopted
in the database. In comparison with Liu et al.'s approach,
our approach requires a constant time for training. This
is because our approach only has to calculate the sub-
space once and then derive all the projection vectors in
this subspace.

The experimental results shown in Figs. 6 and 7 are
comparisons between Liu et al.'s approach and ours in
terms of accuracy and e$ciency. In what follows, we shall
compare our method with Liu et al.'s method using
another important criterion } the stability criterion.
Table 2 shows a set of experimental results regarding the
stability test between our method and Liu et al.'s. In this
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Table 2
Stability test executed during the derivation of the "rst optimal projection vector. The training database comprised 10 classes, where
each class contains three samples. The elements shown in the second and the fourth columns represent the orientation di!erence between
the current optimal projection vector and the projection vector derived in the previous iteration

Iteration Our method Liu's method

Orientation di!erence
(degrees)

Recognition rate (%) Orientation di!erence
(degrees)

Recognition rate (%)

1 90.56 90.56
2 0.0006 90.56 92.3803 90.56
3 0.0005 90.56 98.7039 90.56
4 0.0005 90.56 127.1341 90.56
5 0.0005 90.56 100.4047 90.56
6 0.0006 90.56 94.8684 90.56
7 0.0006 90.56 97.4749 88.33
8 0.0007 90.56 77.8006 90.56
9 0.0006 90.56 99.7971 90.56

10 0.0006 90.56 75.0965 90.56

Table 3
The eigenvalues used to derive the "rst optimal projection
vector. The elements shown in the left column are the eigen-
values determined using our method. The ones shown in the
right column were determined using Liu et al.'s method

Eigenvalues determined
using our method

Eigenvalues determined
using Liu's method

3.31404839e#04 1.00000000e#00
2.39240384e#04 1.00000000e#00
1.67198579e#04 1.00000000e#00
1.01370563e#04 1.00000000e#00
6.88308959e#03 1.00000000e#00
7.41289737e#03 1.00000000e#00
2.70253079e#03 1.00000000e#00
5.53323313e#03 1.00000000e#00
3.46817376e#03 1.00000000e#00

set of experiments, we tried to compute the "rst optimal
projection vector in 10 iterations. The leftmost column of
Table 2 indicates the iteration number. The element
shown in the second and the fourth column of Table 2 is
the orientation di!erence (in degrees) between the current
optimal projection vector and the projection vector de-
rived in the previous iteration. The data shown in the
second column were obtained by applying our method
while the data shown in the fourth column were obtained
by applying Liu et al.'s method. Theoretically, the opti-
mal projection vector determined based on the same set
of data should stay the same or only change slightly over
10 consecutive iterations. From Table 2, it is obvious that
the projection vector determined by our method was very
stable during the 10 consecutive iterations. On the other
hand, the projection vector determined by Liu et al.'s
method changed signi"cantly between every two con-
secutive iterations. Linear algebra [23] tells us that an
eigenvector will be very sensitive to small perturbation if
its corresponding eigenvalue is close to another eigen-
value of the same matrix. Table 3 shows the eigenvalues
obtained by our method and by Liu et al.'s. It is obvious
that the eigenvalues obtained by our method are quite
di!erent from each other. However, the eigenvalues ob-
tained by Liu et al.'s method are almost the same. These
data con"rm that our method was much more stable
than Liu et al.'s.

Another important issue which needs to be discussed is
the in#uence of the reserved percentage of dim(<

0
) on the

recognition rate. Since the construction of <
0

is the most
time consuming task in our approach, we would like to
show empirically that by using only part of the space <

0
,

our approach can still obtain good recognition results.
Fig. 8 illustrates the in#uence of the reserved percentage
of dim(<

0
) on the recognition rate when the number of

classes is changed. The &#', &]' and &s' signs indicate
that there were 10, 20 and 30 classes in the database,
respectively. In all of the above mentioned classes, each
class contained three distinct samples. From the three
curves shown in Fig. 8, it is obvious that by only reser-
ving 10% of dim(<

0
), the recognition rate could still

maintain 94%. Fig. 9, on the other hand, illustrates the
in#uence of the reserved percentage of dim(<

0
) on the

recognition rate when the number of samples in each
class is changed. The &#',&]' and &s' signs indicate that
there were 2, 3, and 6 samples in each class, respectively.
From Fig. 9, we can see that by only reserving 10% of
dim(<

0
), the recognition rate could always reach 91%.

Moreover, the results shown in Fig. 8 re#ect that the
information retained in the space<

0
(the null space of S

w
)

was more sensitive to the number of classes. This means
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Fig. 8. Illustration of the in#uence of the reserved percentage of
dim(<

0
) on the recognition rate. The &#', &]', and &s' signs

mean that there are 10, 20, and 30 classes in the database,
respectively. Each class contains three distinct samples. This
"gure shows that the information contained in the null space of
S
w

was more sensitive to the number of classes in the database.

Fig. 9. Illustration of the in#uence of the reserved percentage of
dim(<

0
) on the recognition rate. The &#', &]', and &s' signs

mean that there are two, three, and six samples in each class,
respectively. The database comprised 10 classes. This "gure
shows that the information for the same person was uniformly
distributed over the null space of S

w
. Therefore, the percentage

of dim(<
0
) did not in#uence the recognition results very much.

that when more classes are contained in the database,
a higher percentage of <

0
should be reserved to obtain

good recognition results. On the other hand, Fig. 9 shows
that the information about the same person was uniform-
ly distributed over the null space of S

w
. Therefore, the

percentage of dim(<
0
) did not in#uence the recognition

results very much.

4. Concluding remarks

In this paper, we have proposed a new LDA-based face
recognition system. It is known that the major drawback
of applying LDA is that it may encounter the small
sample size problem. When the small sample size prob-
lem occurs, the within-class scatter matrix S

w
becomes

singular. We have applied a theory from linear algebra
to "nd some projection vectors q's such that
qtS

w
q"0 and qtS

b
qO0. Under the above special cir-

cumstances, the modi"ed Fisher's criterion function pro-
posed by Liu et al. [10] can reach its maximum value, i.e.,
1. However, we have found that an arbitrary projection
vector q satisfying the maximum value of the modi"ed
Fisher's criterion cannot guarantee the maximum class
separability unless qtS

b
q is further maximized. Therefore,

we have proposed a new LDA process, starting with the
calculation of the projection vectors in the null space of
the within-class scatter matrix S

w
. If this subspace does

not exist, i.e., S
w

is nonsingular, then a normal LDA
process can be used to solve the problem. Otherwise, the
small sample size problem occurs, and we choose the
vector set that maximizes the between-class scatter of
the transformed samples as the projection axes. Since the
within-class scatter of all the samples is zero in the null
space of S

w
, the projection vector that can satisfy the

objective of an LDA process is the one that can maximize
the between-class scatter. The experimental results have
shown that our method is superior to Liu et al.'s ap-
proach [10] in terms of recognition accuracy, training
e$ciency, and stability.
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