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Abstract

This work investigates the quantum transport in a narrow constriction acted upon by a "nite-range transversely
polarized time-dependent "eld. A generalized scattering-matrix method is developed that has incorporated a time-
dependent mode-matching scheme. The transverse "eld induces coherent inelastic scatterings that include both intersub-
band and intersideband transitions. These scatterings give rise to the DC conductance G a general suppressed feature that
escalates with the chemical potential. In addition, particular suppressed features } the dip structures } are found in G.
These features are recognized as the quasibound state (QBS) features that arise from electrons making intersubband
transitions to the vicinity of a subband bottom. For the case of larger "eld intensities, the QBS features that involve more
photons are more evident. These QBS features are closely associated with the singular density of states at the subband
threshold. An experimental setup is proposed for the observation of these features. ( 2000 Elsevier Science B.V. All
rights reserved.

Keywords: Coherent quantum transport; Narrow constriction; Quasibound state; Time-dependent "eld

1. Introduction

Advances in the epitaxial growth technologies
have lead to the fabrication of high-quality two-
dimensional electron gas (2DEG) systems that are
almost defect-free and upon which electronic
nanostructures can be built. The electron transport
properties of these nanostructures have been exten-
sively studied and by now many aspects are well
understood [1,2]. The most studied structure is the

quantum point contact (QPC), due to its simple
con"guration, and also due to the signi"cant
quantization e!ects in such systems, as is shown in
the conductance G [3,4].

These QPCs, when created electrostatically by
negatively biasing a split-gate located on top of
a 2DEG [3,4], can be pictured as a narrow con-
striction connecting adiabatically at each end to
a 2DEG [5,6], as depicted in Fig. 1. The energy
levels in the narrow constriction are quantized into
one-dimensional subbands which density of states
(DOS) is singular just below the subband threshold.
This singular DOS was found, in the presence of
an attractive scatterer, to give rise to dip structures
in G, which is associated with the formation of
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Fig. 1. Sketch of the gated QPC which is connected at each end
to a two-dimensional electron gas electrode. The narrow con-
striction is acted upon by a transversely polarized time-depen-
dent electric "eld within millimeter wave region.

impurity-induced quasibound states (QBSs) [7}9]
formed just below the subband threshold.

More recently, attentions have been shifted to
QPCs acted upon by high-frequency "elds. These
"elds include transversely [10}22], or longitudi-
nally [23,24] polarized "elds, or simply gate-in-
duced time-modulated potentials [25}27]. These
studies focus on coherent inelastic scatterings by
assuming the range of the time-modulation to be
shorter than the incoherent mean free path. A num-
ber of interesting transport characteristics were
explored. First, the mechanisms of photovoltaic
e!ect subject to an unbiased asymmetric QPC was
proposed [10]. Second, photon-associated transport
phenomena in QPCs have been studied [11}20].
Third, current noise in an irradiated QPC has also
been studied [28]. However, the QBS features in-
duced by such high-frequency "eld are not widely
recognized.

Our previous work has investigated electron
transport characteristics subject to a longitudinally
polarized time-dependent "eld [24]. This longitudi-
nal "eld is uniform in the y direction such that the
mode-matching method is valid. This matching
scheme allows detail analysis of the transport char-
acteristics. However, as long as the "eld is trans-
versely polarized, this scheme is unstable when the
photon sideband energy is approximately equal to
the subband energy-level spacing, not shown here.
Hence, one has to develop other method to calculate
the e!ects of such transverse "eld on the photo-
conductance G through a mesoscopic nanostructure.

In theoretical studies of quantum transport in
mesoscopic systems, both the transfer-matrix and

the scattering-matrix method are powerful tools.
The two methods enable us to numerically calcu-
late current transmission coe$cients for arbitrary
time-modulated pro"le or con"nement potential.
The former method, however, is unstable for higher
"eld amplitudes or longer time-modulated range.
Thus, as we show later, the latter method is used to
numerically calculate the current transmission co-
e$cients. The conductance of the nanostructure
can then be obtained similar to the Landauer}BuK t-
tiker formalism [29].

In this paper, we develop a generalized scatter-
ing-matrix method for numerical calculation of
G in mesoscopic systems, that are applied by an AC
signal without AC bias between the reservoirs. Spe-
ci"cally, we focus on the situation that a transverse-
ly polarized time-dependent "eld acts upon the
narrow constriction, as depicted in Fig. 1. This
localized "eld breaks the longitudinal translational
invariance of the electron motion, and hence allows
electrons to make intersideband transitions not to
conserve their longitudinal momenta [21,26].
Moreover, since the applied "eld is not uniform in
the y direction, the transverse translational invari-
ance is also violated. Thus the electron}photon scat-
tering processes can make intersubband transitions.
These mixed transitions are quite di!erent with
our previous works [24,26] and make the
analytical formulation and numerical calculation
complicated.

This paper is organized as follows. In Section 2,
the generalized scattering-matrix method is de-
veloped that has incorporated a time-dependent
mode-matching scheme to solve the time-depen-
dent SchroK dinger equation. The method described
in Section 2 is calculated numerically in Section 3.
From our numerical examples, we conclude that
QBS features can occur when a transversely polar-
ized "eld acts upon the narrow constriction. Con-
cluding remarks are given in Section 4.

2. Theory

In this section, we establish a generalized scatter-
ing-matrix method to study the electron transport
properties in narrow constrictions which is acted
upon by a transversely polarized time-dependent
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"eld. This "eld is sliced into a series of strips. By
performing the time-dependent mode-matching be-
tween these strips in the cascading of the scattering
matrices, we obtain the transmission and re#ection
coe$cients. The conductance G is then expressed in
terms of these coe$cients.

Since the "eld is assumed to be localized, we need
only to formulate this time-modulated scattering
problem in the narrow constriction region. We
consider the ballistic regime such that the typical
dimension of the constriction is smaller than the
phase-breaking length. In addition, to simplify the
calculation, we neglect the electron}electron inter-
action in the constriction. Thus, the electron trans-
port can be described by a time-dependent
SchroK dinger equation with Hamiltonian of the
form

H(x, t)"Cp#
e

c
A(x, t)D

2
#<

#
(y). (1)

Here p represents the momentum of an electron
and<

#
(y) denotes the transverse con"nement of the

narrow constriction modeled by a quadratic poten-
tial [30]. We consider the "eld has a "nite longitu-
dinal pro"le E(x, t)"E(x)cos(ut)y( , namely that
E(x) does not act on the two-end electrodes of the
constriction between which the bias is applied.
Taking the Coulomb gauge, the e!ect of the applied
"eld can be represented by a vector potential

A(x, t)"!

c

u
E(x)sin(ut)y( , (2)

where E(x) represents the pro"le of the "eld with
amplitude E

0
for DxD(¸/2 and vanishes otherwise.

Here we would like to bring the attention that the
Gaussian pro"le has also been adopted instead of
the simpli"ed abrupt pro"le, not shown here. How-
ever, the two pro"les lead to similar features in G.
Thus, the results in the abrupt pro"le approxima-
tion should be qualitatively sound.

Below we choose the length unit aH"1/k
F
, the

energy unit EH"+2k2
F
/(2mH), the time unit tH"

+/EH, and "eld amplitude E
0

in units of EH/(eaH),
where !e denotes the electron charge, with e!ec-
tive mass mH, and k

F
represents the magnitude of

a typical Fermi wave vector of the reservoir. Thus,
we can write the dimensionless transverse con"ne-

ment <
#
(y)"u2

y
y2, and then gives the quantized

transverse energy levels e
n
"(2n#1)u

y
and the

corresponding wave function /
n
(y).

We slice the "eld into N
L

strips, denote the width
of every strip as d¸"¸/N

L
, and ensure d¸ is

su$ciently narrow such that every strip can be
described by a delta-pro"le. These strips are
located at x

i
"!¸/2#(i!1/2)d¸, where

i"1, 2,2, N
L
. The e!ective SchroK dinger equation

of the ith strip is then given by

i
R
RtU

(i)(x, t)"C!A
R2
Rx2

#

R2
Ry2B#u2

y
y2

#Ai
2E

0
u
R
Rysin(ut)#

E2
0

u2
sin2(ut)B

]d¸d(x!x
i
)DU(i)(x, t). (3)

Consider an electron, in the nth subband and with
kinetic energy k@, incident from the left-hand side of
the ith strip, one can write the scattering wave
function [21]

U(i)
n
(x, t)"/

n
(y)exp[ik

n
(k@)x!ik@t]

# +
n{,m{

r(i)
n{n

(m@)/
n{
(y) exp[!ik

n{
(k@#m@u)x]

]exp[!i(k@#m@u)t] if x(x
i
, (4)

U(i)
n
(x, t)" +

n{,m{

t(i)
n{n

(m@)/
n{
(y)exp[ik

n{
(k@#m@u)x]

]exp[!i(k@#m@u)t] if x'x
i
, (5)

where the electron is scattered into the intermediate
subband n@ and sideband m@. Here k

n
(k@)"Jk@!e

n
represents the magnitude of wave vector for the nth
subband electron with kinetic energy k@. The e!ec-
tive wave function of the ith strip is then given by
U(i)(x, t)"+

n
U(i)

n
(x, t). The boundary conditions of

these strips are given by

U(i)
n
D
x/xi~d"U(i)

n
D
x/xi`d (6)

and

RU(i)
n
Rx K

x/xi`d
!

RU(i)
n
Rx K

x/xi~d
"Ci

2E
0

u
R
Rysin(ut)

#

E2
0

u2
sin2(ut)Dd¸U(i)

n
(x"x

i
). (7)
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Fig. 2. Sketch of the time-dependent "eld, which is sliced into
N

L
strips. The coe$cients of the right- and left-going states of

the ith region are denoted as A
i

and B
i
, respectively.

These coe$cients between successive regions are connected
by the interface matrix I(i). The a

i
and b

i
represent dummy

indices of the ith region, including both subband and sideband
indices.

Imposing the boundary conditions (6) and (7) to
perform the matching at all times and given the
expression of the matrix element

TlK
R
Ry Kn@U"S

u
y

2
[J@d

l,n{~1
!Jn@#1d

l,n{`1
], (8)

we obtain the equations relating the re#ection coef-
"cients r(i)

ln
(m) and the transmission coe$cients

t(i)
ln
(m),

t(i)
ln
(m)!r(i)

ln
(m)"d

m,0
d
n,l

(9)

and

d
m,0

d
n,l

k
n
(k@)"k

l
(k@#mu)[r(i)

ln
(m)#t(i)

ln
(m)]

#i
E
0

u
d¸ +

n{,m{

[d
m{,m`1

!d
m{,m~1

]TlK
R
RyKn@Ut(i)

n{n
(m@)

#i
E2
0

4u2
d¸[2t(i)

ln
(m)#t(i)

ln
(m#2)#t(i)

ln
(m!2)].

(10)

From these expressions, it turns out that the elec-
trons do not conserve their longitudinal momenta.
This means when the time-dependent "eld has a lo-
cal pro"le, the possibility of these transition pro-
cesses can be made. In Eq. (10), we can see that the
E
0

terms cause the transitions associated with
one-photon processes, while the E2

0
terms contrib-

ute to two-photon processes. By solving Eqs. (9)
and (10), we obtain the transmission coe$cients
t(i)
ln
(m) and re#ection coe$cients r(i)

ln
(m) of the ith

strip. For an electron incident from the right-hand
side of the ith strip, the transmission coe$cient
tI (i)
ln
(m) and the re#ection coe$cient r8 (i)

ln
(m) di!er from

those from the left-hand side of the ith strip only by
a phase factor of unit modulus, given by

tI (i)
ln
(m)"t(i)

ln
(m)expM2i[k

l
(k@#mu)!k

n
(k@)]x

i
N (11)

and

r8 (i)
ln
(m)"r(i)

ln
(m)expM!2i[k

l
(k@#mu)#k

n
(k@)]x

i
N.
(12)

Generally, for an electron incident from the left-
hand side of the ith strip in the subband n

i~1
and at

energy k#m
i~1

u, this state is denoted as
a
i~1

"(n
i~1

, m
i~1

). The electron may be transmit-
ted into the state a

i
"(n

i
, m

i
) with a transmission

coe$cient tai ,ai~1
, or re#ected into the state

b
i~1

with a re#ection coe$cient rbi~1,ai~1
. Similarly,

for an electron incident from the right-hand side of
the ith strip in the state b

i
, the corresponding trans-

mission and re#ection coe$cient are given by
tI bi~1,bi

and r8 bi~1,bi
, respectively. After de"ning these

coe$cients, we can establish the scattering-matrix
equation, given by

C
A

i
B
i~1
D"S(i!1, i) C

A
i~1
B
i
D, (13)

where A
i
and B

i
are the coe$cients of the right- and

the left-going states in the ith region, respectively,
as illustrated in Fig. 2. Here S(i!1, i) is the scatter-
ing matrix which connects between the (i!1)th
and the ith region, given by

S(i!1, i)"C
t(i) r8 (i)

r(i) tI (i)D. (14)

Here, t(i) and r(i) denote the transmission and re-
#ection matrices of the right-going electron at the
ith strip, respectively, and the tilded two refer to the
contribution of left-going electron. Matching be-
tween these strips has to be performed in the cas-
cading of the scattering matrices. We would like to
point out the reason for using the scattering-matrix
formalism, instead of the transfer-matrix method,
is to avoid the use of truncation schemes required
in dealing with the exponentially growing solutions
[31].
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Start from rearranging Eq. (13), we obtain the
matrix equation

C
A
i~1

B
i~1
D"I(i)C

A
i

B
i
D, (15)

which connects the coe$cients of the successive
regions across the ith strip. Here I(i) represents the
interface matrix of the ith strip, de"ned by

I(i)"C
I
11

(i) I
12

(i)

I
21

(i) I
22

(i)D, (16)

in which

I
11

(i)"t(i)~1,

I
12

(i)"!t(i)~1r8 (i),

I
21

(i)"r(i)t(i)~1,

I
22

(i)"tI (i)!r(i)t(i)~1r8 (i). (17)

Generally, for the regions up to the (i!1)th strip,
we have

C
A
i~1
B

0
D"S(0, i!1)C

A
0

B
i~1
D, (18)

where S(0, i!1) represents the scattering matrix
connecting the 0th region to the (i!1)th region,
de"ned by

S(0, i!1)"C
S
11

(0, i!1) S
12

(0, i!1)

S
21

(0, i!1) S
22

(0, i!1)D. (19)

Imposing Eqs. (15) and (18), the coe$cients
A
i~1

and B
i~1

may be eliminated, and then we
obtain the matrix equation connecting the 0th to
the ith region, given by

C
A
i

B
0
D"S(0, i)C

A
0

B
i
D. (20)

The submatrices of S(0, i) are, explicitly,

S
11

(0, i)"[I
11

(i)!S
12

(0, i!1)I
21

(i)]~1

]S
11

(0, i!1),

S
12

(0, i)"[I
11

(i)!S
12

(0, i!1)I
21

(i)]~1

][S
12

(0, i!1)I
22

(i)!I
12

(i)],

S
21

(0, i)"S
21

(0, i!1)#S
22

(0, i!1)I
21

(i)S
11

(0, i),

S
22

(0, i)"S
22

(0, i!1)I
22

(i)#S
22

(0, i!1)

]I
21

(i)S
12

(0, i). (21)

This iterative procedure is not as easy to evaluate in
terms of the transfer-matrix method, which simply
inverses a product of matrices. More precisely, once
the system is acted upon by an external time-
modulated "eld, the evanescent modes play an im-
portant role due to inelastic scatterings. We prefer
to use the scattering-matrix method to gain the
stability for the numerical computation. By iterat-
ing Eq. (21), we obtain the scattering matrix
S(0,N

L
) which satis"es the matrix equation

C
A
NL

B
0
D"S(0,N

L
)C

A
0

B
NL
D. (22)

This equation describes the electron transport
through the whole time-modulated region. The in-
cident state is a

*/
"(n

0
, 0) such that the elements of

the incident coe$cient A
0

can be expressed as
d
n,n0

d
m,0

. Setting B
NL

"0, we have A
NL

"

S
11

(0,N
L
)A

0
and B

0
"S

21
(0, N

L
)A

0
.

For an electron incident from the initial state
a
*/
"(n

0
,0) and transmitted into the "nal state

a
&
"(n

&
,m

&
), whose transmission coe$cient is de-

noted by ta& ,a*/"(A
NL

)a& } an element of A
NL

. The
current transmission coe$cient, corresponding to
this inelastic scattering process, is then given by

¹a&a*/ "C
k
n&
(k#m

&
u)

k
n0

(k) DDta& ,a*/ D2. (23)

The zero-temperature conductance can then be ob-
tained, given by

G"

2e2

h
+
a*/

+
a&

¹a&a*/"
2e2

h
+
a*/

¹a*/ , (24)

where ¹a*/ represents the current transmission coef-
"cient from the incident state a

*/
. Here the summa-

tion +a*/ "+N
n0/0

, and N#1 denotes the number
of propagating subbands for the chemical potential
k. For the "nal states, +a& "+N

n&/0
+@

m&
is expected

to be a double sum. Here the superscript prime
indicates that summation is over m

&
such that

k
n&
(k#m

&
u) is real, namely that only occupied

subbands are included. The conservation of
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Fig. 3. Conductance G as a function of X for frequency
u"0.028 (K0.4*e), with time-modulated range ¸"50. The am-
plitude of the electric "eld are E

0
" (a) 0.002 (K22.6 V/cm); (b)

0.003 (K33.9 V/cm); and (c) 0.004 (K45.2 V/cm). The curves
are vertically o!set for clarity.

current, given by the condition

+
a&

k
n&

(k#m
&
u)

k
n0

(k)
[Dta& ,a*/ D2#Dra& ,a*/ D2]"1 (25)

is used to check our numerical accuracy.

3. Numerical results and discussion

In this section, the characteristics of the conduc-
tance G are studied. We have shown in our pre-
vious work that conductance behavior is insensitive
to ¸ except for the harmonic structures [24]. Thus,
we "x the length ¸ of the time-modulated region
while varying the "eld amplitude E

0
. The G

characteristics are represented by the dependence
on X, the suitably rescaled chemical potential k, is
given by

X"

k
*e

#1
2
.

With this conversion, the integral value of X rep-
resents the number of propagating subbands
through the narrow constriction. When k is
changed by a subband energy-level spacing *e, it
corresponds to *X"1; and when k is changed by
+u, it corresponds to *X"u/*e.

In our numerical examples, the physical para-
meters are chosen to be that in a high-mobility
modulation-doped GaAs}Al

x
Ga

1~x
As hetero-

structure with a typical electron density
n&2.5]1011 cm~2, and mH"0.067 m

e
. Corre-

spondingly, we choose a length unit aH"1/k
F
"

79.6 As , an energy unit EH"+2k2
F
/(2mH)"9 meV,

and an angular frequency unit uH"EH/+"
13.6 Trad/s. We also choose u

y
"0.035 such that

the subband energy-level spacing *e"0.07
("0.63 meV), and the e!ective narrow constric-
tion width is of the order of 0.1 lm. We also choose
the angular frequencies as u"0.028 (l"u/2p+
61 GHz) and 0.042 (l+91 GHz), for Figs. 3 and 4,
respectively. The time-modulated range in both the
"gures was chosen to be ¸"50 (K0.4 lm).

In Figs. 3a}c, the "eld amplitudes are chosen to
be E

0
"0.002, 0.003, and 0.004 for Figs. 3a}c, re-

spectively. The angular frequency u"0.028 cor-
responds to an energy interval *X"u/*e"0.4

for Figs. 3a}c, respectively. The dotted curves are
the unperturbed results. Generally, we "nd the sup-
pressed features in G that escalate with both the
chemical potential and E

0
, as illustrated in Figs.

3a}c. In addition, there are dip structures in G,
which can be understood to be the formation of
photo-induced QBSs, where electrons are trapped
temporarily due to the singular DOS just below the
subband threshold [21,24].

Figs. 3a}c have common types of suppressed
structures. First, dip structures are found at around
X"(N#1)!*X. These structures are induced
by the electrons, incident in the Nth subband with
kinetic energy (N#1)!*X, that can absorb *X
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Fig. 4. Conductance G as a function of X for frequency
u"0.042 (K0.6*e), with time-modulated range ¸"50. The am-
plitude of the electric "eld are E

0
" (a) 0.002 (K22.6 V/cm); (b)

0.003 (K33.9 V/cm); and (c) 0.004 (K45.2 V/cm). The curves
are vertically o!set for clarity.

to form QBSs just below the (N#1)th subband
threshold. These transitions are recognized as
(*n,*m)"(#1,#1) processes. Second, small dip
structures are found at around X"N#*X.
These structures are induced by the electrons, inci-
dent in the Nth subband with kinetic energy
N#*X, can emit *X to form QBSs just below the
(N#1)th subband threshold. These are (#1,!1)
transitions. Third and alternatively, dip structures
at around X"2.2 and 3.2 are combinations of two
di!erent kind of transitions: (#2,#2) and
(!1,!3) processes. The former features are in-
duced by the electrons, incident in the Nth subband
with kinetic energy (N#2)!2*X, that can

absorb 2*X to the form QBSs just below the
(N#2)th subband threshold; while the latter fea-
tures are induced by the electrons, incident in the
Nth subband with kinetic energy (N!1)#3*X,
that can emit 3*X to the (N!1)th subband thre-
shold.

Interestingly, in Figs. 3b and c, small dip struc-
tures at around X"N are found. These structures
are induced by the electrons, incident in the Nth
subband with kinetic energy N, that can absorb *X
to the (N#1)th subband intermediate state and
then emit *X to the (N#2)th suband "nal state.
These are two-step (#2, 0) intersubband and in-
trasideband transitions. In addition, in Figs. 3b}c,
small dips at around X"N#2*X are recognized.
These structures are induced by the electrons inci-
dent in the Nth subband with kinetic energy
N#2*X. These electrons can emit *X to the
(N#1)th subband intermediate state and then
emit *X to the Nth suband "nal state. These are
two-step (0,!2) intrasubband and intersideband
transitions. Since these structures involve two
transitions to form QBSs, these are found for high-
er "eld intensities. From the above analysis, we
conclude that the photo-induced transitions must
obey the selection rule *n#*m"even.

In the previous work [24], we have studied the
electron transport characteristics when a longitudi-
nally polarized time-dependent "eld acts upon nar-
row constrictions. It is shown that an e!ective
potential barrier for height *X

V
"E2

0
/(2u2*e) is

involved in G due to the A2 term in the Hamil-
tonian. This e!ective potential barrier causes
a transmitting Nth subband electron, with incident
energy N)X(N#*X

V
, to transmit via direct

tunneling, or to transmit via assisted transmission
by absorbing photon energies. Here we note that
for the case of transversely polarized "eld, this
e!ective potential is not dominant. Hence, there are
sharp dip structures instead of valleylike structures.
The result may explain that most of the electrons
either emit or absorb photons and reach the QBSs
that are formed just below the subband threshold
outside the time-modulated region.

In Fig. 4, the "eld amplitudes are chosen to be
of the same as Fig. 3. The angular frequency u"

0.042 corresponds to an energy interval *X"0.6.
There are common types of dip structures in
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Figs. 4a}c. First, sharp dip structures are found at
around X"(N#1)!*X. These structures are
induced the electron, incident in the Nth subband
with kinetic energy (N#1)!*X, can absorb *X
to form QBS beneath the (N#1)th subband thre-
shold. These structures correspond to (#1,#1)
transitions. Second, small dips at around
X"(N#1)#*X are found. These dips are in-
duced by the electron, incident in the Nth subband
with kinetic energy (N#1)#*X, can emit *X to
form QBS beneath the (N#1)th subband thre-
shold. These are (#1,!1) transitions. Since the
momentum transfer of the "rst case in less than the
second one so that transition probabilty of
(#1,#1) is greater than the (#1,!1) process.
Thus the electron trapping ability of the "rst kind is
stronger then the second one. Third, the dips at
around X"(N#2)!2*X are found. These dips
are induced by the electron, incident in the Nth
subband with kinetic energy (N#2)!2*X, can
absorb 2*X to form QBS beneath the (N#2)th
subband threshold. These are (#2,#2) transition
processes. Fourth and alternatively, in Figs. 4b and
c, dip structures at around X"N are found. These
structures can be identi"ed as (#2, 0) two-step
intersubband and intrasideband transitions. Fi-
nally, in Fig. 4c, there are dips at around X"

N#2*X, which are associated with (0,!2) two-
step intrasubband and intersideband transitions.

We want to bring attention that to observe the
above predicted e!ects, the experimental setup
needs to ful"ll two requirements. First, the bo-
lometric heating due to the absorption of photons
in the QPCs end-electrodes has to be suppressed or
totally eliminated. Recent experiments show that
the transport characteristics are masked by the
bolometric e!ect when the entire QPC, including
the two-end electrodes, is exposed to the incident
electromagnetic "eld [15]. Second, the time-
modulated range has to be shorter than the wave
length of the incident "eld. The purpose is to in-
crease the coupling between the electrons and the
photons by breaking the longitudinal-translational
invariance. That the coupling between the external
"eld and the conduction electrons can be much
enhanced, when either the electrons are con"ned or
the time-dependent "eld has a localized pro"le, has
been pointed out by Yakubo et al. [32]. Thus

the QPC needs to be modulated in the near-"eld
regime.

To avoid the bolometric heating, we suggest to
apply AC signal to the split-gates of the QPC
instead of shining an electromagnetic wave upon
the QPC. The split-gates are negatively biased with
respect to a common ground, and made of super-
conducting materials with superconducting wires
connecting to an AC-signal generator. This gener-
ator can be available using the IMPATT diode that
has successfully been demonstrated to cover the
complete millimeter wave range (see for example
[33]). This proposed experimental setup is expected
to generate a transversely polarized "eld only in the
narrow constriction region while keeping the two-
end electrodes from the time-modulation. In the
present work, though the time-modulated region
covers only part of the narrow constriction, we
believe these two situations will manifest similar
features. Given the availability of millimeter wave
sources [33], we may design the system that make
QBS features feasible experimentally with tech-
niques currently available. The features reported in
this work, however, are not limited to millimeter
wave region.

4. Conclusion

A generalized scattering-matrix method has been
developed for investigating quantum transport in
narrow constrictions applied by an external time-
dependent "eld. This method, though very time
consuming, allows us to solve the time-dependent
SchroK dinger equation exactly in the numerical
sense. Since the energy conservation law is violated
in such a time-modulated system, a conventional
transfer-matrix method technique is inapplicable.
Using the present numerical method, not only
the transmission and re#ection probabilities of
the time-modulated systems can be calculated,
all the subband and sideband states can be ob-
tained. We hope that the present method will be
utilized to study new transport phenomena in ar-
bitrary time-modulated mesoscopic systems. Nu-
merical e$ciency, however, is needed to improve
for this extension and also for taking the self-con-
sistent scheme into consideration.
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The present results indicate rich behavior in the
time-averaged conductance when a loacalized
transversely polarized time-dependent "eld is ap-
plied to a QPC in the regime where the photon
energy is comparable to the subband energy-level
spacing. Dip structures are clearly found in conduc-
tance when the constriction is acted upon by such
localized "eld. These dip structures are associated
with the electrons that can make both intersubband
(or intrasubband) and intersideband (or in-
trasideband) transitions to form QBSs situated just
below the subband threshold. In addition, at-
tributed to the sensitivity of the QBSs to the fre-
quency and intensity of the "eld, the proposed
geometry may function as a useful spectroscopy
tool. We hope that our work will inspire experi-
mental investigaion of these phenomena in time-
modulated QPC devices.
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