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Segmentation: Modified Trimmed Mean Filter, Ramp
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Taipei, Taiwan
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The snake model is a widely-used approach to finding the boundary of the object of interest in an ul­
trasound image. However, due to the speckles, the weak edges and the tissue-related textures in an ultra­
sound image, conventional snake models usually cannot obtain the desired boundary satisfactorily. In
this paper, we propose a new adaptive snake model for ultrasound image segmentation. The proposed
snake model is composed of three major techniques, namely, the modified trimmed mean (MTM) filter­
ing, ramp integration and adaptive weighting parameters, With the advantages of the mean and median
filters, the MTM filter is employed to alleviate the speckle interference in the segmentation process, The
weak edge enhancement by ramp integration attempts to capture the slowly varying edges, which are
hard to capture by conventional snake models, The adaptive weighting parameter allows weighting of
each energy term to change adaptively during the deformation process, The proposed snake model has
been verified on the phantom and clinical ultrasound images. The experimental results showed that the
proposed snake model achieves a reasonable performance with an initial contour placed 10 to 20 pixels
away from the desired boundary. The mean minimal distances from the derived boundary to the desired
boundary have been shown to be less than 3,5 (for CNR 2': 0,5) and 2.5 pixels, respectively, for the phan­
tom and ultrasound images.

KEy WORDS: Adaptive weighting parameters; modified trimmed mean filter; ramp integration; snake
model; ultrasound image segmentation,

1. INTRODUCTION

Ultrasonic imaging has become a widely-used imaging modality due to its noninvasive­
ness, real-time scanning, low-cost and versatility. While new applications of ultrasonic im­
aging are still being discovered, it has been applied to many areas in medicine ranging from
the OB/OYN to neurosurgery. It provides not only a real-time anatomical view into soft tis­
sues, but also such functional information as blood flow speed and tissue elasticity. Versa­
tile as it is, a further analysis, especially an automatic or semi-automatic quantitative
analysis, ofan ultrasound image has been considered difficult compared to many other imag­
ing modalities, such as MRI and CT. The major difficulty in analyzing an ultrasound image
arises from its intrinsic textural pattern formed by the speckle and tissue-related textures
composed of quasirepetitive patterns or sporadic spots. Although both the speckle and tis­
sue-related textures play an important role in many clinical applications, e.g., diagnosis of
liver cirrhosis, 1 they have been generally regarded as noise from the viewpoint ofimage seg­
mentation using nontextural approaches. Even for textural image segmentation techniques,
their performances are often seriously degraded since the noise may not be eliminated thor­
oughly due to the quasiregular nature of the tissue-related textures. A typical example is
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ADAPTIVE SNAKE MODEL FOR ULTRASOUND IMAGE SEGMENTATION 215

when one attempts to segment a tumor from an ultrasound image automatically, the classic
segmentation techniques frequently fail to identify the boundary ofthe object of interest ef­
fectively because of these noises.

Conventionally, quantitative analysis usually requires human intervention to specify the
region-of-interest (ROI) to be measured. For instance, to measure the size ofa tumor, a med­
ical staffwould need to make several marks so that the computer can calculate the diameters
of the tumors according to the marks. However, the manual approaches suffer from at least
two problems. One is that the diagnostic results are not only operator-dependent but also
time-dependent. In other words, different medical staffs may give different analysis results
and even the same person may make a different measurement for an ROI at a different time.
This is potentially a very serious problem since it may affect the decision of treatment plan­
ning. The other problem is that it may take a great amount of time for a medical staff to ac­
complish the task. For example, for a 3D object composed ofhundreds of2D slices, it may
take more than halfan hour for an experienced staff to manually draw the boundaries ofthe
objects of interest in all slices.

Among the various types ofquantitative analyses, segmentation is one ofthe major analy­
sis tasks performed by medical staffs. To avoid the two problems inherently in the manual
approaches, extensive studies on automatic and semi-automatic segmentation ofthe ultrasound
images have been made in the past. As examples, automated segmentation ofultrasound im­
ages have been attempted for such objects as fetal femurs,' lower legs,' lumen-intima and
media-adventitia of intracoronary images," ovarian cysts' and prostates.' Although many
previous investigators have achieved satisfactory results for some specific problems, their
approaches are basically application-dependent and may not be effectively applied to seg­
ment other types of ultrasound images.

In contrast to the application-specific segmentation approaches, an ideal general segmen­
tation approach is expected to be able to segment out various types ofobjects ofinterest, e.g.,
fetal femurs, cysts, tumors and prostates. However, general ultrasound image segmentation
is far more difficult than application-specific segmentation since not much prior information
may be utilized in the design ofthe segmentation algorithms. Due to the complex nature of
an ultrasound image, a general segmentation approach may need to find out the ill-defined
object boundary, which consists oftwo essential tasks, i.e., determining the ill-defined edges
and providing a closed contour for the underlying object ofinterest. To achieve this goal, re­
cently, the snake model has received a great attention as a general technique for ultrasound
image segmentation. ',-13

The snake model was first proposed by Kass et al, 14 who suggested a contour deformation
mechanism guided by an energy minimization process. The energy function of a snake
model is usually composed ofenergy terms describing the internal force ofthe snake, an im­
age force from the image and an external force like constraints. Although the snake model
promises a closed boundary once it converges to a local minimum, the intrinsic noise ofan
ultrasound image has made a snake easily trapped in an undesired local minimum. As a re­
sult, the conventional snake model is compelled to have the initial contour very close to the
desired boundary, which has made the snake model impractical for clinical use. To cope
with the intrinsic noise and to augment the penetrating capability ofthe snake, we propose a
new snake model in this paper with three important features, namely, a modified-trim­
mean-filter (MTMF), adaptive weighting parameters and weak-edge enhancement by inte­
gration. The MTMF filter provides a fast and reasonably good performance on speckle re­
duction, as demonstrated by Loupas et al." The adaptive weighting parameter allows the
weighting of each energy term to change adaptively during the deformation process. The
weak edge enhancement by integration attempts to capture the slowly-varying edges, which
are hard to capture by conventional snake models.
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216 CHEN ANDLU

This paper is organized as follows. The methods and materials employed in this study are
described in section 2. It contains the proposed snake model as well as generation and ac­
quirement ofthe images used for performance evaluation, which includes phantom images
with simulated speckles and clinical ultrasound images. Experimental results and discus­
sions are provided in section 3. Conclusions are given in section 5.

2. METHODS AND MATERIALS

The basic idea of the snake model is to guide contour deformation by minimizing an en­
ergy function, usually composed ofan internal force, image force and external force. While
various kinds of energy have been proposed in the past, a general energy function may be
written as

E snake(I'(sj) = 1JEin/U(s)) + E;mage(U(S)) + Eexternal (u(s))]ds
(1)

where T( s) = (x( s), y(s) is the parametric representation ofthe contour. In Kass' work, Ein,

denotes the internal energy ofthe spline due to bending, which may be defined as ,

(2)

The first-order and the second-order terms, i.e., v,(s) and v,,(s), make the snake behave like
a membrane and thin plate, respectively. One may also regard the first- and second-order
terms as a measurement ofthe continuity and curvature ofthe snake. The internal force im­
poses a smoothness constraint on the snake. The image energy, Eimag" accounts for the guid­
ance force from the image, which attempts to push the snake toward the salient features ofthe
image. One typical image force is the edge strength ofthe image. The external energy, E""mal'
is to take into account other possible forces, which may help the snake deform toward the de­
sired boundary. For example, one may impose a shape constraint on the snake to regularize
the snake deformation. 16

Given an energy function, the energy minimization mechanism plays an important role in
guiding the snake to find the desired boundary. At least three types ofenergy minimization
mechanisms have been employed previously. One method attempts to find the minimum en­
ergy point by using mathematical optimization techniques; e.g., Kass et al employed the
variation ofcalculus to find the iterative relations, which suggests the next position to move
to for each snake element, called a snaxel. Based on the concept ofthe greedy algorithm, an­
other method moves each snaxel to the next lower energy state by searching a finite neigh­
borhood ofeach snaxel." The third approach uses optimization techniques such as dynamic
programming" and simulated annealing," trying to find the global minimum ofthe given
energy function.

The salient feature ofthe snake model is that it provides an elegant energy-guided method­
ology to attain a continuous contour for the object of interest. For an image with a high sig­
nal-to-noise (SIN) ratio and a well-defined boundary, the snake model indeed has demonstrated
its great capability in finding the desired boundary in varieties ofapplications. 14·19 However,
if the SIN ratio is low, the snake may be easily trapped in the local minimum formed by the
noise. If a significant portion of the desired boundary is either missing or has a weak edge
strength, the snake may not be able to be latched at the preferred location. Although a better
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energy minimization mechanism may partially alleviate this dilemma, the very fundamental
problem is that the global minimum may not occur at the desired boundary due to the noise,
the weak edges and some other intrinsic properties of the snake model. As a result, most of
the conventional snake models require the initial contour to be very close to the desired
boundary to reduce the possibility of being trapped by the undesired local minimum.

To overcome the interference of the noise and to catch the weak edges, i.e., the slowly­
varying edges, an adaptive snake model is proposed in this paper for ultrasound image seg­
mentation. The idea is to highlight the weak edges by an integration type of edge detector
and to adjust the weighting factors ofthe energy terms adaptively to augment the capability
of penetrating noises for the snake to allow a distant initial contour. The proposed snake
model is presented in detail below, followed by the description of the phantom images and
clinical ultrasound images used in the performance analysis.

2.1 Adaptive snake model

The proposed snake model is composed ofthree major schemes, namely, the MTM filter,
ramp integration and adaptive weighting. The MTM filter is responsible for reducing the
speckle and tissue-related texture to a great extent in a short time. The ramp integration not
only can enhance the weak edges but also can further suppress the interference ofthe residual
noises. The adaptive weighting scheme takes into account the importance ofdifference en­
ergy terms at different deformation stages, attempting to attain a better noise-penetrating ca­
pability for the snake. As an overview, the proposed snake model is illustrated in figure I.

Contour initialization and snaxel sampling

The initial contour ofthe snake is a closed contour enclosing the object of interest. It can
be a polygon or a regular shape like a rectangle or an ellipse. Once the initial contour is gen­
erated, two classes ofsnake deformation may be found in the previous snake models. One is
continuous.' i.e., the snake energy is computed over the entire snake. The other is discrete, 17

i.e., the snake energy is calculated only for a discrete set ofpoints in the snake, called snaxels.
While the continuous approaches promise a better estimation of the internal energy of a
snake, the discrete approaches tend to be more computationally efficient. Aiming at a
computationally efficient methodology, the proposed snake model adopts the discrete ap­
proach. Initially, N snaxels are selected from the initial snake and the number ofpoints on the
snake between every two adjacent snaxels is a constant, denoted as d.

Snaxel movement

LetPiand V. denote the i th snaxel and the position ofthe i'h snaxel, respectively. The snaxel
movement is based on a greedy search, i.e., at each step, each snaxel V. seeks for the position
with the lowest energy state within the searching window to move to. As depicted in figure 2,
the searching window is a window of I pixels long in the searching direction and w pixels
wide in the direction perpendicular to the searching direction. Let uj = ~ -~-1' Then, the
searching direction is defined as (uj +1 -uj ) . Generally speaking, the larger the window size
lw, the better chance a snake may have to get around of the undesired local minima. More­
over, a longer searching window would give a better capability ofpenetrating the energy bar­
riers formed by the noise. A wider searching window would also reduce the possibility of
passing by the missing edges for each snaxel. That is, if a breach of the desired boundary is
less than w, the snake still has the chance to capture the boundary. However, large I and wim­
ply a longer deformation time, which is not preferable for the clinical use. Empirically, I and
w have been set to 9 and 5, respectively, in all implementation results presented in this paper.
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218 CHEN ANDLU

FIG. 1 Block diagram ofthe proposed snake model.

I pixels

Searching direction
(U i+1- ui )

Searching
window

FIG.2 Searching window for each snaxel to seek for the next position with the lowest energy state to move to.
The window is I pixels long in the searching direction and w pixels wide in the direction perpendicular to the search­
ing direction.
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Noise reduction

Noise reduction is an important task in ultrasound image segmentation. Many approaches
have been proposed previously to deal with the speckle noise in ultrasound images. For ex­
ample, Czerwinski et al" employed a bank of oriented one-dimensional median filters at­
tempting to suppress speckle noise while retaining the structure ofthe image. Kotropoulos et
al" proposed a signal-adaptive maximum likelihood (SAML) filter for ultrasonic speckle re­
moval. Busse et al " suggested a geometric filtering method incorporating the models ofthe
transducer geometry, center frequency shifts and beamforming geometry. Nevertheless, be­
cause ofthe complicated noise property, none ofthe existing speckle reduction schemes has
achieved a satisfactory performance. Typical side effects ofthe speckle reduction operation
are over-smoothed edges, lost fine details and artificial edges.

Rather than attempting to solve the hard de-speckle problem, we have aimed to provide a
good image in afast way for further calculation ofthe image force. A good denoised image
would be sufficient for our purpose since the proposed ramp integration technique used to
derive the image force has great noise immunity, as demonstrated later. Taking into account
the computational time and the performance of denoising, the modified trimmed mean
(MTM) filter is adopted for speckle reduction in this study. The MTM filter was proposed by
Lee et al" in the attempt to combine the advantages ofthe mean and median filters. Conven­
tionally, the mean filter is known to be effective in dealing with Gaussian-like noise, whereas
the median filter is notable for removing shot noise. The MTM filter has shown to be not
only an excellent approach to noise reduction and edge preservation for Gaussian noise,26 but
also an effective filter for speckle reduction. 15 The idea of the MTM filter is as follows. Let
Wi denote the set ofpixels in the window centered at the pixel i ofthe underlying image for
speckle reduction and wi(j) the value ofthe jth pixel in Wi' Suppose the number ofelements
in each window is N. Let mi represent the median value ofall pixel values in w,. Then, given
a threshold t, the output of the MTM filter, denoted as Yi, for the pixel i is defined as

N

Ia(J)wi(J)
j=!

Yi= N

Ia(J)
j=l

where

{
I ,

a(J) =
0,

ifIWi(J) - mil < t

otherwise

Internal forces

As defined in Eq. (1), the energy function ofthe proposed snake model is composed ofthe
internal force E int, image force Eimage and external force E crt' The internal force is made up ofa
first-order force v, and second-order force v"' These two forces have been employed by
many other snake models but with various definitions according to different considerations.
In our model, to avoid the aggregation ofsnaxels during deformation, the first-order force V"

which accounts for the length of the snake, is defined as

(3)
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220 CHEN ANDLU

It can be easily shown when Iv S(Pj f is minimized, ~ = (~_I + ~+/)/2. That is,
minimization ofthe first-order force v, tends to shrink the snake and make all snaxels equally
spaced.

The second-order force v" regularizes the smoothness of the snake, which is defined as

(4)

where 0 ~ Vss~1t. In other words, the second-order forcev.is the angle formed by the two vee­
torsu j andu j + ] . Minimization ofv" has a tendency to smooth the snake. The maximum cur­
vature that can be captured by the snake depends on the relative strength of the weighting
factors of all energy terms.

Imageforce

While v, provides the shrinking force and v" controls the snake smoothness, the image
force plays the decisive role in attracting a snake toward the desired boundary. An ideal im­
age force should exert the most significant power at the desired boundary. To characterize
different types ofboundary, various image forces have been proposed in the past. For exam­
ples, the gradient" of an edge has been frequently used to represent the strength of a
nontextural edge. On the other hand, textural features like distance map" have been em­
ployed to distinguish the textual edges. Although both textural and nontextural edges exist
in an ultrasound image, this paper will emphasize the characterization ofnontextural edges.
A discussion of the image force exerted by the textural edges in ultrasound images may be
found in Chen et al. 24

The gradient of an edge, though not the only one, is one of the most widely-used image
forces to guide snake deformation in a nontextural image. For a step edge, the gradient does
offer an outstanding feature at the edge position. However, using the gradient ofan edge as
the image force suffers at least two fundamental problems in practice. One is that it is very
sensitive to the noise. Although a denoising process is usually applied before the gradient is
calculated, the gradient ofthe residual noise may still be significant enough to interfere with
snake deformation. The other problem is that the edges in an ultrasound image are mostly
ramp rather than step edges due to the artifacts and similar acoustic impedance between two
tissues. Moreover, the denoising process may further reduce the slope ofthe ramp edges. As
a result, compared to the internal forces, the gradients ofthe ramp edges at the desired bound­
ary may not be large enough to capture the snake.

To avoid the potential problems that a gradient type of image force may have, we propose
in this paper a new image force called ramp integration, denoted as I~, that may amplify the
weak edges and further suppress the residual noise at the same time. Instead ofusing the gra­
dient to characterize an edge, ramp integration quantifies the edge strength by the sum ofthe
regional level variations as defined in the following. Suppose that e.denotes the gray level of
the/, pixel on a line profile along the search direction ofa snaxel in the search window. Note
that in each search window, there would be w parallel line profiles to be used for computing
ramp integration. Then the ramp integration I~ of the /' pixel on a line profile is given by

(5)
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'Jl

FIG.3 Illustration oframp integrations forthree different pixels on a ramp edge in which ej/and ej,represent the
ramp integrations at both ends of the ramp edge and ep the ramp integration in the middle part ofthe ramp edge.

For each eJ' the idea ofthe ramp integration is to sum up the gray level variations relative to
the e

j
within a window ofradius r. The first and the second summation terms in Eq. (5) ac­

count for the overall gray level variations to the left and right ofej , which are termed left ramp
integration and right ramp integration, respectively. The multiplicative term 2/r is the nor­
malization factor. Figure 3 illustrates the ramp integrations for three different pixels on a
ramp edge, in which the dark area corresponds to left ramp integration and the light area to
right ramp integration. Ofthese three pixels, ej l and ej J represent the ramp integrations at both
ends ofthe ramp edge, and ep the ramp integration in the middle part ofthe ramp edge. From
this figure, it is clear that the pixels toward the two ends ofa ramp edge, e.g., ej l and ej J , are ex­
pected to have a smaller ramp integration than those pixels in the middle part, like ep ' The
reason is that at least one ofthe left and right ramp integrations is relatively small at the two
ends of the ramp edge. Therefore, it is reasonable to expect a local maximum in the middle
part of a ramp edge rather than at its both ends.

Empirically, we have found that the ramp integration has two advantages over the gradient
of an edge. The first one is that compared to the gradient of an edge, the ramp integration
tends to make a larger amplification for a wide and slowly- varying edge, and a smaller am­
plification for a narrow and fast-changing edge. With this feature, the image force formed by
the ramp integration is expected to be more capable ofcapturing the weak edges than the im­
age force given by the gradient. The second advantage is that the ramp integration is more
immune to the noise than the gradient. These two advantages will be demonstrated by exam­
ples in next section.

Adaptive adjustment ofweightingfactors

Determination ofthe weighting factors is a very difficult issue in practical implementation
ofa snake model. Most existing snake models have adopted constant weighting factors for
simplicity. However, in practice, the relative importance of the underlying snake force
changes during snake deformation. When the snake is distant from the object ofinterest, the
image force plays the majorrole in attracting the snake toward the desired boundary. For ex­
ample, Xu et al" has developed the concept ofan attracting force, called the gradient vector
flow, based on the gradient ofthe image attempting to guide a distant initial contour toward
the desired boundary. Nevertheless, when the snake is quite close to the desired boundary,
the internal force, especially the curvature, is expected to polish the smoothness to obtain a
smooth contour. Unfortunately, the actual distance between the snake and the desired
boundary cannot be formulated correctly during the snake deformation. As a reasonable al­
ternative, we suggest in this paper to adjustthe weight ofthe image force for the j'h snaxel, de­
noted as yep), according to Eq. (6), while keeping the weights of the first-order and
second-order internal forces constant, denoted as a and ~, respectively.
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(6)

where gi is the gray level ofthe denoised image ofthe i th snaxel Piat each pixel position in the
searching window, Y2 is a constant to balance the internal and image forces and Y1 is an offset
constant to prevent amplifying an insignificant image force. Eq. (6) attempts to approximate
the above idea ofemphasizing the image force ofa distant snaxel by giving a larger weight to
a smaller image force. The rationale behind this approximation is that in a searching win­
dow, a small image force is more likely to be farther away from the desired boundary than a
large image force.

In summary, the proposed snake model starts with a set ofequal-interval snaxels on a man­
ually drawn initial contour. At each step, each snaxel moves to the pixel position with the
lowest energy state within its own searching window defined in the searching direction. Be­
fore the energy at each pixel position is computed, the modified trimmed mean filter is ap­
plied to alleviate the noise interference. Since only the energy variation caused by each
individual snaxel needs to be considered for its movement, the energy function guiding the
snake deformation may be simplified to describe the energy of each snaxel as

(7)

where 0i is the set ofpixels in the searching window ofthe snaxel p, at the current step. An
optional constraint force may be imposed on the proposed snake model, ifnecessary. Ifa po­
lygonal initial contour is made, then some ofthe vertices may be defined as fixed points, i.e.,
they remain in the initial positions during snake deformation. The immobility ofthese fixed
points may serve as a constraint force to help the snake move toward the desired boundary.
The snake deformation stops when less than m% ofsnaxels change position in an iteration,
where m is set to 2 in this study.

2.2 Images for performance analysis

Two types of images are employed to evaluate the performance of the proposed snake
model. One is the phantom image and the other is the clinical ultrasound image. A phantom
image is a simulated ultrasound image consisting of an object of interest with a known
boundary and simulated speckles. Since the boundary of the object of interest is well de­
fined, the phantom image serves for an exact evaluation of the correctness of the boundary
derived by the proposed snake model. On the other hand, the clinical ultrasound image pro­
vides a real complex image condition, including the speckle and the tissue-related textures,
for performance evaluation ofthe proposed algorithm. The boundaries obtained by the pro­
posed snake model are compared to those manually drawn by an experienced medical doc­
tor. However, since delineating the boundary of an object of interest manually is quite a
subjective process, the delineated boundary may be different for different medical doctors or
even for the same medical doctor at different times. Therefore, even though it is valuable to
carry out a performance evaluation on the clinical ultrasound images, it is more appropriate
to regard the analysis results as a reference.
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The ultrasound images used in this study were selected by medical doctors and captured
from a Toshiba SSA-380A clinical ultrasound imaging system through a frame grabber card.
The image was from the RGB output of the Toshiba SSA-380A and captured by the frame
grabber card, Meteor-II card, made by the Matrox Electronic System Ltd. The captured im­
age was stored in BMP format with 8-bit resolution for each color channel. All clinical ultra­
sound images are liver images and the objects of interest are hepatic tumors. The types of
hepatic tumors include hepatocellular carcinoma (HCC), cavernous hemangiomas, meta­
static liver cancer, etc. Using one hepatic ultrasound image from each patient, we have cho­
sen 16 hepatic tumors, each from a clinical ultrasound image, for performance evaluation of
the proposed snake model. Among these 16 hepatic tumors, 7 ofthem were hypoechoic and
the others are hyperechoic. The boundaries of all 16 tumors were roughly convex.

For the phantom image, the ramp edges have been designed for the object of interest to
simulate real edges in an ultrasound image more closely. The phantom image is created as
follows. Firstly, a uniform disc phantom ofradius 64 is placed at the center of a 256x2 56
uniform image. Let gf and gb denote the gray levels of the disc and the rest ofarea, respec­
tively. For convenience, this phantom image is called the disc image. Then, the disc image
is blurred by a Gaussian filter of standard deviation cr

g
and the resulted image is called the

blurred disc image. Note that the edge of the disc is a step edge, whereas the edge of the
blurred disc is a (Gaussian) ramp edge. Finally, the blurred disc image is corrupted by the
speckle, which gives the ramp phantom image. The contrast-to-noise ratio (CNR) of the
ramp phantom images is defined as

(8)

where crf and crb are the standard deviations of the speckle within and outside the blurred
disc. Note that the speckles on the ramp edge of the blurred disc are not taken into count in
computing crf and crb •

Given a blurred disc image, the speckle in the ramp phantom image may be simulated in
two possible ways. The first one is to directly simulate the speckle in a displayed ultrasound
image. The second is to simulate the echo envelope signal first, followed by log-compression
to generate the displayed ultrasound image. Because ofthe log-compression process, the sta­
tistical models used by these two approaches are quite different. The speckle is causedby the
coherent interference ofbackscattered echoes from the scatterers smaller than the resolution
size. When the effective scatterer density is high, i.e., the effective number of scatterers per
resolution cell is larger than 10, the speckle is fully developed and the statistics of the echo
envelope is Rayleigh distributed. It is well known that except the mean gray level, the first
and second order statistical characteristics ofthe fully developed speckle are independent of
tissue types." When the number of effective scatterer density is smaller than the Rayleigh
limit, the speckle is partially developed and the statistics of the echo envelope can be mod­
eled by the K distribution.":" For the displayed ultrasound image, the statistics of the fully
and the partially developed speckle may be closely modeled by the K distribution as shown
by Dutt and Greenleaf." They also showed that the density function of the log-compressed
fully developed speckle may be modeled by a double exponential or Fisher-Tippett distribu­
tion."

Following the speckle simulation algorithm used by Li et al," the fully developed speckle
has been simulated in this paper by using the second approach. The speckle is modeled as a
random walk in the complex plane. Each step in the random walk stands for the signal re-
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ceived by the transducer from a scatterer in the resolution volume. With the assumption of
high effective scatter density, each of the real and imaginary parts of the summed signal is
modeled by a Gaussian distribution. It follows that the amplitude of the summed signal is
Rayleigh distributed.

The scanner is assumed to be a 128-element linear array. The interelement spacing is 0.25
mm. The central frequency is 3 MHz and the bandwidth is 1 MHz. The vertical axis ofthe
simulated image represents the axial direction. For the axial response, the shape ofthe enve­
lope is assumed to be Gaussian. On the other hand, by assuming a continuous wave model,
the lateral response is derived by Fourier transforming the aperture function. For simplicity,
it is assumed that the point spread function of the scanner is spatial invariant. Denote the
blurred disc image by B. The ramp phantom image, R, is generated as follows.

Step 1. Compute B, = 10E12D.
This step ensures that after taking log-compression of the simulated echo envelope, the

mean values within and outside ofthe blurred disc, excluding the area covered by the ramp
edge, are approximately equal to gf and gb' respectively.

Step 2. Generate the summed signal S, + iSi'
S, and S,represent the real and timaginary parts of the summed signal, both of which are

Gaussian distributed.
Step 3. Derive the point spread function of the scanner, P.
Step 4. Compute the echo envelope, E = (BlS, + is))0P.
The operator 0 denotes 2D convolution. That is, the echo envelope is derived by

convolving the point spread function with the product ofB) and the summed signal.
Step 5. Compute the log-compressed echo envelope, L = 20 log 10 IIEII.
Step 6. Convert the log-compressed echo envelope, L, into the ramp phantom image, R,

by rounding the value ofeach pixel to the nearest integer and setting all negative pixel values
to O.

Note that steps I and 6 have been designed to ensure that all ramp phantom images with
various CNR used for performance evaluation have the same type ofedges, i.e., the edges of
all blurred discs corrupted by the speckle are the (Gaussian) ramp edges. It is for the same
reason that no attempt has been made to adjustthe dynamic range or the image contrast ofthe
ramp phantom images. The dynamic range of the ramp phantom image is basically deter­
mined by the specified blurred disc.

3. RESULTS AND DISCUSSION

To demonstrate the performance ofthe proposed schemes, this section reports the experi­
mental results for the ramp integration and the adaptive snake model on the phantom and real
ultrasound images.

Performance of ramp integration

Figure 4 shows a typical response ofthe ramp integration. In figure 4, the 'Gaussian edge'
is made by smoothing an ideal step edge with a Gaussian filter. The edge location of the
ideal edge is at pixel 65. The standard deviation ofthe Gaussian filter employed for this case
is 5, which is indicated as std= 5 The ramp integration is computed using a radius r= 5. The
gradient ofthe pixel i is the gray level difference ofthe pixels i-I and i+ 1. It is clear that both
the ramp integration and gradient give maximum values at pixel 65.

Using the Gaussian edges with various standard deviations but the same height, figures 5
and 6 illustrate the maximum responses ofthe ramp integration for different radii. All these
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FIG.4 Typical response of ramp integration and gradient for Gaussian edge.
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FIG.5 Normalized maximum edge strengths of the ramp integrations derived by using different radii for three
Gaussian edges (ramp edges) with different slopes, including std = 2, std = 5, and std = 8.

maximum responses occur at pixel 65. In figure 5, the maximum edge strengths derived by
using different radii, ranging from 2 to 15,are plotted for three Gaussian edges (ramp edges)
with different slopes, including std = 2, std = 5 and std 0= 8.. For each ofthese three curves,
the maximum edge strengths are normalized by that ofthe r =2 case. On the other hand, in
figure 6, the maximum edge strengths derived by using different standard deviations, rang­
ing from 1to 15, are plotted for three radii, including r=5 r= 8 and r= 11 Foreachofthese
three curves, the maximum edge strengths are normalized by that of std= 1 case. For com-
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FIG.6 Normalized maximum edge strengths ofthe ramp integrations derived using three radii, including r = 5,
r=8 and r=II, for the Gaussian edges with different standard deviations.

parison, the normalized maximum edge strength for the gradient approach is also provided in
figure 6.

From figure 5, as expected, one can see that the maximum I~ increases as the radius r in­
creases, since a larger area is integrated for a larger r. However, the tendency of increasing
saturates earlier for a smaller standard deviation. In contrast, from figure 6, the maximum I~

decreases as the standard deviation increases and this tendency ofdecreasing saturates ear­
lier for a smaller standard deviation. Moreover, the difference between the normalized max­
imum edge strengths of a narrow- and fast-changing edge and a wide and slowly varying
edge is smaller for the ramp integration than for the gradient. And, for the ramp integration,
the difference is smaller for a larger radius. These phenomena may be quantitatively ex­
plained by the simplified example illustrated in figure 7. In figure 7, the upper and the lower
ideal ramp edges represent the narrow and fast-changing edge and the wide and slowly vary­
ing edge, respectively. The reason why the ideal ramp edges are employed instead of the
Gaussian edges is to simplify the analysis without loss of generality. In figure 4, it is as­
sumed that the width ofthe upper edge w is smaller than the diameter ofthe ramp integration
window 2r. For these two ideal ramp edges, one can easily show that the maximum ramp in­
tegration and the maximum gradient, which occurs at the center ofboth edges, are:

(1) Upper ramp edge - maximum gradient: tan 8; maximum ramp integration: 2w
tan8(r-w/4)/r

(2) Lower ramp edge - maximum gradient: tan8; maximum ramp integration:2r tan8

From this formulation, the saturation phenomenon in figure 5 may be explained as fol­
lows. Given a ramp edge, consider the radii r = 2 to R, where 2R > w. When the edge width w
is larger than the diameter of the ramp integration window 2r, the normalized maximum
ramp integration is 2r tane/4 tana = r/2, which is linearly proportional to r. However, when
the edge width w is smaller than the diameter ofthe ramp integration window 2r, the normal­
ized maximum ramp integration approaches to a constant as r increases, which accounts for
the saturation phenomenon.
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FIG. 7 Upper and lower ideal ramp edges representing the narrow and fast-changing edge and the wide and
slowly-varying edge, respectively.

On the other hand, given a radius r, the phenomena observed in figure 6 may be explained
using the simplified formulation as follows. Suppose the height of the ramp edge remains
constant, denoted as h, as assumed in figure 6. Consider 8 monotonically decreasing from 80

to 8n, which are used to approximate the Gaussian edges with the increasing standard devia­
tions. Then, when w < 2r, the normalized maximum ramp integration becomes (r-(h
cot8)/2)/(r-(h cotS/2), which monotonically decreases when 8 decreases, as shown in fig­
ure 6. When w z 2r, the normalized maximum ramp integration is / tan8/[h(r-(h cot8/2)].
Since r, h, and 80 are constants for each curve, one may expect a saturated normalized maxi­
mum ramp integration for a wide and slowly-varying ramp edge. It is because tan8 changes
slowly with a small 8. Also, it is clear that a larger r will produce a larger saturation level.

These analyses, based on the ideal ramp edges, may be further verified in figure 8. The
edge strengths in figure 8 are derived by varying wand h, but fixing 8. That is, the ramp inte­
gration is computed for different scales of ideal ramp edges with the same slope for a given
radius. As analyzed above, the ramp integration technique generates the full edge strength
only ifthe edge width is large enough. And the saturation level is higher for a larger ramp in­
tegration window.

Although these examples and analyses are only for relatively simple cases, they do pro­
vide a general idea that compared to the gradient technique, the ramp integration technique
can give a better edge strength for a weak edge, which is wide and slowly-varying. It is ac­
complished by giving a larger amplification to the weak than to the strong edges. When a
weak edge is not wide enough, the ramp integration technique will produce only partial am­
plification. Implicitly, the ramp integration technique has assumed that a weak edge is sig­
nificant only ifit is wide enough. In contrast, the gradient technique concerns only about the
slope of an edge and disregards the width of the edge.

Another important advantage of the ramp integration technique over the gradient tech­
nique is better noise immunity, which results from the averaging effect inherent in the inte­
gration approach. It smoothes out the small and fast varying noises and de-emphasizes the
slight gray level change between two adjacent regions. As an example, figure 9 gives the
ramp integration I~ using r = 5 and the gradient ofa Gaussian edge with std = 10 corrupted by
a sinusoidal noise. Apparently, the ramp integration has successfully suppressed the small
and fast varying noises and given an outstanding peak at pixel 65. On the contrary, the gradi­
ent is very sensitive to the fast varying noises even ifthey are insignificant compared to the
edge width and height.
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FIG. 9 Ramp integration with r=5 and the gradient of a Gaussian edge with std= 10 corrupted by sinusoidal
noise.

As another example, figures 10and 11 illustrate the performance of the ramp integration
and the gradient techniques on a denoised ramp phantom image. Figures 1D(a) and (b) shows
a disc image withgf = 120 and gb= 90, and its corresponding blurred disc image with a g= 5, re­
spectively. Figure W( c) gives the ramp phantom image with CNR = 5.25. Figure W( d) pro­
vides the denoised ramp phantom image using the MTM filter with the threshold t set to ab•

The profiles ofthe two white line segments marked in figures IO(c) and (d) are plotted in fig-
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(a) (b)

(c) (d)

FIG.IO Disc image with g,> 120 and g,« 90; (b) the blurred disc image with cr
g
= 5; (c) the ramp phantom image

with CNR= 5.25; and (d) the denoised ramp phantom image using the MTM filter with the threshold t set to c •.

ure II, which are labeled as 'original' and 'mtmf', respectively. The results obtained by ap­
plying the ramp integration with r = 5 and the gradient technique to the denoised line profile,
i.e., 'mtmf', are plotted and labeled as 'ramp integration' and 'gradient' in figure II, respec­
tively. Note that figure II has two vertical axes. The left is for 'original' and 'rntmf and the
right for 'ramp integration' and'gradient.' The desired boundary location is at pixel 65 and
is marked by the double vertical dashed line. It is obvious that the ramp integration technique
is better than the gradient technique in the sense that the former has a more significant peak at
the desired location, i.e., pixel 65, than the latter. In this case, the ratios ofthe maximum to
the second maximum are 1.95 and 1.25 for the 'ramp integration' and 'gradient,' respec­
tively.

Performance of proposed snake model

The proposed snake model has been applied to both phantom and clinical ultrasound im­
ages for performance evaluation. To examine the effect ofthe CNR on the performance of
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FIG. II Ramp integration and gradient for denoised Gaussian edge. The maximum edge strength ofthe ramp in­
tegration is much more significant than that of the gradient.

the proposed snake model, 10 ramp phantom images with various CNR's have been em­
ployed. Figure 12 illustrates the performance of the proposed snake model on the ramp
phantom images with the CNR = (0.5, 1-9). All 10 ramp phantom images were created using
the same crg = 5. The gjandgb have been selected according to the given CNR and the standard
deviation of the generated speckle. Note that all 10 ramp phantom images have different
speckles generated from different random number sequences. The initial contour has been
placed IS pixels away from the actual boundary for all tested cases. The radius of the ramp
integration is 5.

In figure 12, 'Mean' represents the mean minimal distance from each derived boundary
point to the actual boundary, 'Std' denotes the standard deviation of the minimal distances
from the derived boundary points to the actual boundary and 'Max' stands for the maximum
ofthe minimal distance from each derived boundary point to the actual boundary. For the vi­
sual inspection, figures 13(a)-(d) give the initial contours and derived boundaries for the
cases ofCNR = 0.5, 2, 4, 6, respectively. The object ofinterest, i.e., the blurred disc in figure
13(a) is hardly visible because of the very low CNR, which is equal to 0.5. As the CNR in­
creases, the blurred disc becomes more apparent and the speckle less significant. From fig­
ure 12, the performance of the proposed snake model clearly depends on the CNR of the
object of interest. Generally speaking, the performance degrades as the CNR decreases.
When the CNR is as small as 0.5, 'Max' may be as large as 8.6 pixels. However, figure 12
shows that the minimal distances from most derived boundary points to the actual boundary
are within 3.3 pixels (i.e., 'Max+Std' for CNR ~ I). And, the mean minimal distances for
those cases with can be as small as 1.7 pixels.

For the clinical ultrasound images, the proposed snake model has been applied to segmen­
tation of 16 hepatic tumors, each from a liver ultrasound image. The initial contours have
been placed about 10 to 20 pixels away from the desired boundaries. As examples, figures
14-17 demonstrate the segmentation results for four of the 16 tested ultrasound images,
which are images 1,3,6 and 12. Two ofthem (images 3 and 12) containhypoechoic tumors
and the other two (images I and 6) contain hyperechoic tumors. For each of these four fig-
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FIG. 12 Performance of proposed snake model on ramp phantom images with CNR = (0.5, 1-9).

ures, the first image, which is labeled as (a), is a clip ofthe original image. The second image,
which is labeled as (b), shows the tumor boundary drawn by a medical doctor. The third im­
age, which is labeled as (c), gives the initial contour and the boundary derived by the pro­
posed snake model. Figure 18 plots the performance ofthe proposed snake model on the 16
tested ultrasound images. The labels for the three curves in figure 18 are defined similarly as
those in figure 12. The only difference is that in figure 18, the minimal distance is calculated
relative to the manually-drawn boundary rather than to the actual boundary as in figure 12.

Figure 18 shows that compared to the boundary definitions given by the medical doctor,
the proposed snake model has attained reasonable boundaries for all tested ultrasound im­
ages. For the 16 tested ultrasound images, the 'Mean', 'Std' and 'Max' ofthe minimal dis­
tances are less than 2.5, 1.7 and 5.4 pixels, respectively, for all derived boundaries. The
means and the standard deviations ofthe three curves illustrated in figure 18 are summarized
in table 1.

The discrepancies between the derived and manually-drawn boundaries may be ascribed
to two major types of sources. The first type of sources is the intrinsic disagreement on the
definition of tumor boundaries between different judgements. One possible disagreement
results from the different definitions adopted by the image processing approaches and hu­
man observation. The image processing approaches usually define an edge based on a cer­
tain mathematical model, e.g., the maximum gradient, whereas medical doctors may
incorporate their knowledge ofmedicine and biology in determining the desired edges. An-

TABLE 1. Mean and standard deviation of the 'Mean', 'Std' and'Max' for the 16 tested ultrasound images (unit:
pixels).

Mean

Standard deviation

Mean

1.56125

0.541736

Std

1.121875

0.33431

Max

3.7075

1.159158
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(a) (b)

(c) (d)

FIG. 13 Boundaries derived by proposed snake model on phantom images with (a) CNR=O.5; (b) CNR=2; (c)
CNR=4; (d) CNR=6.

other common disagreement generally exists among different human observations, which
includes different definitions of tumor boundaries given by different medical doctors and
those given by the same medical doctor at different times.

The second type ofsources is the complex image property mainly due to the speckles, the
weak edges and the sporadic tissue-related textures. The speckles usually take the most re­
sponsibility for the noise effect interfering with the detection of the desired boundaries. As
simulated in the phantom study, the sole speckle factor may easily cause a mean error greater
than one pixel even with a CNR = 2. For instance, figure 14 represents the typical case where
speckles are the primary source of interference.

The weak edge problem not only makes most snake models fail to converge at the desired
boundary, but also increases the difficulty for human observers in determining the actual tu­
mor boundary. Although ramp integration has successfully enabled the proposed snake
model to capture the weak edges, when the edges are so weak that they are hardly visible, it
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(a) (b) (c)

FJG.14 Segmentation result of testing of ultrasound image J: (a) clip of original image; (b) manually-drawn
boundary; and (c) initial contour and boundary derived by proposed snake model.

(a) (b) (c)

FIG. 15 Segmentation result of testing of ultrasound image 3: (a) clip of original image; (b) manually-drawn
boundary; and (c) initial contour and boundary derived by proposed snake model.

(a) (b) (c)

FIG. 16 Segmentation result of testing of ultrasound image 6: (a) clip of original image; (b) manually-drawn
boundary; and (c) initial contour and boundary derived by proposed snake model.

may lead to a substantial discrepancies between the manually-drawn boundary and the
boundary derived by any image processing approach. As an example, figure 17 illustrates a
tumor with weak edges (e.g., the edge at the lower-left portion), where it is difficult to deter­
mine the tumor boundary visually.

In addition to the speckles, the sporadic tissue-related textures sometimes act like obsta­
cles to snake deformation, e.g., the tissue-related textures surrounding the tumors in figure
16. Because ofthese obstacles, the initial contours need to be carefully placed. However, the
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(a) (b) (c)

FIG. 17 Segmentation result of testing of ultrasound image 12: (a) clip of original image; (b) manually-drawn
boundary; and (c) initial contour and boundary derived by proposed snake model.

FIG. 18 Performance of proposed snake model on the 16 tested ultrasound images.

snake deformation may inevitably be affected by these tissue-related textures ifthey are very
close to the tumor. For example, the boundary derived by the proposed snake model in figure
16 has been trapped at the undesirable local minimum caused by the tissue-related texture at
the upper-right portion of the desired boundary.

4. CONCLUSIONS

Ultrasound image segmentation has been recognized as an important but difficult task for
clinical applications. Although the snake model has been widely used in general ultrasound
image segmentation, the complex nature ofthe ultrasound image, such as the speckles, weak
edges and tissue-related textures, have seriously degraded the performance ofconventional
snake models. To cope with this complex image property, a new adaptive snake model has
been proposed in this paper for ultrasound image segmentation using three major techniques.
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The MTM filter, which possesses the advantages of the mean and median filters, is used to
alleviate the interference of the speckles. To capture the weak edges, which may be easily
missed by conventional snake models, a new image force, called ramp integration, has been
developed. Compared to the gradient technique, the ramp integration technique not only
highlights the weak edges, but also provides a better noise immunity for the snake deforma­
tion. In the attempt to optimize the role ofeach energy term, a new scheme is suggested to
change the weighting coefficients adaptively at each deformation step. The proposed snake
model has been evaluated on phantom and ultrasound images. The experiments on phantom
images served for exact evaluation since the actual boundaries of the phantom images are
known. On the other hand, the boundaries of the objects of interest on 16 tested ultrasound
images were defined by an experienced medical doctor as the basis ofperformance evalua­
tion. The experimental results showed that the proposed snake model has achieved a reason­
able performance with an initial contour placed 10 to 20 pixels away from the desired
boundary. The mean minimal distances from the derived boundary to the desired boundary
have been shown to be less than 3.5 (for CNR 2 5) and 2.5 pixels, respectively, for the phan­
tom and ultrasound images.
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