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Abstract

This paper concerns the problem of a service-oriented public sector entity to allocate limited resources to di�erent

activities while keeping con¯icting objectives in mind. The Multi-objective Resource Allocation Problem (MRAP) is to

select activities to be performed. The authors formulate the problem as a multi-objective 0±1 linear problem. The

authors implement Data Envelopment Analysis (DEA) with the Banker, Charnes and Cooper's (BCC) model to

measure the Decision Making Unit's (DMU) e�ciency. In this study, the production function is a mathematical

statement relating the technological relationship between the objectives and resources of MRAP. Each DMU presents a

technological relationship, i.e. DMU presents a relationship between resources and objectives. This relationship gives

information about the use of resources and satisfactoriness of objectives. The inputs and outputs, respectively, outline

resources and objectives. The production possibility set represents feasible solutions for MRAP. Moreover, due to the

multiple objectives of problems, the method derives a solution set instead of an optimal solution in single objective ones.

This solution set, a well-known e�cient solutions set, forms the decision set of problems. Each DMU results from an

alternative, a combination of activities. The production possibility set presents all the candidates of DMU. The set of

alternatives resulting in e�cient DMUs is e�cient solutions of MRAP. The authors developed a two-stage algorithm to

generate and evaluate DMUs. The ®rst stage generates a DMU with the maximum of the distance function. The second

stage is then used to evaluate the e�ciency of the generated DMU. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and literature review

This paper concerns the problem of a service-oriented public sector entity to allocate m resources to Q
activities while keeping s con¯icting objectives in mind. The allocating process selects the activities to be
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performed. The authors formulate the Multi-objective Resource Allocation Problem (MRAP) as a multi-
objective 0±1 linear problem. In this paper alternative stands for a combination of activities. If there are Q
activities, the total possible number of alternatives would be 2Q.

Matrix A, with element aiq denotes the usage of the ith resource to perform the qth activity. Matrix C,
with element crq denotes the pro®t of the rth objective to perform the qth activity. Vector b, with element bi

denotes resource limitation of the ith resource. W � �w1;w2; . . . ;wQ�t denotes the decision variable vector. If
the qth activity is performed, set wq � 1, otherwise, wq � 0. The set of feasible solutions is X �

W : AW 6 b; W 2 BQ
� 	

where B is binary. This MRAP can be formulated as follows:

�P0� : maximize CW : W 2 Xf g: �1:1�
Each solution of (P0) is a combination of activities. The product vectors AW and CW represent the

usage of resources and the satisfaction of objectives, respectively. W 2 X is called an e�cient solution of (P0)
if there is no W 2 X such that CW P CW and CW 6� CW . The set of solutions is called an e�cient set.

The Decision-Making Unit (DMU) is the decision unit during the decision process. Charnes et al. [5]
considered DMUs in the form of not-for-pro®t entities rather than the more customary ``®rms'' or ``in-
dustries''. The DMU results from an alternative. That is, given an alternative, one can obtain both the
usage of resources and satisfaction of objectives. Based on the method of Data Envelopment Analysis
(DEA), the authors developed a two-stage algorithm to generate and evaluate DMUs. The ®rst stage
generates a DMU with the maximum of the distance function. The second stage is then used to evaluate the
e�ciency of the generated DMU.

Techniques for solving multi-objective mathematical programs (MMP) can be classi®ed in terms of
time for eliciting decision makerÕs (DM) preferences [7]. The eliciting time is classi®ed as prior to, during
and after optimization. As the DM articulates preference prior to optimization, solution techniques
generally derive optimal solutions in terms of utility function. By introducing a utility function, the MMP
can be formulated as a single objective mathematical programming problem. However, determining the
explicit form of the utility function may require too much time and e�ort. During optimization, DM
interacts with the computer approach. These algorithms require the DM to provide a set of weights for
the competing objectives. Hence, the DMÕs weighting would subjectively in¯uence the optimal solution.
These algorithms are not an objective method. After optimization, the DM only determines an alter-
native from the e�cient set. This method alleviates drawbacks from algorithms used during optimization.
The methods of generating e�cient solutions are mathematically well de®ned and completely objective.
These methods have been criticized for both their long computation times in generating the entire
e�cient set and their cognitive burden on the DM in selecting a solution out of in®nite number of
alternatives.

Numerous algorithms have been designed to solve multiple objective linear programs (MOLP). How-
ever, integer multiple objective linear programs have not received the algorithmic attention that continuous
problems have. The literature available on this topic is limited. Moreover, since algorithmic development
has been limited, the reported computational experience is almost non-existent. Herein we brie¯y review
some literatures.

Pasternak and Passy [12] conducted an earlier study on designing solving methods for integer
MOLPs. They used the concept of implicit enumeration to resolve zero±one bi-criterion linear pro-
grams. Three examples were presented and solved; however, extensive computational experience was not
discussed. Bitran [4] used relaxation techniques to generate e�cient solutions. He de®ned a relaxation
problem and proved the e�cient solutions of the relaxation problem that are feasible to original
problem would also be e�cient in the original problem. Bitran [4] also reported some computational
results. More recently, Deckro and Winkfsky [6] reported computational results in terms of implicit
enumeration compared to BitranÕs works. They claimed that their studies compared favorably with
BitranÕs results.
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Resource allocation problems have received algorithmic attention in [9,13±15,17]. Gilbert et al. [9]
formulated the land allocation problem as a multi-objective integer programming model and applied in-
teractive multi-objective optimization to generate e�cient solutions. Ramanathan and Ganesh [12] used an
Analytic Hierarchy Process (AHP) to solve resource allocation problems. They concentrated on two ap-
proaches, expected priority and bene®t±cost ratio. However, their works were limited to the criteria (in AHP
model) that are sought to be maximized. Schniederjans and Santhanam [14] applied zero±one goal pro-
gramming to select information system projects. The works of Teng and Tzeng [18] were concerned with
selecting transportation investment alternatives. In their study, relationships among alternatives do not
necessary independent. They designed a SENTRA method to attain the near-optimal solution. Sinuany-
Stern [17] suggested a multiple objectives network optimization model for multi-layer budget allocation.

2. Related theories and principal results

2.1. Production e�ciency

Prior to introducing the measure of productive e�ciency, we ®rst describe the production function. The
economic theory of the production function is a mathematical statement relating quantitatively to the
purely technological relationship between the output of the process and inputs of the factors of production
[14]. The distinct kinds of goods and services usable in production technology are referred to as the factors
of production of that technology and, for any set of these factors, the production function de®nes the
maximal output realizable therefrom. The production possibility set (curve) presents all feasible techno-
logical relationships (production technology) of the production function. This presentation can be studied
in terms of bene®t±cost analysis, utility function or statistical methods.

One purpose of the production function is to study the e�ciency of production technology. Below is a
brief review of the methods used to measure productive e�ciency with single and multiple outputs.

2.1.1. Single output
Farrell [8] was the ®rst to introduce a non-parametric approach to measure productive e�ciency [15].

Instead of estimating conventional production functions, he started from the observed input±output co-
e�cients of a set of Ô®rmsÕ, as a standard for measuring the e�ciency of the ®rms. Then, he ®tted a frontier
function to the points as a piecewise linear function. This frontier function is called the e�cient production
function; it is used as a reference for comparing the e�ciency of various ®rms relative to the frontier surface.
However, his studies were limited to single input and output factors of production.

2.1.2. Multiple outputs
Charnes, Cooper and Rhodes [5] introduced a ratio de®nition of e�ciency, formulated as a fractional

form (CCR ratio de®nition). This form generalized the single-output to single-input classical engineering-
science ratio de®nition to multiple outputs and inputs without requiring pre-assigned weights. Measuring
the e�ciency of any DMU is done by maximizing a ratio of weighted outputs to weighted inputs as long as
the similar ratios of every DMU is less than or equal to unity. The CCR ratio de®nition can be formulated
as a problem of fractional programming denoted as (P1). In (P1), the objective function is a ratio form
presenting the DMU to be evaluated and constraints are similar ratios for every DMU. Then the weights of
inputs and outputs can be determined by solving this problem. Charnes et al. [5] proved that the fractional
programming problem can be transformed into a linear programming problem. However, their studies were
limited to constant returns to scale. The meaning of returns to scale will be described in the next section.
Banker, Charnes and Cooper (BCC) [1] generalized Charnes et al.Õs work. They used a decision variable to
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qualify return to scale and transformed a fractional programming problem into a linear programming
problem, denoted as (P2), in terms of ShephardÕs [16] distance function. They also obtained the same ef-
®cient conditions as Charnes et al.Õs model [5].

�P1� max

Ps
r�1 uryr0Pm
i�1 vixi0

; �2:1�

s:t:

Ps
r�1 uryrjPm
i�1 vixij

6 1; j � 1; . . . ; n; ur; vi P 0; r � 1; . . . ; s; i � 1; . . . ;m: �2:2�

yrj; xij ( P 0) are the known outputs and inputs of DMU-j and the ur and vi are the variable weights to be
determined by the solution of problem (P1). The e�ciency of one member of this reference set j � 1; . . . ; n
DMUs is to be rated relative to the others.

The DMU weight is distinguished by assigning it the subscript 0 in the function for optimization (but
preserving its original subscript in the constraints). The indicated maximization then accords this DMU the
most favorable weighting that the constraints allow.

2.2. Measuring DMU e�ciency

The authors implement DEA with the BCC model to measure the DMUÕs e�ciency. In this study, the
production function is a mathematical statement relating the technological relationship between the ob-
jectives and resources of MRAP. Each DMU presents a technological relationship, i.e. DMU presents a
relationship between resources and objectives. This relationship gives information about the use of re-
sources and satisfactoriness of objectives. The inputs and outputs respectively outline resources and ob-
jectives. The production possibility set represents feasible solutions for MRAP. Moreover, due to the
multiple objectives of problems, the method derives a solution set instead of an optimal solution in single
objective ones. This solution set, a well-known e�cient solutions set, forms the decision set of problems.
Each DMU results from an alternative, a combination of activities. The production possibility set presents
all candidates of DMU. The set of alternatives resulting in e�cient DMUs is e�cient solutions of (P0) (see
Property 1 in the following section).

Below is an approach to ®nding e�cient solutions to an MRAP. Note that the DMUs forming the
e�cient production possibility frontier are the e�cient solutions of problem (P0).

The (P2) model is used to evaluate the e�ciency of DMU-d, and d could be any one of the DMUs.
Before introducing the (P2) model, however, some additional notation is required.

urd represents the weight of rth objective corresponding to DMU-d.
vid represents the weight of ith resource corresponding to DMU-d.
u0d represents the returns-to-scale factor corresponding to DMU-d.
Ai is the ith row vector of A matrix in the problem (P0).
Cr is the rth row vector of C matrix in the problem (P0).
Wd � �w1d ;w2d ; . . . ;wQd �t denotes the transpose of the vector. wqd � 1 if perform qth activity of DMU-d.
Otherwise, wqd � 0.
For the ith resource input (usage) request by alternative-d with vector Wd ,

06 xid � Ai �W d �
XQ

q�1

aiqwqd 6 bi: �2:3�
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For the rth satisfactory objective output obtained from alternative-d with vector Wd ,

06 yrd � C r �W d �
XQ

q�1

crqwqd 6 gr: �2:4�

And Dd � �xd ; yd� is the DMU resulted from alternative-d, where

xd � �x1d ; x2d ; . . . ; xmd �; yd � �yld ; y2d ; . . . ; ysd �;
X � �x1; x2; . . . ; xn�t; Y � �y1; y2; . . . ; yn�t;
b � �b1; . . . ; bi; . . . ; bm�; g � �g1; . . . ; gr; . . . ; gs�:

Assume that each positive output vector can be produced from a positive input vector.
The (P2) model derived by Banker et al. is below.

�P2� max hd �
Xs

r�1

urdyrd ÿ u0d ; �2:5�

s:t:Xs

r�1

urdyrj ÿ
Xm

i�1

vidxij ÿ u0d 6 0; j � 1; . . . ; n; �2:6�

Xm

i�1

vidxid � 1; �2:7�

urd ; vid P e8i; r u0d are unrestricted in sign. e > 0 is a small real number.
The inequality (2.6) is derived from

06
Ps

r�1 urd yrjPm
i�1 vid xij � u0d

6 1: �2:8�

u0d denotes an o�set of a fraction of weight between objective satisfaction and resource usage. There are
three types of u0d . If u0d < 0, the percentage increase in the resource's usage exceeds the percentage increase
in the objective's satisfaction. This is the so-called case of Increasing Returns to Scale (IRS). If IRS is
present and DM decides to double current usage of resources, then its satisfaction of objectives would be
more than double.

If u0d > 0, the percentage increase in the resource's usage is less than the percentage increase in the
objective's satisfactory. This is the so-called case of Decreasing Returns to Scale (DRS). If DRS is present
and DM decides to double current usage of resource, then its satisfaction of objectives would be less than
double.

For j � 1; . . . ; n, the dual problem of (P2) is denoted as follows:

�P02� min h0d � xd ÿ e
Xm

i�1

s i

"
ÿ
Xs

r�1

s0k

#
�2:9�

s:t:

xdxid ÿ
Xn

j�1

xi jk j ÿ s i � 0; i � 1; . . . ;m:
�2:10�
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Xn

j�1

yr jk j ÿ s0r � yrd r � 1; . . . ; s �2:11�

Xn

j�1

kj � 1; kj; si; s0r P 0 8j; i; r; �2:12�

where si and s0r are slack variables. kj and xd , respectively, denote the dual variables corresponding to (2.6)
and (2.7). Note that the (P2) model is equivalent to a fractional programming problem, expressed as fol-
lows:

�P002� max zd �
Ps

r�1 ur dyrd ÿ u0dPm
i�1 vidxid

; �2:13�

s:t:

Ps
r�1 ur dyrj ÿ u0dPm

i�1 vidxij
6 1; j � 1; . . . ; n; �2:14�

urd ; vid P 08i; r; u0d unrestricted in sign.
In fact, a transformation of variables is needed to obtain (P002), see [5, p. 432]. Now delineate the e�cient

condition for a DMU. Let z0d denote the objective value of the reciprocal (ine�ciency) measure version of
(P002). Since a change in variables does not alter the value of function. Thus, z0�d � h0�d � h�d , and z�d � 1=h�d .
Also the desired relative weights have been obtained at this time. Thus, nothing more is required than the
solution of (P002) or (P02) in order to determine whether z�d < 1 or, correspondingly, z0�d > 1 with e�ciency
prevailing if and only if z�d � z0�d � 1.

Now consider the slack variables in (P02). Let s�i (i � 1; . . . ;m) and s0�r (r � 1; . . . ; s� denote the value of
slack variable in the equivalent equations (2.10) and (2.11) of the optimal solution. If s0�r has any positive
components, it is possible to increase the associated objectives (outputs) in the amount of these slack
variables without altering any of the k� values or without violating any constraints. Similarly, if s�i has any
positive component, one could reduce the resource (input) in the same way. Thus, in either case, the DMU
being evaluated has not achieved (relative) e�ciency even with h0�d � 1. For easy reference, one can sum-
marize what is involved as:
1. h0�d � 1, and
2. the slack variables are all zero in (P02).

According to the complementary slackness properties of primal±dual problems, if the prime variables u�rd
and v�id are positive and h�d � 1, then the DMU-d is an DEA-e�cient solution of problem (P2). Formally,
Dd � �xd ; yd� is the vector of DMU-d resulting from alternative-d with vector Wd � �w1d ;w2d ; . . . ;wQd �t. If
h�d � 1, then Dd is called DEA-e�cient.

Now one can prove that an alternative of the multi-objective model P0 which results in a DEA-e�cient
DMU is an e�cient solution of P0.

Property 1. Let Dd � �xd ; yd� be the vector representing DMU-d resulting from alternative-d. If DMU-d is
DEA-e�cient, then alternative-d is an e�cient solution.

Proof. Let Wb is the vector of alternative b. If alternative-d is not an e�cient solution, then there is an
alternative-b such that at least one objective r results in CrWb > CrWd , where Cr is the rth row vector of
matrix C. Then consider the DMU-b. Since yrd � CrWd , yrb�CrWb. Then in (P02), the rth objective con-
straint in evaluating DMU-b is
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Xn

j�1

yrjkj P yrb > yrd :

Contracting all slack variables of DEA-e�cient DMU, Dd , are zero. �

Banker et al. [1] indicated that the optimal solution of (P2) is respect to a DMU. In this paper, let
ud � �u�1d ; u�2d ; . . . ; u�sd �; vd � �v�1d ; v

�
2d ; . . . ; v�md � and u�0d , denote optimal solution of (P2) respects DMU-d. If

DMU-d is e�cient, udyd ÿ vdxd � u�0d is the supporting hyperplane for the production possibility set con-
structed by e�cient DMUs.

2.3. Distance function

In a discrete solution space, G 0 is a convex region in that space. Let GE denote the set of feasible solution
points outside region G 0. De®ne the distance function of a point, D, in set GE to G 0 as

d1�D� � min kD
n

ÿD0k : D0 2 G 0
o
: �2:15�

The distance function, d1 (D) is a quadratic integer programming problem. In this case, de®ne a support
function of G 0 as

d2�D� � supfDD0 : D0 2 G 0g: �2:16�
The di�culty of solving d1�D� motivates the following property.

Property 2. For a given D, if Da is the optimal solution of d2�D�, i.e. d2�D� � DDa, then Da is also the optimal
solution of d1�D�, i.e. d1�D� � kDÿDak.

Proof. If Da is not the optimal solution of d1�D�, there is a Db 2 G 0 such that kDÿDak > kDÿDbk which
implies kDak2 ÿ kDbk2 ÿ 2DDa � 2DDb > 0. Since D;Da and Db are nonnegative bounded integer,
kDÿDak > kDÿDbk implies kDak2 ÿ kDbk2

> 0. Hence, DDa < DDb. Contracting Da is the optimal so-
lution of d2�D�. �

Assume the supporting hyperplanes of set G 0 form a convex hull, denoted as H(G 0). Hence, the surface
of H(G 0) is a continuous bounded set.

Nemhauser and Wolsey [11, p. 107] indicated that the optimal bounded solution of
fsup DDa : Da 2 H�G 0�g is also an optimal solution of d2�D� . Therefore, d2�D� could be rede®ned as

d2�D� � supfDDa : Da 2 H�G 0�g: �2:17�
Then d2�D� can be solved as a linear programming problem, thus saving much computation time.

Property 3. d2�D� is a convex function.

Proof. For any two points Da; Db 2 GE and for a point Dc 2 H�G 0�. By de®nition of d2�D� function, one
gets

lDaDc6 l supfDaDcg and �1ÿ l�DbDc6 �1ÿ l� supfDbDcg; 06l6 1:

Combining these two inequalities, one obtains
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lDaDc � �1ÿ l�DbDc6 l supfDaDcg � �1ÿ l� supfDbDcg; 06l6 1:

Since for each Dc 2 H(G 0) the above inequality would hold. One obtains

supflDaDc � �1ÿ l�DbDcg6 l supfDaDcg � �1ÿ l� supfDbDcg; 06l6 1:

Thus, d2�D� is a convex function. �

Property 4. Let D0 is a given point of G 0. If d2�D0)�D0D�, then D� is a subgradient of d2�D� at D0.

Proof. Since d2�D� is a convex function, if d2�D�P d2�D0) + D�(DÿD0) 8D 2GE, then D� is a subgradient of
d2 (D) at D0. Since d2�D� � supfDD0g � DD�P DD0 8D0 2 H(G 0), then d2�D� � DD�P DD08 D 2 GE,
where D� 2 H(G 0). Thereby, d2�D�P DD� �D0D� ÿD0D� � D0D� � �DÿD0�D� � d2�D0� � �DÿD0�D�;
8D 2 GE. �

3. Two-stage algorithm

The authors developed a two-stage algorithm to generate and evaluate DMUs. The ®rst stage generates
a DMU with the maximum of the distance function as described in Section 2.3. The second stage is then
used to evaluate the e�ciency of the generated and evaluated DMU. Each DMU results from an alter-
native. The alternative is a combination of activities.

3.1. Framework of the algorithm

The algorithm has two: Stage-I, and Stage-II. Stage-0 initializes the algorithm. Stage-I generates a
further DMU. Stage-II evaluates the e�ciency of the DMU. Notations used in the algorithm are presented
below. An iteration index, k, was added to notations to indicate which DMU would be generated at
iteration.

G : the set of all the possible DMUs (production possibility set) of the MRAP.
Gk: a subset of G , denotes the set of evaluated DMUs at the beginning of the kth iteration.
G 0k: a subset of Gk, denotes the e�cient DMUs.
H(G 0k): the convex hull constructed by G 0k.
GH

k : contains all the non-evaluated and evaluated DMUs inside the convex hull H(G 0k) at the beginning
of iteration k.
GE

k : a subset of G , denotes DMUs outside H(G 0k).

3.2. Stage-0: Initialization

A set of alternatives triggers the two-stage algorithm. The authors arbitrarily chose a set of alternatives
satisfying resource constraints. Stage-0 is summarized below.

Step 0.1: k� 0. Arbitrarily choose a set of feasible alternatives. Obtain the DMU according to each
alternative. Calculate the matrices X and Y. Let G0 be the set of these DMUs. Go to Step 0.2.

Step 0.2: Evaluate each DMU's e�ciency in set G0 by solving (P2). If the prime variables u�kd and v�id are
positive and h�d � 1, the evaluated DMU is DEA-e�cient and is also a member of G 00: Follow step 2.2 to
construct H(G 00). Go to Stage-I. If no DMU is DEA-e�cient, go to step 0.1.
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3.3. Stage-I (generation)

Stage-I aims to augment the set H(G 0k). At the beginning of Stage-I, the updated (from Stage-II)
GE

k ;G
H
k ;G

0
k, and H(G 0k) are given. Based on this information, seek a further DMU contained in GE

k from
H(G 0k). If one exists, proceed with the algorithm. Otherwise, stop the algorithm and the alternative results in
a member of e�cient DMU, G 0k :, being the e�cient solution of (P0). By incorporating the distance function,
the purpose of stage-I is equivalent to solving the problem, max{d1�D�: D 2 G 0k}. Based on Property 2,
however, one can use d2�D� instead of d1�D�. That is, using max{d2�D� : D 2 GE

k } solves the problem,
max{d1�D� : D 2 GE

k }. Now the problem is maximizing a convex function, d2�D�. Bazaraa et al. [3] de-
veloped a necessary condition for such a problem. They indicated that several local maximal satisfying the
condition exist, but there is no local information at such solutions that could lead to better points as the
minimization case does. Based on the above discussion, the purpose of stage-I is the same as ®nding the
optimal solution of (P3). Due to Property 4, use a subgradient optimization method to solve (P3). Based on
the basic step of the subgradient optimization method, three steps are used in Stage-I.

�P3� maxfd2�D� : D 2 GE
k g: �3:1�

Step 1.1: Initial DMU
Solve problem (P4) to ®nd initial alternative d. If there exists, go to Step 1.2. Otherwise, stop. Current

alternatives resulting in e�cient DMUs, G 0k, are e�cient solutions of (P0).

�P4� max
XQ

q�1

wqd ; �3:2�

s:t:

XQ

q�1

Xs

r�1

u�rjcrq

"
ÿ
Xm

i�1

v�ijaiq

#
wqd > u�0j 8j 2 G 0k; �3:3�

06
XQ

q�1

crqwqd 6 gr; r � 1; . . . ; s; �3:4�

06
XQ

q�1

apqwqd 6 bi; i � 1; . . . ;m;

wqd 2 0; 1f g �3:5�

gr and bi are bounded constraints of objectives and resources, respectively.
The convex hull of all the e�cient DMUs in G 0k is constructed by the associated supporting

hyperplanes:

uj � yj ÿ vj � xj 6 u�0j 8j 2 G 0k: �3:6�

For any DMU which is not contained in H(G 0k) and results from an alternative, say, d, its xd and yd must
satisfy the set of constraints

uj � yd ÿ vj � xd > u�0j 8j 2 G 0k: �3:7�
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Inequality (3.7) can be rewritten as

uj � yd ÿ vj � xd �
Xs

r�1

yrdu�rj ÿ
Xm

i�1

xidv�ij

�
Xs

r�1

u�rj

XQ

q�1

crqwqd ÿ
Xm

i�1

v�ij
XQ

q�1

aiqwqd

�
XQ

q�1

Xs

r�1

u�rjcrq

"
ÿ
Xm

i�1

v�ijaiq

#
wqd > u�0j 8j 2 G 0k:

�3:8�

Any DMU can also satisfy the boundary conditions as (2.3) and (2.4). De®ne the objective of (P4) because
the authors subjectively hoped more activities could be performed. Other objective functions should not be
restricted.

Step 1.2: Obtain subgradient
Let D0 be DMU resulting from alternative-d. Solve d2(D)0 � supfD0D : D 2 H (G 0k)g for optimal solution

d2(D0)�D0D*. Go to Step 1.3.
At the beginning of this step, D0, a DMU resulting from the initial alternative, H(G 0k) and GE

k must be
determined. Then, starting from D0, one needs to know what direction would obtain a further DMU. One
of the candidates (directions) is a subgradient. This gives a subgradient of d2(D) at D0. Due to Property 4, a
subgradient of d2(D) at D0 can be easily obtained. However, d2(D) uses H(G 0k) to describe an e�cient
frontier formed by G 0k. Hence, H(G 0k) must be constructed. (Constructing H(G 0k) is delineated in stage-II)

Step 1.3: Find a more distant DMU
Solve the following problem (P2) in terms of the linear search method, D � D0 � pD� to obtain a DMU,

D, more distant from H(G 0k). If one exists, replace D0 by D and repeat Step 1.2. Otherwise, let
Gk�1 � G 0k [ fD0g and go to Stage-II.

At the beginning of this step, D0 and a subgradient D* of d2(D) at D0 must be determined. Recall that
Stage-I is equivalent to solve (P3). Since (P3) is a discrete optimization problem. Based on Property 4, a
subgradient optimization method would be involved. The subgradient optimization method improves the
objective function in terms of step size and subgradient. By introducing step size and subgradient, a closer
optimal solution would be obtained. Bazaraa and Sherali [2] have introduced convergence and computa-
tional e�cient procedures for selecting step size. However, a generally subgradient optimization method
occurred in closed convex set. The (P3) problem is discrete. Hence, restrict the integrity of step size(p). Now
develop a linear search, D � D0 � pD�, algorithm to resolve (P3). Because of the integrity of D, p must be
one of the three types, )1, 0, or 1. If more improvement is not attempted, stop and update
Gk�1;Gk�1 � G 0k [ fD0g. Otherwise, replace D0 by D and redo Step 1.2.

3.4. Stage-II: Evaluation

Stage-II aims to evaluate the e�ciency of DMU contained in Gk: The method used is DEA with Banker
et al.Õs [1] model. In the approach outlined here, the authors separated Stage-II into two steps, although
these two steps are ®nished simultaneously. Each step is explained below.

Step 2.1: Evaluate e�ciency: Calculate the X and Y matrices by Gk�1 and solve problem (P2) to evaluate
e�ciency. After that, obtain G 0k�1 and optimal solutions ud ; vd ; and u�0d corresponding to e�cient DMU-d.
Go to Step 2.2.

At the beginning of Stage-II, an updated Gk�1 is given. This step is then used to evaluate the e�ciency of
members contained in Gk�1. Assume the total number of DMUs contained in Gk�1 is n. The method used is
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DEA with the (P2) model. Then n linear programs of the (P2) model should be solved to obtain e�ciency of
each DMU. In other words, assigning d � 1; 2; . . . ; n to the (P2) model. Each linear program di�ers only in
objective function (2.5) and constraint (2.7). If the prime variables u�kd and v�id are positive and h�d � 1, the
evaluated DMU is DEA-e�cient and is also a member of G 0k�1.

After the DEA is evaluated, new e�cient DMUs, formed set G 0k�1, are identi®ed with DEA-e�cient
conditions. Based on these e�cient DMUs, G 0k�1, the convex hull, H(G 0k�1), constructed by G 0k�1, are de-
termined.

Step 2.2: Construct H(G 0k):
Let H(G 0k�1)� {(xd ; yd): udyd ÿ vdxd 6 u�0d ; d 2 G 0k�1, (xd ; yd)2GH

k�1}. Go to Stage-I, update k � k � 1.

Recall that since ud yd ) vd xd � u�0d is a supporting hyperplane of GH
k�1 and xd , yd are bounded, ud , vd and

u00d are the optimal solution of (P2) corresponding to e�cient DMU-d in G 0k�1. Moreover, ud yd )
vd xd 6 u00d , d 2 G 0k�1, for each (xd , yd) 2 G 0k�1. One can construct H(G 0k�1) in terms of the set of constraints,
ud yd)vd xd 6 u00d , and bounded value of xd , yd . Hence, H(G 0k�1)� {(xd , yd): ud yd)vd xd 6 u�0d , (xd , yd)
2 GH

k�1}.
The e�cient solutions of MRAP can be obtained from the ®nal G 0k of this recursive two-stage algorithm.

Each alternative resulting in a member of G 0k is an e�cient solution of MRAP (following Property 1). Fig. 1
portrays this three-stage algorithm.

3.5. Illustrative example

Consider the following multi-objective 0±1 linear program:

max 3w1 � 6w2 � 5w3 ÿ 2w4 � 3w5;

max 6w1 � 7w2 � 4w3 � 3w4 ÿ 8w5;

max 5w1 ÿ 3w2 � 8w3 ÿ 4w4 � 3w5;

s:t: ÿ 2w1 � 3w2 � 8w3 ÿ w4 � 5w56 13;

6w1 � 2w2 � 4w3 � 4w4 ÿ 3w56 15;

4w1 ÿ 2w2 � 6w3 ÿ 2w4 � w56 11;

w1; w2; w3;w4;w5 2 0 1f g:

The production possibility set, G , is

G � x �
x1

x2

x3

2664
3775; y �

y1

y2

y3

2664
3775 :

0

0

0

2664
37756

x1

x2

x3

2664
37756

13

15

11

2664
3775;

0

0

0

2664
37756

y1

y2

y3

2664
37756

17

20

16

2664
3775;

y P 0 can be produced from x P 0

8>>>>><>>>>>:

9>>>>>=>>>>>;
:

Stage-0: Initialization.
Step 0.1. Since there are ®ve decision variables, the total number of possible alternatives are 25� 32. The

authors arbitrarily chose four initial feasible alternatives, W1� [1 1 1 0 0], W2� [1 0 1 0 1 ], W3� [1 1 0 0 0]
and W4� [0 0 1 1 0]. Using Eqs. (2.3) and (2.4), these alternatives resulted in DMUs, D1, D2, D3 and D4,
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respectively. D1� [9, 12, 8, 14, 17, 10], D2� [11, 7, 11, 11, 2, 16], D3� [1, 8, 2, 9, 13, 2] and D4� [7, 8, 4, 3,
7, 4]. X, Y matrices could also be obtained. These four DMUs are to be evaluated, therefore
G0 � f1; 2; 3; 4g, where number 1, 2, 3 and 4 represent the index of DMU-d. Go to step 0.2.

X �

9 12 8

11 7 11

1 8 2

7 8 4

26666664

37777775; Y �

14 17 10

11 2 16

9 13 2

3 7 4

26666664

37777775:

Fig. 1. Framework of the algorithm.
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Step 0.2: Let d � 1, evaluate DMU-d, D1, the (P2) model is formulated as follows.

max h1 � 14u11 � 17u21 � 10u31 ÿ u01;

s:t: 14u11 � 17u21 � 10u31 ÿ 9v11 ÿ 12v21 ÿ 8v31 ÿ u016 0;

11u11 � 2u21 � 16u31 ÿ 11v11 ÿ 7v21 ÿ 11v31 ÿ u016 0;

9u11 � 13u21 � 2u31 ÿ v11 ÿ 8v21 ÿ 2v31 ÿ u016 0;

3u11 � 7u21 � 4u31 ÿ 7v11 ÿ 8v21 ÿ 4v31 ÿ u016 0;

9v11 � 12v21 � 8v31 � 1;

u11; u21; u31; v11; v21 and v31 P e, u01 is unrestricted in sign.
By a similar method evaluate D2, D3 and D4. The solutions are listed in Table 1. Since h04 6� 1, D4 is not

an e�cient DMU. Hence G 00� {1, 2, 3} were obtained.
Following Eq. (3.6), H(G 00) is constructed as:

0:0001y11 � 0:0187y21 � 0:0680y31 ÿ 0:0001x11 ÿ 0:0261x21 ÿ 0:0867x316 0;

0:0001y12 � 0:0166y22 � 0:0604y32 ÿ 0:0001x12 ÿ 0:0232x22 ÿ 0:0760x326 0;

0:0001y13 � 0:0492y23 � 0:1795y33 ÿ 0:0001x13 ÿ 0:0684x23 ÿ 0:2265x336 0:

Go to Stage-I.
Iteration k � 1.
Stage-I: Generation.
Step 1.1: Solving the following 0±1 integer problem by implicit enumeration.

�P4� max w1d � w2d � w3d � w4d � w5d ;

s:t: ÿ 0:0507w1d � 0:0484w2d ÿ 0:0061w3d ÿ 0:1470w4d � 0:0458w5d > 0;

ÿ 0:0411w1d � 0:0409w2d � 0:0005w3d ÿ 0:1327w4d � 0:0418w5d > 0;

ÿ 0:1234w1d � 0:1224w2d ÿ 0:3911w4d � 0:1234w5d 6 0;

06 ÿ 2w1d � 3w2d � 8w3d ÿ w4d � 5w5d 6 13;

06 6w1d � 2w2d � 4w3d � 4w4d ÿ 3w5d 6 15;

06 4w1d ÿ 2w2d � 6w3d ÿ 2w4d � w5d 6 11;

06 3w1d � 6w2d � 5w3d ÿ 2w4d � 3w5d 6 20;

06 6w1d � 7w2d � 4w3d � 3w4d ÿ 8w5d 6 21;

06 5w1d ÿ 3w2d � 8w3d ÿ 4w4d � 3w5d 6 19;

w1d ;w2d ;w3d ;w4d and w5d 2 0; 1:

Table 1

Data obtained at stage 0 of the example

Primal variable DMU-d

1 2 3 4

u�1d 0.0001 0.0001 0.0001 0.0001

u�2d 0.0187 0.0166 0.0492 0.0122

u�3d 0.0680 0.0604 0.1795 0.1701

v�1d 0.0001 0.0001 0.0001 0.0001

v�2d 0.0261 0.0232 0.0684 0.0001

v�3d 0.0867 0.0760 0.2265 0.2496

u�0d 0 0 0 0

h�d 1 1 1 0.7764
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The optimal solution as Wd � �1 1 0 0 1� resulting in a new DMU D0 � �6 3 3 12 5 5�. Go to step 1.2.
Step 1.2: Solve d2�D0�. D� � �13 15 11 20 21 13� by rounding y3d � 13:8195 down to 13. Go to step 1.3.
Step 1.3: Improving D in terms of linear search strategy, D � D0 � pD�. D could not be improved. Hence

the new DMU is D0. Let D0 � �6 3 3 12 5 5� to be DMU-4. G l � G 0 [D0 � f1; 2; 3; 4g. Go to Stage-II.
Stage-II: Evaluation.
Step 2.1: The new X, Y matrices determined by the DMUs in G1 are as follows:

X �
9 12 8

11 7 11
1 8 2
6 3 3

2664
3775; Y �

14 17 10
11 2 16
9 13 2

12 5 5

2664
3775:

Solve problem (P2) to evaluate DMU-1, 2, 3, 4 of G1. The solutions are listed in Table 2. Since the prime
variables are positive and the objective function values equal 1, G 0j � 1; 2; 3; 4.

Step 2.2: After the DEA is evaluated, G l � f1; 2; 3; 4g and H(G 01) were obtained.

0:0001y11 � 0:0333y21 � 0:0454y31 ÿ 0:0327x11 ÿ 0:0588x21 ÿ 0:0001x316 0:0223;

0:0001y12 � 0:0432y22 � 0:0588y32 ÿ 0:0423x12 ÿ 0:0762x22 ÿ 0:0001x326 0:0286;

0:640y13 � 0:0663y23 � 0:0902y33 ÿ 0:0649x13 ÿ 0:1169x23 ÿ 0:0001x336 0:0435;

0:0163y14 � 0:0896y24 � 0:1218y34 ÿ 0:0876x14 ÿ 0:1580x24 ÿ 0:0001x346 0:0585:

Go to Stage-I.
Iteration k � 2.
Stage-I: Generation.
Step 1.1: Solving the following 0±1 integer problem by implicit enumeration:

�P4� max w1d � w2d � w3d � w4d � w5d ;

s:t: 0:1393w1d ÿ 0:1180w2d ÿ 0:0005w3d ÿ 0:2842w4d ÿ 0:1171w5d > 0:0223;

0:1823w1d ÿ 0:1552w2d ÿ 0:0073w3d ÿ 0:3672w4d ÿ 0:1564w5d > 0:0286;

0:4688w1d � 0:1492w2d � 0:3194w3d ÿ 0:6924w4d ÿ 0:0417w5d > 0:0435;

0:4223w1d ÿ 0:2190w2d � 0:0809w3d ÿ 0:7952w4d ÿ 0:2666w5d > 0:0585;

06 ÿ 2w1d � 3w2d � 8w3d ÿ w4d � 5w5d 6 13;

06 6w1d � 2w2d � 4w3d � 4w4d ÿ 3w5d 6 15;

06 4w1d ÿ 2w2d � 6w3d ÿ 2w4d � w5d 6 11;

Table 2

Data obtained in the ®rst iteration of the example

Primal variable DMU-d

1 2 3 4

u�1d 0.0001 0.0001 0.0640 0.0163

u�2d 0.0333 0.0432 0.0663 0.0896

u�3d 0.0454 0.0588 0.0902 0.1218

v�1d 0.0327 0.0423 0.0649 0.0876

v�2d 0.0588 0.0762 0.1169 0.1580

v�3d 0.0001 0.0001 0.0001 0.0001

u�0d 0.0223 0.0286 0.0435 0.0585

h�d 1 1 1 1
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06 3w1d � 6w2d � 5w3d ÿ 2w4d � 3w5d 6 20;

06 6w1d � 7w2d � 4w3d � 3w4d ÿ 8w5d 6 21;

06 5w1d ÿ 3w2d � 8w3d ÿ 4w4d � 3w5d 6 19;

w1d ;w2d ;w3d ;w4d and w5d 2 f0; 1g:
The optimal solution is Wd � �1 0 1 0 0� resulting in a new DMU D0 � �6 10 10 8 10 13�. Go to step

1.2.
Step 1.2: Solve d2 � �D0�. D� � �13 15 11 0 21 13� by rounding yld � 0:0063 and y3d � 13:8481 down to

0 and 13, respectively. Go to step 1.3.
Step 1.3: Improving D in terms of linear search strategy, D � D0 � pD�. D could not be improved. Hence

the new DMU is D0. Let D0 be DMU-5. G2 � G 01
SfD0g � f1; 2; 3; 4; 5g. Go to Stage-II.

Stage-II: Evaluation.
Step 2.1: The new X, Y matrices were determined by the DMUs in G2 as follows:

X �

9 12 8
11 7 11
1 8 2
6 3 3
6 10 10

26664
37775; Y �

14 17 10
11 2 16
9 13 2

12 5 5
8 10 13

26664
37775:

The evaluated solutions are listed in Table 3. Only the ®rst two DMUs satisfy the conditions of e�cient
DMU. Hence, G 02 � f1; 2g.

Step 2.2: H�G 0k� were found as:

0:0001y11 � 0:0120y21 � 0:0896y31 ÿ 0:0125x11 ÿ 0:0001x21 ÿ 0:1108x316 0:1017;

0:0001y12 � 0:0030y22 � 0:0621y32 ÿ 0:0179x12 ÿ 0:0001x22 ÿ 0:0729x326 0:0000:

Go to Stage-I.
Iteration k � 3.
Stage-I: Generation.
Step 1.1: Solve the following 0±1 integer problem.

�P4� max w1d � w2d � w3d � w4d � w5d ;

s:t: 0:1015w1d ÿ 0:0003w2d � 0:0001w3d ÿ 0:0889w4d � 0w5d > 0:1017;

0:0724w1d ÿ 0:0728w2d ÿ 0:0717w3d ÿ 0:0763w4d � 0:0005w5d > 0;

06 ÿ 2w1d � 3w2d � 8w3d ÿ w4d � 5w5d 6 13;

Table 3

Data obtained in the second iteration of the example

Primal variable DMU-d

1 2 3 4 5

u�1d 0.0001 0.0001 0.0829 0.0509 0.0359

u�2d 0.0102 0.0030 0.0001 0.0001 0.0001

u�3d 0.0896 0.0621 0.1264 0.0777 0.0548

v�1d 0.0125 0.0179 0.2223 0.1368 0.0964

v�2d 0.0001 0.0001 0.0972 0.0600 0.0422

v�3d 0.1108 0.0729 0.0000 0.0000 0.0000

u�0d 0.1017 0 0 0 0

h�d 1 1 1 1 1
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06 6w1d � 2w2d � 4w3d � 4w4d ÿ 3w5d 6 15;

06 4w1d ÿ 2w2d � 6w3d ÿ 2w4d � w5d 6 11;

06 3w1d � 6w2d � 5w3d ÿ 2w4d � 3w5d 6 20;

06 6w1d � 7w2d � 4w3d � 3w4d ÿ 8w5d 6 21;

06 5w1d ÿ 3w2d � 8w3d ÿ 4w4d � 3w5d 6 19;

w1d ;w2d ;w3d ;w4d and w5d 2 f0; 1g:
There is not a feasible solution. Stop.

Current alternatives give e�cient solutions. That is, alternatives [1 1 1 0 0] and [1 0 1 0 1] result in
e�cient solutions.

All the alternatives and their resourcesÕ usage and objective satisfactoriness are listed in Table 4. There
are 17 infeasible alternatives, 12 non-e�cient alternatives, and 3 e�cient alternatives. The e�cient alter-
native [1 1 1 1 1] is not found in the procedure.

4. Conclusions

Resource allocation problems are close to our daily activities, whether it is personal ®nancial man-
agement or national capital planning. Such activities involve allocating limited resources to activities while
keeping con¯icting objectives in mind. Each activity is either performed or not. One can formulate this
problem as a multi-objective 0±1 linear program. Solution methods for multi-objective 0±1 linear programs
have been developed [7]. Some computational results have been reported in the literature [4,6]. However,
algorithms for large problems have not been presented previously.

This paper presents a new method for solving multi-objective 0±1 linear programs. This new method
focuses on generating partially e�cient solutions. The method is divided into two stages. Stage-I generates a
DMU that maximizes the distance function. Stage-II then evaluates e�ciency of generated and evaluated
DMUs. In developing the process, we assume that all resources and objectives are nonnegative and
bounded. The assumption for some objectives and resources may be not practical, however. Because of
limited resources, it is hoped to utilize them e�ciently. Moreover, based on the essence of DEA, this study
is only concerned with public sectors. That is, the resource allocation problem solved is done in public
sectors.

Development of the computer program for operational using this developed method is underway. The
authors hope to compare their results further with the methods developed by Bitran [4] and Deckro and
Winkofsky [6]. The authors also hope to test their algorithm with larger problems.

Finally, some future research issues addressed are summarized below. These issues include disadvan-
tages and incomplete portions of the two-stage algorithm developed here.
1. The linear search, Step 1.3, for improving the initial alternative, may be a burdensome strategy. In the

illustrative example, since the problem is too small, one cannot recognize the drawback of this strategy.
The authors suspect however this procedure would signi®cantly in¯uence e�ciency for solving larger
scale problems.

2. This algorithm focuses on solving multi-objective 0±1 linear programs. It is also capable of solving mul-
ti-objective integer linear programming problems.

3. Practically speaking, the assumption of nonnegative and bounded objectives and resources may need to
be relaxed. This relaxation would violate Property 2, however.

4. One may need to add points at in®nity constraints to H(G 0k) so optimal solutions of d2 (D) are all integers.
ÔPoints at in®nityÕ is one of FarrelÕs more awkward concepts. However, Charnes et al. [5] do not incor-
porate this concept in their results.
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5. One may need to include a convergence analysis in this algorithm.
6. Reducing the total number of e�cient solutions to a manageable size is critical for the DM. This is be-

cause a large number of e�cient solutions complicate the task of selection. Some studies have examined
this topic, however [10].

7. The algorithm developed here is not guaranteed to generate all e�cient solutions. Future work could be
focused on generating all e�cient solutions.
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