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Several approaches to Chinese dialect identification based on segmental and prosodic features of
speech are described in this paper. When using segmental information only, the system performs
phonotactic analysis after speech utterances have been tokenized into sequences of broad phonetic
classes. The second scheme comprises prosodic models which are trained to capture tone sequence
information for individual dialects. Also proposed is a novel approach that examines differences
between Chinese dialects at broad phonetic and prosodic levels. These algorithms were evaluated
via a multispeaker read-speech mode. Simulation results indicate that the combined use of
segmental and prosodic features allows the proposed system to discriminate among three major
Chinese dialects spoken in Taiwan with 93.0% accuracy.2@0 Acoustical Society of America.
[S0001-496600)03410-X]

PACS numbers: 43.72.N®OS]

I. INTRODUCTION those among the family of Romance languages, such as
French, Spanish, and lItalian. This motivated our research

_Automatlc Ianguage |dent|f|cat|odang_uage I.D IS an - into trying to devise a system for determining the identities
active research area with the goal of multilingual information . . : o
of spoken Chinese dialects. During the initial stage of devel-

access. A language-ID system takes test utterances as |np%t§,ing our dialect-ID system, special efforts were made to

and produces the identities of the languages being spoken iscriminate among three major Chinese dialects spoken in

ou?pgts. Previous woi‘ksuggests that the language cha}rac Taiwan, Mandarin, Holo, and Hakka. Porting a well-
teristics are represented in the segmental and prosodic feg- . :
eveloped language-ID technique to the problem of Chinese

tures of speech utterances. Segmental features can [Qg . .

) . . . . dialect ID may present its own set of problems. This is be-
acoustic—phonetic, which refers to the acoustic realizations . ) .

) . Cause various Chinese dialects are more closely related than
of phonemes, or phonotactic, which refers to the rules gov: .
: L . ; the Romance languages; they use the same grammar and
erning combination of various phonemes in a language. Pro- - .
e oo . : ; written characters, and include many homonyms that share
sodic information is encoded in the pitch, amplitude, and

: - he same pronunciation. System design approaches that con-
duration variations that span across segments. Although. . o .
T . . _“sider Chinese language characteristics are believed to be the
language-discriminating information can be found at variou

levels, how to best combine them for reliable language 1D i}ey to providing better solutions to the dialect-ID problem.

still an unsolved problem. A language-ID approach based
only on phonotactics was applied by House and Neuburg)|. THEORY
using a hidden Markov modéHMM) trained on phonetic A Overview
transcriptions of text. Recent research demonstrates that fur-
ther enhancement can be realized by additionally incorporat- The key to solving the problem of Chinese dialect ID is
ing prosodic informatioh and  acoustic—phonetic the detection and exploitation of characteristic features that
information®=° In using these approaches, it is assumed thatlistinguish dialects from one another. From a linguistic
the acoustic structures of individual languages can be exstandpoint, the greatest differences among Chinese dialects
plored by segmenting speech into basic sound units such ase in the area of phonology, the least in the area of gram-
phonemes. Languages can then be identified by computingar. Vocabulary differences fall between these extremes. A
features within and across segments that are likely to captumistinctive feature of the Chinese language is that all the
the relevant phonetic and prosodic aspects of these lartharacters are monosyllabic. Traditional descriptions of Chi-
guages. nese divide syllables into combinationsinitials andfinals

Until recently, research in Chinese language processingather than into individual phonemes. Amitial is the con-
was almost exclusively aimed at voice dictation of Mandarinsonant onset@,) of a syllable, while &final consists of a
Chinesé® However, hundreds of Chinese dialects exist anchucleus(U) and an ending€,), whereC, is a consonant
may be linguistically divided into seven major groups,andU can be a vowel or diphthong. There arei@iials and
namely, Mandarin, Holo, Hakka, Wu, Yue, Xiang, and Gan. 38 finalsin Mandarin, 18initials and 75finalsin Holo, and
There are minor differences within each group, but there ar&9 initials and 65finals in Hakka. Thesenitials and finals
major differences of such magnitude between groups that thean be further decomposed into more basic sound units such
groups sound mutually unintelligible. The interconnectionsas phonemes and broad phonetic clag®&RCg. Table |
between the Chinese dialects are in fact as complicated agves a list of phonetic elements of Chinese language. De-
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TABLE I. Phonetic elements used in Chinese language. Another important feature of Chinese language is the
existence of lexical tones for syllables, which means syl-

Broad phonetic classes Phonemes . .. .
lables may have the same phonetic compositions, but differ-
Syllable FS@opi.S) . %%] [[rt1]] [[k]] [[PE]] [[t:“]][[ljf?][ [53] [l ent lexical meanings when spoken with different tones. Chi-
ricative S| [S sni \Y H H H HN
onset C1) Affricate (A) (i 5] [eh] [chil [t2] ] nese IIS spokﬁn W|th_ f_our bﬁslﬁ té)nes,t.tradmodnalLy labeled
Nasal(N) [m] [n] [ng] pmg(evel), S aang_(rlglng), chiuh (departing, andru (enj
tering). The most distinctive feature otih-tone syllables is
Syllable Vowel or [a] [e] [i] [o] [u] [€] [ai] [ad] that they end in one of the three stops /p/, /t/, and /k/, and
[au] [ei] [ed] [ia] [ie] [io] [iu] thus, are much shorter in duration. The other tones consist of
nucleus ) diphthong(V) [oa] [o€] [oi] [ou] [ua] [u€] [ui]

syllables that end in vowels, fricatives, or nasals, and differ

Luo] liao] {ual from one another in their pitch contours. Each of these four

Syllable Stop(S) [p] [t] [K] basic tones is further split intgin and yang categories ac-
Fricative (F) [h] cording to whether theénitial is voiced or unvoiced, thus
ending C;)  Nasal(N) [m] [n] [ng] giving rise to an eight-tone system for spoken Chinese. Pitch

contours are generally affected byitials in this way: pro-
nunciation of syllables with voicethitials begins at a lower
pending on the manner of articulation, phonemes can be capitch than that used for those with unvoidedials. Table IlI
egorized into five BPCs including the st¢p), fricative (F),  shows the eight traditional tonal categories of Chinese lan-
affricate (A), nasal(N), and vowel or diphthongV). Here-  guage. It is important to note that only a few modern dialects
after, we use this five-character alphabet in referring tqreserve this eight-tone system intact; in many dialects two
BPCs. In this study, we propose using BPCs rather than ph@r more of these tonal categories have been merged. For
nemes as the bases for dialect discrimination. This is mainlgxample, Mandarin does not haverih tone and requires
because BPCs are relatively invariant across Chinese dianly four tones to cover pitch variations within syllables.
lects, eliminating the need for developing a standard phonechinese dialects differ not only in the number of distinct
mic transcription system appropriate for all dialects. Chinesgonal categories they use, but also in the acoustic realizations
dialects differ in the frequency of BPC occurrences and thef similar tones. To illustrate this, we follow Chao'’s sysfem
order in which BPCs occur in syllables. Table Il lists eligible for tonal notation and represent pitch height on a 5-point
BPC combinations used in individual dialects. It shows thatscale, on which 1 is low, 2 half-low, 3 middle, 4 half-high,
aninitial is composed of a single BPC whildiaal generally  and 5 high. Using this notation, tones can be described by
contains one or two BPCs. indicating their beginning and ending points; in a few cases

tones have concave or convex contours making it necessary
TABLE II. Eligible combinations of broad phonetic classes in Chinese syl-t0 include one turning point as well. For example, in Man-
lables(S: stop, F: fricative, A: affricate, N: nasal, V: vowel or diphthong ~ darin theshaangtone is associated with a tone value 214,
and thus falls first from the half-low point to the low point
and then rises to the half-high point. Details of the tones used
Initial Final Dialect in individual dialects, along with their tone values on the
5-point scale, are shown in Table IV.

Syllable

Onset Nucleus Ending Mandarin Holo Hakka
S M S I ! B. Probabilistic framework
F V S J N
A \ S J J Designing a reliable dialect-ID scheme requires that sto-
N M S y I chastic models be used to summarize some of the most rel-
S \\// |S: i v evant aspects of language acoustics. As suggested by Hazen
= v F J and Zue? we formulated the problem using a segment-based
A v F J probabilistic framework. Choosing an appropriate represen-
N \ F J tation of acoustic information is the first step in applying
v F “ v ‘ statistical methods to solving the dialect-ID problem. The
§ \\5 ,'3 ‘ ‘ ‘ specific types of feature measurements considered here are
A v N y y y pitch contour and mel-cepstrum. Pitch contour is tone re-
N \ N J J J lated, whereas the mel-cepstrum is used for determining pho-
\ N J J J netic transcriptions of utterances. Speech signals are prepro-
S v I I v cessed to extract these features for every 40-ms Hamming-
: \\// : : : Windoweql frame with 10-_m_s frame shifts. _ _
N Vi N J N Consider a text consisting of a succession) @hinese
\Y J J J characters, each of which is pronounced as a single syllable.
S N J J In describing syllablg, let t; represent the lexical tone and
F N I ! let {ws;_»,W3j_1,W3;} represent a BPC triplet used to to-
Q E ‘ ‘ kenize the syllable onset, nucleus, and ending. The under-
N : : lying tone and BPC sequences of an utterance can thus be

def'ned byT:{tl,tz,...,tJ} and W:{W11W2!"'IW3J}! re-
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TABLE Ill. The eight traditional tonal categories of Chinese language.

Tonal category

Initial class ping shaang chiuh ruh
Unvoiced yinping yinshaang yinchiuh yinruh
(upper level (upper rising (upper departing (upper entering
Voiced yangping yangshaang yangchiuh yangruh
(lower leve) (lower rising (lower departing (lower entering

spectively. Notice that not all syllables have three phonemeton towards dialect ID that each source of information pro-
and hence null frames may exist in the BPC sequaffce vides. To advance with this, it is more convenient to rewrite
From a modeling perspective, speech signals can be consiéq. (2) as

ered as templates formed by concatenating sequences of .

acoustic segments. Each segment roughly represents a BPC L=arg maxlog Pr(c|p,W,T,L;)+log Pi(p, T|W, L)

and is characterized by variable-length vector sequences of '

two acoustic features: pitch and mel-cepstrum. Mel-cepstral +log P(WI|L)}, 3)

features are measured frame by frame and are of the follow- o . .
ing form: where thea priori dialect probability Pri(;) is assumed to be

uniform and hence ignored. When only access to the BPC
C={Cs(1)+---:Cs(2)~1:Cs(2)s-++ Cs(3)~1+---:Cs33) ---:Ck}, (1) sequenceW and mel-cepstral features are available, the

whereK is the number of frames in an utterance at) dialect-ID process can be simplified as follows:

denotes the starting frame for segment Similarly, p 0 . '
={p1,p2,---,.Pk} is the sequence df vectors representing L=arg miailog PIAW,L;)+log PAWIL;)]. @

the pitch measurements of an utterance. N
The first of the three dialect-ID experiments we con- A two-step approach, BPC recognition followed by pho-

ducted was based on sequential BPC statistics, the second Batactic analysis, has been shown to be effective for lan-
pitch contour, and the third on a combination of pitch andduage 10 and hence was employed in experiment 1. During
segmental features. We begin by presenting the formulatiofcognition, the front-end BPC recognizer decodes the mel-
of a probabilistic framework employed in the third experi- cepstral features into a BPC sequencé/ using the follow-
ment. Speech signals were first processed to extract pitch ariidlg expression:

mel-cepstral features, and these feature measurements were .

used to train stochastic models for every dialect to be recog- W=2arg maxog PI(c]W,L). ®)
nized. Dialects were then identified by matching test utter- W

ances with the stochastic model of each dialect and calculaifter that, the phonotactic analysis component calculates the
ing the a posteriori probability Pr(|W,T,c,p) of the |ikelihood of BPC sequencé/ being produced in each of the
measurement,p; and the sequence®y,T; for each dialect  dialects. The most likely language model is thereby identi-
L;. According to the maximum-likelihood ’(\jeCISIOI’l rule, the fied, and the dialect. of that model is taken as the hypo-
classifier should decide in favor of a dialdct satisfying thetical dialect of the test utterance in the following form:

L =arg maxlog PL;|W,T,c,p). ) [ = arg maxiog P(WIL,). ©6)
Since language-discriminating information can be found !
at various levels, it is worth evaluating the relative contribu-The approach employed in experiment 2 incorporated only
the prosodic information as represented by pitch confour

TABLE IV. Tonal categories used in Mandarin, Holo, and Hakka, along and the tone sequende This reduced dialect-ID processing

with their tone values on the 5-point scale of pitch heigbinderlining of a to the following:
tonal value indicates that the tone in question is shorter than those which are

not underlined. (= arg maxog Pr(p,T| L))
Dialect I
Tonal category Mandarin Holo Hakka =arg n?a*lOg Pi(p|T,Li) +log PI(TIL)]. (7)
Ping )),/;r:]g 22 gi ‘11‘21 Implicit in this equation is the assumption that the prosodic
shaang yin 214 51 31 model Prg,T|L;) can be_ expressed as the product of two
yang separate models: the pitch model #{,L;) and the tone
chiuh yin 51 35 42 model Pr{T|L;). The pitch model accounts for the various
h iﬁ]”g 241§ ’1 realizations of Chinese tones that may occur across dialects,
yang -1 v and the tone model accounts for the tone statistics within
— — each dialect.
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IIl. EXPERIMENT 1: BPC RECOGNITION FOLLOWED Utterance
BY LANGUAGE MODELING

A. Introduction

Broad Phonetic
Classification

The proposed approach was motivated by previous

experiment$ showing that languages can be distinguished BPC Symbols
solely by means of sequential BPC statistics. Our system [
consisted of BPC recognizers followed by phonotactically Mandarin Holo Hakka

motivated language models, and included two subsystems. Language Language Language

The first processed utterances using a bank of dialect- Model Model Model

dependent acoustic models in parallel, and output phonetic l l Likelihood l

elements associated with the most likely model. Given the | > kMI e1noo |

mel-cepstral features, the most likely BPC sequencé/ ok Vax

f(wl,wz,...,w33) was determined using EQS) By assum- Hypothesized

ing mel-cepstral measurements are statistically independent Dialect

across segments, we were able to solve for the individually

most Iikely BPCWI for Segmem as follows: FIG. 1. lllustration of dialect-ID process which performs broad phonetic
classification followed by phonotactic analysis.

W, =arg maxog Prc"|w,,L;), 1=<I<3J, (8)
W)

2. Procedure
wherec={cq),....Cs1+1)-1} represents the mel-cepstral

measurements for segmentThe second subsystem calcu- . .

. N speech utterances had been tokenized into BPC sequences. A
lated the likelihood that BPC sequenséwould be produced . giagram of the proposed dialect-ID system is shown in
in each of the dlAaIects. The maximum-likelihood classmerFig_ 1. In designing the BPC recognizer, we found the pho-
hypothesized that was the dialect of the test utterance us-nological structures of Chinese syllables could be used to
ing Eq. (6). advantage in broad phonetic segmentation of speech. As
shown in Fig. 2, the BPC recognizer begins wiitftial/final
segmentation in order to reduce the inventory size of allow-
able units of which Chinese syllables are composed. After

The basic idea was to perform phonotactic analysis after

B. Method

1. Speech corpora
Input End-Point Initial / Final

Eight male speakers, aged between 18 and 30, were em-  Speech Detection Segmentation
ployed to collect Chinese speech corpora that contained ut-
terances spoken in three dialects, Mandarin, Holo, and
Hakka. For this study we attempted to avoid the speaker bias | mnitial [ peature | Mel-cepstrum [ 70 BPC
by using speakers who are fluent in the three dialects studied. Extraction "| Recognizer | —
The first corpus, denoted as DB-1, was designed to provide a Feature " Final BPC .| " Symbols
corpus of sentential utterances for the training and testing of g | Extraction | Mel-cepstrum | Recognizer '_
language models. Our text materials consisted of 30 folk-tale
passages in colloquial style. Each passage consisted of 26 to ..
32 syllables, and the texts were grouped by passages into sets

of 20 and 10. The set with 20 passages was used for training, > CHMMV for Mandarin_|—>

and the set with 10 passages was used for testing. All the —>| CHMM VN for Mandarin }—»

speakers were asked to read the text three times, once in each

i . CHMM YV for Hol

of the three dialects. Each syllable was spoken almost as if ki }_’

isolated from the adjacent syllables, but without pauses and CHMM VS for Holo |—> "
with syllables joined i_n.a normal—feeling.and fluent manner. CHMM VF for Holo }_, E
The number of training utterances in DB-1 was 480 Pick T
(20 passages8 speakers 3 dialects), and the number of ] CHMM VN forHolo |/ Max |~ F
test utterances in DB-1 was 240 (10 passagespeakers CHMM N for Holo |_. ‘é
X 3 dialect3. The second corpus, denoted as DB-2, con- 5

tained two sets of monosyllabic utterances produced by each CHMM V for Hakka ’_'

of the eight speakers, one for training and one for testing in
our BPC recognition experiment. Each set consisted of one
reading of all eligible syllables, including 408 Mandarin syl-
lables, 808 Holo syllables, and 708 Hakka syllables. All of
the utterances in the speech corpora were recorded in a rela-
tively quite environment, and then sampled at 16 kHz Withgig, 2. petailed description of broad phonetic classificatign stop, F:
16-bit precision. fricative, A: affricate, N: nasal, V: vowel or diphthopg

CHMM VS for Hakka |—D

CHMM VN for Hakka  |—»

A A

CHMMN forHakka | —»
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TABLE V. Dialect-ID results based on sequential BPC statistics.

8

" 7

Recognition 6

Actual Mandarin Holo Hakka g 5

4

Mandarin 0.50 0.00 0.50 2 3

Holo 0.00 0.80 0.20 = 5

Hakka 0.10 0.00 0.90 1
0 L L

that, speech utterances are converted from their digital wave- Medwin-Holo  HoloHakka  Hakka-Mandari

form representations into streams of feature vectors consiskiG. 3. The measured distances between language models for pairwise dia-

ing of the lowest ten coefficients of the mel-cepstrum. Theect ID.

temporal structures of these feature vectors are described us-

ing a segment-based continuous density hidden Markoidentifying test utterances as Hakka. We speculate that this

model (CHMM) with a left-to-right topology. Each model might be attributed to the difference in closeness between

has nine states and its state observation probability density {gairs of the three dialects. Support for such a speculation can

modeled as a mixture of 15 underlying Gaussian densitiede found in Chend? in which the correlation method was

The training set of the DB-2 corpus was used to estimate thapplied to phonological elements to quantify affinity among

model parameters according to the segmerkaheans Chinese dialects. It was found that the highest degree of

algorithm?® During recognition, we employ Viterbi decod- closeness among the three dialects studied was in the

ing to find the optimal state sequence associated with obMandarin—Hakka pair, the middle in the Holo—Hakka pair,

served acoustic features and then calculate the likelihood thaind the least in the Mandarin—Holo pair. To elaborate fur-

test subsyllables were produced in each of the CHMMs. Fither, we follow the method in Juang and Rabifiend com-

nally, test subsyllables are tokenized as BPC patterns used pate the probabilistic distance for measuring the dissimilarity

train the maximume-likelihood model. between pairs of DHMM-based language models. Consider-
Using the BPC recognizer as a front end, phonetic traning two HMMs specified by the parameter satsand\,,

scriptions of speech utterances are reduced to five-characttite probabilistic distance measure is defined by

alphabets and these s_amples are used t_o .form language mod- 1 PO@|\,) PLOW|\,)

els that perform the dialect-ID task. Training and test utter-  p(\; ,\,)==—log 6 +log o ,

ances were chosen from the DB-1 corpus. In the training 2M | TP O™N,) Pr(O™[\y)

phase, a separate language model was created for each dia- (9)

lect by running the training utterances into the BPC recog- ,

nizer and computing transition probabilities between succesvhere O is the sequence df observations generated by

sive BPCs. In our implementation, an ergodic five-statehe modelr;. It was found that as the distance measure

discrete observation HMMDHMM ) was used with param- increased, there was a corresponding improvement in

eters trained according to the Baum—Welch reestimatioflialect-ID accuracy. Our results showing the measured dis-

algorithm* When an unknown utterance is received, thetances for pairwise dialect-ID tasks are plotted in Fig. 3. Itis

language model receives as its input the sequence of recoglear from this figure that the dialect-ID system using BPC

nized BPCs and produces as output the likelihood of théeguence information was more successful when applied to

dialects being spoken. Finally, the dialect of the languagdlistinguishing Mandarin from Holo. We also found that the

model that predicts the utterance with the highest likelihoocsystem did not yield better performance with an increase in
is taken as the dialect of the test utterance. the number of states used in the language model, perhaps

because Chinese-language phonologic pattern is predomi-
nantly an alternation o€,, U, andC,, making it particu-
larly suited to a three-state language model.

We first examined the performance of the CHMM-based
BPC recognizer used as the front-end processor in this exy. EXPERIMENT 2: PROSODIC MODELING
periment. The top-choice accuracy achieved a recognitiog\ Introduction
score of 81.4%, as compared with phonetically labeled data.”
Further analysis of our results showed that recognition errors  Most current approaches to language ID make little or
occurred mainly in classification of fricative sounds as stopsno use of prosodic measures, despite evidence showing that
Sequential statistics on these BPCs were then input to therosodic information is useful in human identification of lan-
language models that performed dialect ID. Table V shows guages. The main reason for this is the difficulty of finding
confusion matrix using the identification results for this ex-an appropriate feature set that captures linguistically relevant
periment. The rows of the confusion matrix correspond toprosodic information. Early approaches that incorporated a
the dialects actually being spoken and the columns indicatBmited number of prosodic features did not produce satisfac-
the dialects identified. The classification accuracy of 73.3%ory results* Improved language-ID performance requires
indicates that BPC sequence information alone cannot prdsetter modeling of prosody using a large set of feature mea-
vide sufficient cues for making accurate dialect-1D decisionssurements such as those proposed by Thyme-Gobbel and
As the table shows, dialect-ID results have a bias towardsiutchins®® They used a total of 220 features including av-

C. Results and discussion
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TABLE VI. Dialect-ID performance of the pitch-based prosodic model.

Recognition
Actual Mandarin Holo Hakka
Mandarin 0.73 0.12 0.15
Holo 0.30 0.54 0.16
Hakka 0.11 0.23 0.66

FIG. 4. lllustration of CHMM-based prosodic model used for Mandarin.

erages, deltas, standard deviations, and correlations of mestatistics, but also differences in the realizations of similar
sures deduced from pitch contours, syllable durations, amplitones in those dialects. To elaborate further, we plotted the
tudes, and rhythms. However, increasing the amount oprobabilistic distances that measured dissimilarities between
detail in the models can be computationally costly. Thispairs of CHMM-based prosodic models. The results, shown
problem can be alleviated in the dialect-ID task, mainly be-in Fig. 5, indicate that from a prosodic standpoint, differen-
cause the Chinese tonal system provides an efficient way tilation between Mandarin and Hakka is easier than other
describe pitch contour dynamics. The goal of this experimenpairwise dialect-ID tasks. While these results suggest that
was to investigate whether Chinese dialects can be identifiegitch-based  prosodic  features  possess language-
using only pitch measuremenpsand the tone sequende  discriminating information, it may be overly ambitious to
Accordingly, we sought to determine the most likely dialecthope that a single prosodic model can be designed to capture
L using Eq.(7). all of the complexities of a dialect. Therefore, a system that
considers segmental and prosodic information might be re-
B. Method quired to achieve a higher degree of dialect-ID accuracy.
The utterances used to train and test the prosodic models. EXPERIMENT 3: SYSTEM INTEGRATION
were taken from the DB-1 corpus. Prosodic models designeg\ Introduction
to capture the tonal statistics of individual dialects were cre- -
ated using a composite HMM structure. The underlying hy-  The approach employed in experiment 1, BPC recogni-
pothesis is that the tones in utterances are produced as prolgn followed by language modeling, has been shown to be
bilistic functions of ergodic Markov chains. Each state effective for language 13;*" and may be considered as rep-
corresponds to one of the tonal categories and is built froniesenting the state of the art. The main disadvantage of this
an elementary three-state left-to-right HMM. Because a@pproach is that the observations used in language modeling
most, one turning point exists in standard pitch contours, iire not extracted directly from mel-cepstral coefficients, but
suffices to postulate that the pitch contour dynamics correrather from the imperfect outputs of the front-end BPC rec-
sponding to various tones can be modeled by three stateggnizer. To compensate for this shortcoming, we propose
Figure 4 shows the state transition diagram required to repncorporating dialect-specific phonotactic constraints into the
resent the Mandarin prosodic model. In our implementationphonetic tokenization rather than applying these constraints
each elementary model was created using a CHMM with thefter BPC recognition has been completed. Furthermore, we
observation probability density modeled as a mixture of fivebelieve that prosody may provide many benefits as an en-
Gaussian densities per state. Observations were independdw@ncement to the state-of-the-art technique by acting as a
streams of pitch and differential pitch extracted from digi- secondary source of language-discriminating information.
tized speech using the simple inverse filter trackiBgFT)  Although a similar approach to combining segmental fea-
algorithm?® In order to describe pitch contour dynamics, tures with prosodic modeling was presented by Hazen and
CHMM-based prosodic models for each of the target dialectZue? the basic design here is quite different due to the spe-
were constructed using parameters trained with the segmenial characteristics of the Chinese language. It has long been
tal k-means algorithm. When a test utterance is received, theecognized that there was no explicit model to describe pro-
prosodic model takes the pitch measurements as input argbdic information, especially for nontonal languages such as
produces the likelihood of the dialects being spoken as outEnglish. Therefore, Hazen and Zuproposed a prosodic
put. The dialect of the model most likely to have produced
the test utterance observations is taken as the dialect of the 70
test utterance. 60

50
40

C. Results and discussion

30
20

Distance

Table VI shows a confusion matrix using dialect-ID re-
sults for experiment 2. We can see in the table that pitch
information alone allowed the system to identify three dia-
lects with an accuracy score of 64.3%, indicating that pro-
sodic features are highly useful in Chinese dialect ID. The Mandarntiolo  Holo-Hakds , Hakda-Mundgiin

SUC.CGSS of this_ prosodic model ari;es from its api”t_y 10 eXF G, 5. The measured distances between prosodic models for pairwise dia-
ploit not only differences among dialects that exist in tonallect ID.

10
0
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FIG. 7. Elementary HMMs required for modeling Hola) syllable onset,
(b) syllable nucleus, an¢c) syllable ending’S: stop, F: fricative, A: affri-
cate, N: nasal, V: vowel or diphthohg

0 £ B
IR

(@)

FIG. 6. State transition diagrams of composite models use@fddandarin
and (b) Holo and Hakka(C; : syllable onsetlJ: syllable nucleusC,: syl-

lable ending, mel-cepstral coefficients and pitch measurements derived

from digitized speech. By using mel-cepstral coefficients as
model that only captures simple statistical information abouparts of state observations, the stochastic acoustic—phonetic
the fundamental frequency and segmental duration of an uinodel can be directly incorporated into the dialect-ID pro-
terance. However, the prosodic modeling problem is not &ess without forward decoding of underlying BPC se-
serious obstacle in our dialect-ID system, mainly becausguences. This eliminates many of the errors made by the
Chinese-language prosodic units are annotated in the torfeont-end BPC recognizer.
levels. For this experiment we attempted to determine the  The dialect-ID system operates in two phases: training
most likely dialect using Eq(2), by combining segmental and recognition. The utterances used here were taken from

and prosodic information within a unified framework. the DB-1 corpus. In the training phase, a composite model
was trained for every dialect to be recognized by running the
B. Method segmentalk-means algorithm. During recognition, the test

) utterance was classified by extracting feature vectors from
The basic idea was to combine segmental and prosodigigitized waveform and then calculating the likelihood that
information to achieve a higher degree of dialect-ID acCu+hese feature vectors were produced in each of the three dia-
racy. The first step toward realization was to use a three-stajgsis. The dialect of the model most likely to have produced
Markov chain to model the changing statistical characterisyhe test utterance was taken as the dialect of the test utter-
tics present in BPC production. Each state corresponds tgce. By allowing the system to use a composite model dur-
one acoustic segment, such as syllable on€g) (syllable  ng the Viterbi decoding process, the most likely dialect was

nucleus(U), or syllable ending €;). The choice of model gptimal with respect to some combination of segmental and
topology depended on the syllable types phonologically alyosodic information.

lowed in the target dialect. Holo and Hakka allow six syl-
lable types, represented by, C,U, UC,, C,UC,, C,C,,
andC,, while Mandarin allows only four syllable typeb,
C,U, UC,, andC,UC,. Figure 6 shows the state transition
diagrams required to model the individual dialects. This  Table VII lists a confusion matrix showing the
model has a composite structure; it is a large Markov chaindialect-ID results for the system that examined differences
in which each state is built from a bank of elementary left-between dialects at broad-phonetic and prosodic levels. In it
to-right HMMs. Note that the final state of one elementarywe see that compared with the first two experiments, the
HMM is connected to the initial state of the following effectiveness of using an integrated segmental-prosodic
elementary HMM by a null transition. model for dialect ID is clearly demonstrated. The top-choice
In order to integrate prosodic features into the compositeaccuracy was measured to obtain a recognition score of
model, we propose using tonal BPCs rather than BPCs as t188.0%. Among the reasons for this success, we find that the
bases for dialect discrimination. Every tonal BPC can, inintegration of acoustic—phonetic and phonotactic information
fact, be considered as a combination of two components: ongy means of a composite HMM model increases phonologi-
of the possible tones plus one of the five possible BPCscal discrimination across dialects. It is also important to note
Since pitch is defined only for voiced speech, the pertinenthat the language-discriminating power of the system can be
tone-related portions of syllables are the nuclei from whichimproved by using tonal BPCs as the bases for its elementary
distinctive pitch changes are perceived. Recognizing this, weiMMs.
needed only to superimpose distinct tonal notations onto the
BPC eqqulents of the syllable nuclei in order to obtain a Sfe]i'ABLE VII. Dialect-ID performance of the integrated segmental-prosodic
of BPC variants that shares the same BPCs but has distingl,qe.
lexical tones. To illustrate this, details of the elementary:
HMMs required to model the Holo syllables are shown in Recognition
Fig. 7, with VV; denoting the BPC symbol V associated with Actual Mandarin Holo Hakka
the tonej. In our implementation, each elementary model .
uses a three-state left-to-right CHMM with its observation m';da”” g'gg 8'32 g'fj
probability density modeled as a mixture of five Gaussian | xka 0.00 0.01 0.99
densities per state. Observations are independent streams-of

C. Results and discussion
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uses language models to identify target dialects. Simulation
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