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Scattering Characteristics of Two-Dimensionally
Periodic Impedance Surface

Ruey Bing Hwang, Member, IEEE

Abstract—We present here an exact formulation for the three-di-
mensional (3-D) boundary-value problem of plane wave scattering
by a two-dimensionally (2-D) periodic impedance surface in a uni-
form medium. The scattering characteristics of such a structure
are rigorously analyzed in terms of the complete set of both TE-
and TM-polarized plane waves in the uniform medium. Extensive
numerical results are given to illustrate physical phenomena asso-
ciated with the structure.

Index Terms—Impedance boundary condition, periodic
impedance boundary condition, scattering and diffraction, two-di-
mensionally (2-D) periodic impedance surface.

I. INTRODUCTION

T HE scattering of waves by periodic structures has long
been a subject of continuing interest, and extensive the-

oretical and experimental results are available in the literature
[1]–[4]. Over the past few decades, two-dimensional (2-D)
frequency-selective surfaces (FSSs) have found numerous
aspects of applications [5]–[7]. In particular, the class of 2-D
periodic structures that are also known as the photonic bandgap
(PBG) structures has attracted considerable attention in recent
years [8]–[10]. Many authors have presented the analysis of
planar structure consisting of multiple gratings. To mention
a few, a pair of perfectly conducting lamellar transmission
gratings separated in space and oriented with orthogonal peri-
odicity were analyzed, with detailed numerical data for use as
a solar-selected element [11]. Multilayered periodic structures
had been analyzed on the basis of the generalized scattering
matrix theory [12]. Scattering characteristics of 2-D photonic
crystals modeled by a finite stack of dielectric grids of infinite
extension were studied by using integral theory [8]. Noponen,
et al. [13], synthesized 2-D periodic structures to achieve

beam splitters of the transmission type. A rigorous
treatment of scattering characteristics of bigratings has been
reported, with some potential applications proposed [14]. The
transmission response was tailored by the synthesis of finite
artificial lattices carrying passive metal-dielectric unit cells
[15]. Most of the research listed above is based on a rigorous
formulation and needs large computer resources. On the other
hand, theimpedance boundary condition(IBC) approximation
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is an effective way to model complex structures [16]–[20]; it
replaces the original complex structure with surface impedance
so that the problem complexity can be greatly reduced. For
example, Su and Ling [20] utilized the genetic algorithm to
determine the equivalent impedance boundary condition for
material-coated corrugated gratings. Furthermore, Wait [16]
had shown that the IBC is not only applicable to a medium
having a large refractive index, but also is suitable for layered
media, embedded wire grids, and even layers in which the
contrast in refractive index approaches unity. In fact, the case
of a one-dimensionally (1-D) periodic reactive surface had
been employed successfully as a model for the analysis of
wave phenomena associated with periodic structures; for the
first time, Wood’s anomalies were then explained on a rigorous
basis [2]. The guidance characteristics of surface waves along
a corrugated surface have been thoroughly studied by many
authors by using the model of impedance surface [24]–[26],
while some new and interesting guidance characteristics of
2-D periodic impedance surface have been examined recently
[20]. Since the equivalent impedance boundary conditions
are well studied for some canonical structures, including the
periodic ones [21]–[23], we concentrate here on the study of the
scattering characteristics of the 2-D periodic surface impedance
that will be expressed in terms of a double Fourier series.

Specifically, we present in this paper an algorithm for ana-
lyzing 2-D periodic multilayer structures that are characterized
byperiodic IBCs, with a particular attention paid to the relation-
ship between their scattering and guiding characteristics. Such a
model is intended for the study of wave phenomena associated
with 2-D periodic structures. It had been shown [20] that the
case of impedance surface can be formulated rigorously by the
method of mode matching as a three-dimensional (3-D) electro-
magnetic (EM) boundary-value problem. The total fields above
the planar impedance surface can be expressed in the form of
double Fourier series, with each space harmonic appearing as
a plane wave consisting of both TE and TM constituent plane
waves. After invoking the periodic impedance boundary condi-
tion on the planar surface, the input–output relations between
the incident and reflected waves can be obtained and then the
scattering characteristics will be also realized.

Based on the exact approach described above, we have carried
out extensive numerical results to identify and explain physical
phenomena associated with the 2-D periodic impedance surface.
In particular, Wood’s anomalies have been carefully examined,
in contrast to those in the case of 1-D periodic cases. Further-
more, potential applications are suggested such as that the 2-D
lossy periodic impedance surface may provide more frequency
bands to absorbed the energy of an incident wave.
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II. STATEMENT OF PROBLEM

The approximation of impedance boundary condition can be
realized by examining a popular structure, the corrugated sur-
face, which has been thoroughly studied in various textbooks
and articles [24]–[26]. For example, a corrugated metal slab has
a series of vertical slots, as shown in Fig. 1. Each slot can be
regarded as a parallel-plate waveguide with a short-circuit ter-
mination. At the top surface of the corrugated metal slab, there
are two alternating regions in each unit cell; one is the metal
surface and the other is an air opening. The former acts as a
short circuit, while the latter contains the effect of all the modes
of the parallel-plate waveguide. Thus, an equivalent impedance
may be assigned to replace the structure underneath the top sur-
face; hence, the top surface can be regarded as having a periodic
variation of the impedance.

Referring to Fig. 2, the interface between the air region and
the periodic layer can be viewed as an impedance surface for
the fields in the air region. Such a surface impedance depends
on the physical as well as structural parameters below the sur-
face. Fig. 3 depicts the scattering of a plane wave by a planar
impedance surface that is periodic in two dimensions. For sim-
plicity, the space above the surface is taken to be air of infinite
extent. Such a structure is intended as a model for the study of
wave phenomena associated with the class of multilayer peri-
odic structures. In the literature, the case of 1-D periodic reactive
surface had been successfully employed as a model for the anal-
ysis of wave phenomena associated with periodic structures; for
the first time, Wood’s anomalies were explained on a rigorous
basis [2]. As an extension, we consider here a periodically per-
turbed surface impedance with the spatial variation given by

(1)

(2)

Here, is the average surface impedance, with the surface re-
sistance and the surface reactance and
are the modulation indexes;and are the periods in the-
and -direction, respectively. Such a characterization may be
regarded as the first-order approximation of a double Fourier
series for a general 2-D periodic surface impedance; if needed,
more terms may be included and the ensuing analysis can still
be applied. We observed that the scattering problem posed here
may be analyzed rigorously, as explained in Section III.

III. M ETHOD OFANALYSIS

Referring to Fig. 3, an incident plane wave is scattered by the
2-D periodic impedance surface and a set of space harmonics
is generated in each of the two directions of periodic variation.
In the air region, each space harmonic appears a plane wave of
which the tangential field components may be generally repre-
sented as a superposition of the TE- and TM-polarized plane
waves with respect to the-direction. For the th space har-
monic in the -direction and the th space harmonic in the-di-

Fig. 1. Corrugated metal surface.

Fig. 2. Typical configuration of 2-D periodic structure.

Fig. 3. Scattering of plane wave by 2-D periodic impedance surface.

rection, to be denoted by the th harmonic for simplicity, the
tangential-field components can be written as

(3a)

(3b)

where the single and double primes denote the TE- and TM-po-
larized waves, respectively, is the transverse propagation
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vector, is the transverse coordinate vector, and and
are unit vectors related to transverse propagation constant by

(4a)

(4b)

with

(5a)

(5b)

(5c)

Here, and are the propagation constants of theth
space harmonic in the-direction and the th space harmonic
in the -direction, respectively. And is the propagation con-
stant of the plane wave in the incident region, whileand
are the elevation and azimuthal angles of the incident wave in
the spherical coordinate, respectively. , and , stand for
the three unit base vectors of the rectangular coordinate system.
Furthermore, the s and s represent the vertical variations of
the electric and magnetic fields of the th harmonics, respec-
tively, and can be written generally as a superposition of the
forward and backward traveling waves as

(6a)

(6b)

where and are the amplitudes of the forward and back-
ward traveling waves, respectively. It is noted that the primes
over the field quantities are omitted here for simplicity; these
expressions hold for either singly or doubly primed quantities,
denoting the TE- and TM-polarized fields. Finally, and

are the longitudinal propagation constant and the wave ad-
mittance of the th harmonic in air region, respectively, and
they are given by

(7a)

for TE modes

for TM modes.
(7b)

So far, all the parameters needed for the field representations in
(3) have been defined and what remains to be determined is the
set of amplitudes of the backward traveling wavess for a given
set of amplitudes of the incident waves that travel in the forward
direction, s in (6).

With the EM fields of each space harmonic represented
above, the total EM fields in the air region can then be written
as a superposition of all the space harmonics and they are
then required to satisfy the boundary condition at the periodic
impedance surface at

(8)

In the Appendix, it is shown in mathematical details that the
above boundary condition yields a set of linear matrix equations

(9a)

(9b)

where the s and s are matrices related to the structural as
well as the incident-wave parameters and thes and s are un-
known vectors to be determined.

Let and be the amplitudes of the incident TE and
TM modes, respectively, and let and be those of the
reflected modes in air region. At , the voltage and current
waves vectors are given by

(10a)

(10b)

where is the admittance matrix in the air region.is a su-
pervector with and as its subvectors that are formed by

and as their th elements, respectively, and simi-
larly for . From (9) and (10), we can obtain the relationship
between and :

(11)

where is the reflection matrix of the 2-D periodic impedance
surface. Here, is supposed to be a known column vector for
a given set of the incident space harmonics; with the reflection
matrix computed, is determined by (11) for the amplitudes
of the space harmonics reflected from the periodic impedance
surface back into the air region.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Based on the exact formulation described in the preceding
section, we are now in a position to carry out both qual-
itative and quantitative analysis of scattering characteristics
of the 2-D periodic impedance surface. First, we shall in-
voke the concept of small perturbation to develop approxima-
tion techniques by which the first-order solutions can be con-
structed conveniently. This allows us to identify in an easy
manner various physical effects associated with the structure
in hand and this will be particularly useful for practical de-
sign considerations. Second, for a numerical analysis, the in-
finite system of equations for the Fourier amplitudes has to
be truncated to a finite order and the numerical accuracy has
to be carefully studied. It should be noted that it would be
essential to employ techniques to ensure the more rapid con-
vergence of the numerical process for the truncation of the
resulting infinite matrix [22], [23]. After the numerical ac-
curacy is assured, extensive numerical data are obtained to
identify systematically all possible physical processes asso-
ciated with the structure under investigation and to explore
potential applications. We present here some numerical re-
sults from a parametric study on the general characteristics
of plane-wave scattering by 2-D periodic impedance surface.

For the numerical analysis in this section, the two periods in
- and -direction are chosen to be identical. The lossy surface
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impedance is chosen to be (normalized to
the wave impedance of the plane wave in the free space). Finally,
the modulation indexes are chosen to be and

. We shall investigate the effect of the elevation
angle, the azimuth angle, and the wavelength of the incident
wave.

Before embarking on an elaborate computations, it is instruc-
tive to examine first the limiting case of vanishing modulation
indexes . In the absence of the periodic
perturbations, we have a uniform impedance surface for which
the guiding characteristics are well known. In particular, for a
lossless reactive surface, the propagation constant of the surface
wave is given explicitly by

(12)

for TE mode with

for TM mode with

(13)

where is the surface reactance normalized to the free-space
wave impedance . may be interpreted as the
effective refractive index of the surface wave. It is noted that
the TE surface wave exists only for capacitive surface and TM
surface wave for inductive surface. In such a special case, the
dispersion curve representing the relationship betweenand

is a circle of the radius .
We have carried out considerable numerical experiments with

various parameters of the incident wave as well as the 2-D pe-
riodic impedance surface; however, only a few sets are selected
here to exhibit the interesting phenomena that may take place in
the presence of a 2-D periodic impedance surface. Figs. 4 and
5 shows the reflected intensity versus wavelengthof the in-
cident wave, for the incident angle and . The
designations of the curves are as follows: the solid line is for the
reflection efficiency with copolarization (TE–TE or TM–TM),
while the dashed line is for that of cross polarization (TE–TM or
TM–TE). Furthermore, we observe that there exist many regions
of sharp variation along the curves, as marked by the characters
from A to F in Figs. 4 and 5.

To explain the unusual behavior of reflection characteristics,
we recall that the normalized transverse propagation constant
can be obtained from (5) as

(14)
Graphically, the transverse propagation constant are plotted in
Fig. 6, for the eight diffracted orders: ,

, , ,
, , ,

and . It is noted that for , some
harmonics may follow the same curve with multiple labels. Fur-
thermore, the propagation constant of the surface wave given by
(13) is plotted with the long-dashed line and so is the cutoff con-
dition with the short-dashed line. Here, we have nine intersec-
tion points between the set of solid lines and the long-dashed
line as marked in alphabetical order from A to I according to

Fig. 4. Variation of reflected power versus wavelength; TE plane wave
incidence.

Fig. 5. Variation of reflected power versus wavelength; TM plane wave
incidence.

the frequency. Among these intersection points, A, C, E, H,
and I determine the frequencies for the conditions of the phase
matching between the harmonics and the guided wave. Hence,
it is expected that strong couplings from the incident wave to
the guided wave may take place in the vicinities of these points.
With the resistive loss of the impedance surface, such couplings
result in the anomalous absorption, as will be further discussed.
On the other hand, the intersection points B, D, F, and G deter-
mine the cutoff conditions of various space harmonics and some
strong reactions should be expected in the vicinities of these
points. Finally, it is interesting to observe that the two points
designated by the H and I actually coincide with each other.
Judging from the curves, a coflow passive coupling or direc-
tional coupling should take place there; therefore, the two point
should split, with one at a wavelength slightly smaller and the
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Fig. 6. Variation of transverse wavenumber versus wavelength for various
space harmonics.

other slightly greater than 1.0. With these predictions based on
physical intuition, we can explain easily the scattering charac-
teristics of the periodic impedance surface.

We observe that there exist sharp variations of the reflected
power at some wavelengths, as marked by C, F, G, H, and I,
for the TE-incidence case. It is noted that the number inside the
parentheses after each character indicates the exact wavelength.
On the other hand, Fig. 5 shows that in addition to those at the
wavelengths marked in Fig. 4, there are sharp variations at two
more wavelengths, as marked by A and E, for the TM-incidence
case. By inspection, every wavelength marked in Figs. 4 and
5 can be identified clearly with those wavelengths marked in
Fig. 6, except the two points B and D at which no sharp reaction
to the incident wave is observed. The physical explanation of
these phenomena are given below.

Consider first the coupling of an incident wave to the guided
wave. It is recalled that for the parameters under consideration,
the structure supports only the TM surface wave. We observe
that corresponding to the intersection point A and E in Fig. 6,
the direct coupling from an incident wave to the guided wave
can take place only with a TM incidence case, but not otherwise.
Furthermore, for the special case of the incident angle ,
the propagation constant in the-direction is equal to zero for
two harmonics and . This
means the uniformity in the-direction of the fields associated
with these harmonics and the cross-polarization coupling to the
guided wave should be of a higher order effect and its effect
on the scattering characteristics does not show up in the case of
the TE incidence. This explains the sharp variations marked by
A and E appearing in Fig. 5 for TM incidence case, but not in
Fig. 4 for TE incidence case. It is interesting to observe that in
the scattering results, the two points H and I do split sufficiently
far apart in wavelength due to the coflow coupling between two
set of harmonics, as expected.

For the cutoff conditions at the points B, D, F, and G in
Fig. 6, we observe that those at points B and D do not have
any visible effect on reflected power in either Fig. 4 or 5.
This can be attributed to the fact that the harmonics involved
are of the higher order and the effect should be small. On
the other hand, the variations in the vicinities of the points
marked by F and G are quite pronounced, is evident in both
Figs. 4 and 5. These are due to the cutoff conditions of the
lower order space harmonics and

and are known as the phenomena of Wood’s
anomaly of the Raleigh type.

Although not shown here, we have also performed calcula-
tions for the reflected power under various conditions. However,
the general behavior of the anomalous absorption as a function
of the incident elevation and azimuth angles is similar to those
in Figs. 4 and 5 and they are not shown. In summary, the plots
of the dispersion curve, the cutoff condition and the wavenum-
bers for the relevant harmonics are very easy to do and this pro-
vides a plausible physical basis for the investigation of the plane
wave scattering by a periodic impedance surface, as demon-
strated above.

V. CONCLUSION

We have presented a rigorous treatment to the 3-D boundary-
value problem of plane wave scattering by a planar 2-D periodic
impedance surface since the 2-D periodic structure is replaced
by a 2-D periodic IBC on a virtual surface. The formulation of
the problem is based on the rigorous method of mode matching.
Numerical results are systematically carried out to illustrate the
reflected characteristics; in particular, Wood’s anomalies asso-
ciated with 2-D periodic impedance surface are carefully exam-
ined and are shown to provided a mechanism for the anomalous
absorption of incident wave. Most importantly, the additional
periodicity in the -direction may results in more coupling con-
ditions between space harmonics and surface wave supported
by the impedance surface. As an example, this mechanism may
be employed to reduce the radar cross section in further study.

APPENDIX

We have shown that the tangential electric and magnetic fields
in the air have been expressed as a superposition of plane waves
as given by (3) and (4); to repeat, they are

(A.1)

(A.2)

Substituting (A.1) and (A.2) into (A.3) and then, taking the inner
product with on both sides of the resulting equality, we
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obtain the following relationships between the harmonic ampli-
tudes of the voltage and current:

(A.3)

for

where

(A.4)

and

(A.5)

We may now fix the integer and group the harmonics ac-
cording to the index to form the new vector relationship

(A.6)

Similarly, taking the inner product with and performing
the same process as the above, we obtain

(A.7)

where , and are column vectors with
and as their th elements, respectively, and ma-

trices , , and are matrices related

to the structural as well as the incident parameters. Finally, ex-
pressing them in the form of supermatrix and supervector by
collecting all the elements according to the indexin (A.6)
and (A.7), we have the desired results shown in (9).
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