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QUANTIZATION, REDUCTION, AND FLAG MANIFOLDS

By MENG-KIAT CHUAH

Abstract. Let K be a compact connected semi-simple Lie group, let G be its complexification, and
let G = KAN be an Iwasawa decomposition. Let B be the Borel subgroup containing A and N. Let
P be a parabolic subgroup of G containing B, and (P, P) its commutator subgroup. In this paper,
we perform geometric quantization and symplectic reduction to the pseudo-Kähler forms on the
complex homogeneous space G=(P, P). The reduced space is a disjoint union of copies of the flag
manifold G=P, and this allows us to study the signatures of the K-invariant pseudo-Kähler forms
on G=P via symplectic reduction. We also discuss the connectivity of the reduced space.

1. Introduction. Let K be a compact connected semi-simple Lie group, let
G be its complexification, and let G = KAN be an Iwasawa decomposition. Let T
be the centralizer of A in K, so that H = TA is a Cartan subgroup, and B = HN is a
Borel subgroup of G. Let P be a parabolic subgroup of G containing B, and (P, P)
its commutator subgroup. Consider the complex homogeneous space G=(P, P).
The study of geometric quantization of Kähler forms on G=(P, P) started with the
special case where P = B and hence G=(P, P) = G=N [7], following a suggestion
of A. S. Schwarz [15]. This was generalized to the general parabolic subgroups
in [6], which constructs a model for K (in the sense of I. M. Gelfand and A.
Zelevinski [8]) via L2-holomorphic sections of the pre-quantum line bundle. The
present paper is a continuation of [6]. It extends Kähler forms to pseudo-Kähler
forms, and extends L2-holomorphic sections to cohomology of the L2-Dolbeault
complex. Pseudo-Kähler forms are symplectic forms ! of type (1, 1). Namely,
they are a generalization of Kähler forms in the sense that under the complex
structure J, the symmetric form !(�, J�) is required to be nondegenerate, but not
necessarily positive definite. In this paper, we perform geometric quantization
[14] and symplectic reduction [17] to the pseudo-Kähler forms on G=(P, P) under
certain compact Lie group actions. An idea which links these two processes is
proposed by V. Guillemin and S. Sternberg [9], called “geometric quantization
commutes with reduction.” A survey of this idea can be found in [18]. We shall
show that this principle works in our situation, and leads to unitary irreducible
K-representations. The reduced space is a disjoint union of copies of the flag
manifold G=P. We describe the signatures of the K-invariant pseudo-Kähler forms
on G=P via the above unitary irreducible representations. Connectivity of the
reduced space is also studied.
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Our projects are carried out in the following sections: We study the pseudo-
Kähler forms on G=(P, P) in x2 and quantize them in x3, in terms of cohomology
of the L2-Dolbeault complex. In x4, we perform symplectic reduction on G=(P, P)
and show that the reduced space is the flag manifold G=P up to connected com-
ponents. As corollaries, we classify the K-invariant pseudo-Kähler forms on G=P
and reproduce A. Borel’s result on Fubini-Study forms. As an application, we
study the signatures of these pseudo-Kähler forms in x5. Finally, connectivity of
the reduced space is discussed in x6. We now describe these projects in more
details.

We adopt the convention that the Lie algebra of a Lie group is denoted by the
corresponding lower case German letter. For example, the Lie algebras of H, T
are respectively h, t.

Let ∆ � h� be the roots. A positive system of ∆ is determined by n, where n

corresponds to the negative root spaces. Let ∆0 � ∆ be the simple positive roots.
We shall say that � � t� is a cell if there exists S � ∆0 such that

� = f� 2 t�; (S,�) > 0, (∆0nS,�) = 0g.(1.1)

Here the pairing (, ) on t� is given by the Killing form, and can be thought of as
an inner product. This way, the dominant Weyl chamber is the disjoint union of
all the cells. These cells have various dimensions. For instance, the origin and the
open Weyl chamber are respectively cells with dimensions 0 and rank K. There
is a bijective correspondence between the cells f�g and the parabolic subgroups
P containing B, given by Langlands decomposition ([12], p. 132):

P = M�A�N� ; A� � A, N� � N.

Here A� = A and N� = N exactly when P = B. The subalgebra a� � a is
identified with t� � t by the complex structure. Here t�� is the span of � � t�.
The corresponding complex torus H� = T�A� normalizes (P, P), so it acts on
G=(P, P) on the right.

From (1.1), every positive root � satisfies (�,�) � 0. Let S̄ be the positive
roots � in which (�,�) > 0. So S = S̄ \ ∆0. We define

(t��)reg = f� 2 t��; (�,�) 6= 0 for all � 2 S̄g.(1.2)

It satisfies � � (t��)reg � t��. In fact (t��)reg is a disjoint union of open cones in
t��, one of them being �. The points in (t��)reg are called �-regular. In particular
if � is the open Weyl chamber, a �-regular point is simply called regular.

Let K� be the centralizer of � in K, and K�
ss � K� its commutator subgroup.

In [6], we see that

G=(P, P) = (K=K�
ss)A�.(1.3)
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It identifies A� with the subset feag of G=(P, P), where e 2 K=K�
ss is the identity

coset and a 2 A�. The above description also identifies the K-invariant functions
C1K (G=(P, P)) with functions on A�. Observe that A� and a� are diffeomorphic
by the exponential map. This leads to the following identification

C1K (G=(P, P)) �= C1(A�) �= C1(a�),(1.4)

which we adopt throughout this paper. By the complex structure, a�� �= t��. So the
gradient of F 2 C1(a�) is given by

F0: a� �! t��.(1.5)

Let UF � t�� denote the image of 1
2F0.

We shall say that F 2 C1(a�) is nonsingular if its Hessian matrix is nonsin-
gular everywhere. Further, if the Hessian matrix is positive definite everywhere,
we say that F is strictly convex.

In [6], we study the K�T�-invariant Kähler forms on G=(P, P). The following
theorem is a simple extension to the pseudo-Kähler forms.

THEOREM 1. Every K � T�-invariant closed (1,1)-form on G=(P, P) is given
by ! =

p�1@@̄F, where F 2 C1(a�). There exists a unique moment map
Φ: G=(P, P) �! k� for the K-action given by Φ(a) = 1

2F0(a) 2 t�� for all
a 2 A� � G=(P, P), so Φ(A�) = UF. Here ! is pseudo-Kähler if and only if F
is nonsingular and UF � (t��)reg. It is Kähler if and only if F is strictly convex and
UF � �.

This is proved in x2. Since Φ is K-equivariant, the theorem says that F0

determines Φ.
Given a K � T�-invariant pseudo-Kähler form !, there exists a pre-quantum

line bundle L [14] whose Chern class is [!]. Since ! is exact, [!] = 0, so L
is a trivial bundle. It carries a connection whose curvature is !, as well as an
invariant Hermitian structure.

Let � 2 h�� be an integral weight. We shall always write � = e� for its
character. Namely, �: H� �! C� is the multiplicative homomorphism satisfying

�(ev) = exp (�, v), v 2 h�.(1.6)

Let � be an element of a right H�-module. We say that � transforms by � 2 h��
under the right H�-action (respectively transforms by � 2 t�� under the right
T�-action) if h � � = �(h)� for all h 2 H� (respectively h 2 T�).

Let Ω0,q(L) denote the Dolbeault (0, q)-forms on G=(P, P) with coefficients
in L. They form a chain complex under the Dolbeault operator @̄L. Using the
Hermitian structure on L, we shall construct (in (3.2)) a K � T�-invariant L2-
structure on Ω0,q(L). We say that an element of Ω0,q(L) is square-integrable
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if it converges under this L2-structure. Let � 2 t�� be an integral weight. Let
Ω0,q

2,�(L) be the differential forms � 2 Ω0,q(L) in which � and @̄L� are both
square-integrable, and that � transforms by � 2 t�� under the right T�-action. The
cohomology of the complex fΩ0,q

2,�(L), @̄Lgq is denoted by (Hq
!)�.

We want to let the L2-structure on the differential forms define a unitary
structure on (Hq

!)�. This is done by selecting a unique representative for each
cohomology class. From the imbedding h� ,! g �! g=[p, p], we can identify
^0,1h� with K�H�-invariant anti-holomorphic vector fields whose values at the
identity coset lie in ^0,1h�. Given � 2 Ω0,q(L), we say that � annihilates h� if
the interior product �(v)� 2 Ω0,q�1(L) vanishes for all v 2 ^0,1h�.

Let @̄�L be the formal adjoint of @̄L relative to the L2-structure. If � 2 Ω0,q
2,�(L)

satisfies @̄L� = @̄�L� = 0, we say that � is harmonic.
Let W be the Weyl group corresponding to h � g, and let � denote half the

sum of all positive roots. Consider the conditions

(i) � 2 UF;(1.7)

(ii) there exists � 2 W of length q such that � (� + �)� � is dominant.

In x3, we prove:

THEOREM 2. Let ! =
p�1@@̄F be a K � T�-invariant pseudo-Kähler form,

with F strictly convex. Then (Hq
!)� vanishes unless (1.7) is valid. When this hap-

pens, (Hq
!)� is an irreducible K-representation with highest weight � (� + �) � �.

Each cohomology class � 2 (Hq
!)� has a unique harmonic representative � which

annihilates h�, so (Hq
!)� becomes a unitary K-representation via k�k = k�k.

The special case q = 0 of this theorem is discussed in [6]. Our construction
of unitary structure for (Hq

!)� shall be further justified in Theorem 4, when we
compare (Hq

!)� with another unitary representation Hq
(!�).

In x4, we perform symplectic reduction with respect to the right T�-action
preserving ! =

p�1@@̄F. We shall show (in Proposition 4.1) that the right T�-
action preserving ! is Hamiltonian, with a canonical K-invariant moment map

Φr: G=(P, P) �! t��.

We call it the right moment map, to distinguish it from the K-moment map Φ. Let
� 2 t�� be in the image of Φr. There is a free T�-action on Φ�1

r (�) � G=(P, P),
and the quotient R� = Φ�1

r (�)=T� has a natural K-invariant pseudo-Kähler form
!�. It satisfies ��!� = {�!, where

�: Φ�1
r (�) �! R�, {: Φ�1

r (�) �! G=(P, P)(1.8)
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are respectively the natural fibration and inclusion. The procedure

(G=(P, P),!,�); (R�,!�)(1.9)

is called symplectic reduction [17]. Here R� is called the reduced space, and
!� the reduced form. We shall show (in Propositions 4.2 and 4.4) that R� is
the flag manifold G=P up to connected components, and !� is a K-invariant
pseudo-Kähler form.

We consider the conditions for two reduced spaces to be isomorphic pseudo-
Kähler manifolds. Suppose that for i = 1, 2, �i is in the image of the right
moment map of !i. Let (!i)�i be the reduced form on R�i . We introduce the
notions of

�1 � �2, (!1)�1 � (!2)�2 , (!1)�1 � (!2)�2(1.10)

as follows: Namely, �1 � �2 if they lie in the same coadjoint K-orbit. Also,
(!1)�1 � (!2)�2 if there is a K-equivariant symplectomorphism between R�i .
In particular if this symplectomorphism can be made holomorphic, we write
(!1)�1 � (!2)�2 .

THEOREM 3. The right T�-action has a unique K-invariant moment map which
agrees with Φ on A�. The reduced space is a disjoint union of copies of G=P; each
copy with the same K-invariant pseudo-Kähler form. Conversely, every pseudo-
Kähler form on G=P can be obtained via (1.9); and F can be chosen as strictly
convex for ! =

p�1@@̄F. Also, (!1)�1 � (!2)�2 if and only if �1 � �2; while
(!1)�1 � (!2)�2 if and only if �1 = �2.

Theorem 3 will be proved in x4. Assume that the reduced space is connected.
Then the theorem says that symplectic reduction (1.9) is independent of !, and
simplifies to

(G=(P, P),�); (G=P,!�).(1.11)

Recall that (t��)reg are the �-regular points, introduced in (1.2). We shall use
Theorem 3 to classify the K-invariant pseudo-Kähler forms on G=P:

COROLLARY 3A. The set of all K-invariant pseudo-Kähler forms on G=P is
bijective to (t��)reg.

Consider the K-invariant pseudo-Kähler forms on G=P which are positive
definite, namely the Kähler forms. They are commonly called the Fubini-Study
forms. Our theorem recovers A. Borel’s classical result:

COROLLARY 3B. [3] The set of all Fubini-Study forms on G=P is bijective to �.
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We now consider the signatures of the K-invariant pseudo-Kähler forms Ω
on the flag manifold G=P. Let d be the dimension of G=P, and let J be the
complex structure. We say that Ω has signature (d � s, s) if Ω(�, J�) has exactly
s mutually orthogonal negative eigenvectors. For instance, Kähler forms have
signature (d, 0). Observe that by Theorem 3, each Ω is necessarily given by Ω =
!�, where ! is a K�T�-invariant pseudo-Kähler form on G=(P, P). Therefore, we
can use symplectic reduction to study the signature of Ω. This will be discussed
in the next theorem.

Given a reduced form !� on G=P, we perform geometric quantization to it,
as in x3. Let L� be the pre-quantum line bundle corresponding to !�. We then
obtain the Dolbeault (0, q)-cohomology of G=P with coefficients in L�, which
are automatically square-integrable because G=P is compact. We denote them by
Hq

(!�). The K-action on G=P lifts to a unitary K-representation on Hq
(!�). Suppose

that in ! =
p�1@@̄F, F is strictly convex (which is always possible, by Theorem

3). Recall that a point in t� is said to be regular if its pairing with every root is
nonzero, and that � is half the sum of positive roots. The next theorem proves
that geometric quantization commutes with reduction, and uses this principle to
reveal the signature of !�.

THEOREM 4. Hq
(!�)

�= (Hq
!)�. They vanish for all q unless � 2 UF and � + �

is regular. When this happens, they vanish for all q except when (d � q, q) is the
signature of !�.

This is proved in x5. An explicit unitary K-equivariant isomorphism for
Hq

(!�)
�= (Hq

!)� is given in (5.2). In the case where they do not vanish, they
are irreducible with highest weight computed in Theorem 2.

For the special case where !� or �!� is Kähler, (i.e., !� has signature
(d, 0) or (0, d)), Theorem 4 leads easily to the familiar vanishing theorems of K.
Kodaira:

COROLLARY 4A. [13] If !� is Kähler, then Hq
(!�) vanishes for q � 1. If �!�

is Kähler, then Hq
(!�) vanishes for q < dim G=P.

We know from Theorem 3 that each connected component of the reduced
space R� is a copy of the flag manifold G=P. It would be nice to know when R�
is connected, so that R� is equivalent to G=P itself. Apart from obvious cases
such as when ! or �! is Kähler, satisfactory conditions for connectivity are still
not known. In x6, we address this issue and formulate this problem in terms of
basic calculus.

Acknowledgments. The author would like to thank V. Guillemin for intro-
ducing the problem of geometric quantization on the space G=(P, P). The referee
pointed out some errors in a previous version of this paper, and provided helpful
suggestions.
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2. Pseudo-Kähler structures. In this section, we apply results in [6] to
classify K�T�-invariant pseudo-Kähler forms on G=(P, P) and prove Theorem 1.
Let K� be the centralizer of T� in K, with semi-simple commutator subgroup K�

ss =
(K�, K�). Recall from (1.3) that G=(P, P) = (K=K�

ss)A�. With this description, the
right action of T� is clear because it commutes with K�

ss. Also, the right A�-action
is simply group operation on the A� component.

PROPOSITION 2.1. Every K � T�-invariant closed (1,1)-form on G=(P, P) is
given by ! =

p�1@@̄F, where F 2 C1(a�). There exists a unique moment map
Φ: G=(P, P) �! k� for the K-action given by Φ(a) = 1

2F0(a) 2 t�� for all a 2 A� �
G=(P, P).

Proof. Let ! be a closed K � T�-invariant (1, 1)-form on G=(P, P). The
arguments for Theorem 1 of [6] are valid even when ! is not Kähler, so we get
! =

p�1@@̄F, where F is K � T�-invariant.
Given v 2 k, let v l be the infinitesimal vector field on G=(P, P) obtained from

the K-action. Set � =
p�1

2 (�@F + @̄F). Then � is a K�T�-invariant real 1-form
satisfying d� = !. So a moment map is given by ([1], Theorem 4.2.10)

(Φ(p), v) = �(�, v l)p(2.1)

for all p 2 G=(P, P). By K-equivariance of Φ, it suffices to consider (2.1) for
p 2 A�. This is computed in ([6], x3) as 1

2F0, with image in t��.
To check that the moment map is unique, suppose Ψ: G=(P, P) �! k� is

another K-moment map. Define  ,�: k �! C1(G=(P, P)) by  v(p) = (Ψ(p), v)
and �v(p) = (Φ(p), v) for all v 2 k and p 2 G=(P, P). Then

d v = �(v l)! = d�v ,

so there exists a constant c = c(v) such that  v = �v + c(v). Since c depends on
v linearly, c 2 k�. Note that

(Ψ(p), v) = (Φ(p), v) + c(v).

Therefore, since Ψ and Φ are K-equivariant, c is fixed by the coadjoint Ad�k for
all k 2 K. Equivalently, c annihilates [k, k]. Since k is semi-simple, [k, k] = k, and
so c = 0. Hence Ψ = Φ, and the proposition follows.

Consider k = t + V , where V is orthocomplement to t via the Killing form.
In [6], we decompose the real vector space V into two dimensional subspaces
Vi, indexed by the positive roots �i. In fact if we identify k �= k� by the Killing
form, then

[Vi, Vi] �= R(�i).(2.2)
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If the positive root �i satisfies (�i, v) = 0 for all v 2 �, we write (�i,�) = 0.
Otherwise we write (�i,�) > 0. Equivalently, (�i,�) > 0 exactly when �i 2
S̄, where S̄ is the subset of positive roots given in (1.2). Let t?� � t be the
complement of t� in t. Observe that

k = k�ss + t� +

0
@ X

(�i,�)>0

Vi

1
A , k�ss = t?� +

0
@ X

(�i,�)=0

Vi

1
A .(2.3)

For v 2 k, recall that v l is the infinitesimal vector field on G=(P, P) generated
by the left K-action. Consider a 2 A� � G=(P, P). By (3.4) of [6], the tangent
space of G=(P, P) at a is given by

(tl�)a + (al
�)a +

X
(�i,�)>0

(Vl
i )a.(2.4)

Since ! is K-invariant, to check if it is pseudo-Kähler or Kähler, it suffices
to consider ! at the tangent space (2.4) for all a 2 A�. Recall from [6] that

!(tl + al, Vl)a = 0.

So to check if ! is pseudo-Kähler or Kähler, we may consider ! at (tl� +al
�)a

and
P

(�i,�)>0 (Vl
i )a separately.

PROPOSITION 2.2. Restrict ! to (tl� + al
�)a. It is nondegenerate if and only if F

is nonsingular, and it is positive definite if and only if F is strictly convex.

Proof. Since F is K-invariant, by (1.4), F 2 C1(a�). In [6], we see that the
restriction of ! to (tl� +al

�)a is essentially given by the Hessian matrix ( @2F
@xi@xj

(a)).

Therefore, it is nondegenerate exactly when F is nonsingular, and it is positive
definite exactly when F is strictly convex.

Recall that (t��)reg denotes the �-regular points, defined in (1.2).

PROPOSITION 2.3. Restrict ! to
P

(�i,�)>0 (Vl
i )a. It is nondegenerate if and only

if Φ(a) 2 (t��)reg, and it is positive definite if and only if Φ(a) 2 �.

Proof. For i 6= j, [Vi, Vj] � V . By Proposition 2.1 Φ(a) 2 t��, so

!(Vl
i , Vl

j )a = (Φ(a), [Vi, Vj]) � (t��, V) = 0.

So f(Vl
i )ag(�i,�)>0 are mutually orthogonal with respect to !, and we may evaluate

! on each of them separately.
Let �i, 
i 2 Vi be the basis as in (2.6) of [6]. The complex structure of G=(P, P)

sends � l
i to 
l

i , and 
l
i to �� l

i . Further, [�i, 
i] = �i under (2.2). Therefore,

!(� l
i , 


l
i )a = (Φ(a), [�i, 
i]) = (Φ(a),�i).(2.5)
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Let i vary among (�i,�) > 0. Then (2.5) is nonzero for all i if and only
if Φ(a) 2 (t��)reg. Also, (2.5) is positive for all i if and only if Φ(a) 2 �. This
completes the proof.

Proof of Theorem 1. The first two statements of Theorem 1 follow from
Proposition 2.1, while the rest follows from Propositions 2.2 and 2.3.

3. Geometric quantization. In this section, we consider the problem of
geometric quantization associated to a K � T�-invariant pseudo-Kähler form !
on G=(P, P). Namely, we construct unitary K-representations out of !.

As mentioned in x1, ! leads to a pre-quantum line bundle L [14], which
carries a connection and an invariant Hermitian structure. Since ! is exact, the
Chern class of L is [!] = 0, so L is a trivial bundle. In [6], we show that the
choice of a nonvanishing section of L can be made to have the following nice
properties.

PROPOSITION 3.1. [6] There exists a unique nonvanishing K � T�-invariant
holomorphic section s satisfying hs, sika = e�F(a) for all ka 2 (K=K�

ss)A�.

From now on, we shall always let s denote this section. Let Ω0,q(G=(P, P))
and Ω0,q(L) respectively denote the Dolbeault (0, q)-forms on G=(P, P) with co-
efficients in C and L. Using the section s, we can express a typical element �
of Ω0,q(L) as �0 
 s, where �0 2 Ω0,q(G=(P, P)). We construct an Hermitian
structure h�, �iL on Ω0,q(L) as follows.

Choose a K�H�-invariant Hermitian structure on the anti-holomorphic bun-
dle ^0,1(g=[p, p]) over G=(P, P). One such choice is available via the Killing
form of g, by observing the fact that H� normalizes (P, P). It leads to a K�H�-
invariant Hermitian structure h�, �i on Ω0,q(G=(P, P)). In other words if �0,�0 2
Ω0,q(G=(P, P)) and p 2 G=(P, P), then h�0,�0ip 2 C. Also, under the left action
L and right action R, h�0,�0ikph = hL�kR�h�0, L�k R�h�0ip for all k 2 K and h 2 H�.
From the Hermitian structure h�, �i on L and the section s of Proposition 3.1, we
obtain a Hermitian structure on Ω0,q(L) by

h�0 
 s,�0 
 siL = h�0,�0ihs, si = h�0,�0ie�F(3.1)

for all �0 
 s,�0 
 s 2 Ω0,q(L).
Let � be the K � A�-invariant measure on G=(P, P), which is unique up to

positive constant. In fact by (1.3), � is the product of the K-invariant measure
dk on K=K�

ss (exists because K and K�
ss are unimodular [11], p. 89) and the Haar

measure da on A�. We construct an L2-structure on Ω0,q(L) via

k�k2 =
Z

p2G=(P,P)
h�,�iLp�(3.2)
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for all � 2 Ω0,q(L). We are interested in knowing when (3.2) converges. When
it converges, we say that � is square-integrable.

The integral weight � 2 t�� extends by complex linearity to � 
 C: h� �!
C. The integral condition means that there is a multiplicative homomorphism
�: H� �! C� satisfying (1.6). The following lemma will be helpful in deciding
convergence of (3.2). Recall from (1.5) that UF is the image of 1

2F0.

LEMMA 3.2. [7]
R

a2A� �(a)2e�F(a) da <1 if and only if � 2 UF.

Proof. Consider the exponential map

exp: a� �! A�, exp (v) = a.

Using these variables v and a, (1.6) says that �(a)2 = exp (2�, v). Let dV be the
Lebesgue measure on a�. Recall that we identify F(a) with F(v) by (1.4). Thus

Z
a2A�

�(a)2e�F(a) da =
Z

v2a�
exp ((2�, v)� F(v)) dV .(3.3)

In [7] Appendix, we show that RHS of (3.3) converges if and only if � 2 UF.
This proves the lemma.

PROPOSITION 3.3. Let 0 6= � = �0 
 s 2 Ω0,q(L), and suppose that R�a�0 =
�(a)�0 for all a 2 A�. Then � is square-integrable if and only if � 2 UF.

Proof. Define �: Ω0,q(L) �! C1(A�) by

(�(�))a =
Z

k2K=K�ss

h�0,�0ika dk(3.4)

for all � = �0
 s 2 Ω0,q(L) and a 2 A�. Suppose that � 6= 0, and R�a�0 = �(a)�0

for all a 2 A�. We claim that there exists a constant c > 0 satisfying

(�(�))a = c�(a)2.(3.5)

Observe that � maps A� into R+. The Hermitian structure on Ω0,q(G=(P, P))
is right A�-invariant, so

R�ah�0,�0i = hR�a�0, R�a�0i(3.6)

= h�(a)�0,�(a)�0i
= �(a)2h�0,�0i.

Since G=(P, P) = (K=K�
ss)A�, we extend �: A� �! R+ to a K-invariant

function

E�: G=(P, P) �! R+.(3.7)
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Consider the positive function 0 < f = h�0,�0iE�2
� 2 C1(G=(P, P)). By (3.6), f

is is right A�-invariant. Namely, f (ka) = f (k) for all k 2 K=K�
ss and a 2 A�. So

(3.4) becomes

(�(�))a =
Z

k2K=K�ss

(h�0,�0iE�2
� )kaE2

�(ka) dk

=
Z

k2K=K�ss

f (k) dk�(a)2.

The integral in the last expression converges because K=K�
ss is compact, and its

value is positive because f > 0. This proves (3.5).
We now consider the square-integrability of �:

k�k2 =
Z

p2G=(P,P)
h�,�iLp� by (3.2)

=
Z

ka2(K=K�ss)A�
h�0,�0ikae�F(a) dk da by (3.1)

=
Z

a2A�
(�(�))ae�F(a) da by (3.4)

= c
Z

a2A�
�(a)2e�F(a) da. by (3.5).

By Lemma 3.2, the final expression converges if and only if � 2 UF. This proves
the proposition.

Let @̄L: Ω0,q(L) �! Ω0,q+1(L) be the Dolbeault operator. Using the holo-
morphic section s of Proposition 3.1, we get

@̄L(�0 
 s) = (@̄�0)
 s,(3.8)

where �0 2 Ω0,q(G=(P, P)). Let � 2 t�� be an integral weight. Define

Ω0,q
2,�(L) = f� 2 Ω0,q(L); k�k <1, k@̄L�k <1, R�t � = �(t)� for all t 2 T�g.

We get the subcomplex

: : : �! Ω0,q�1
2,� (L) �! Ω0,q

2,�(L) �! Ω0,q+1
2,� (L) �! : : : .

Its resulting cohomology is denoted by (Hq
!)�.

We also let Ω0,q
� (G=(P, P)) denote the elements of Ω0,q(G=(P, P)) which trans-

form by � 2 t�� under the right T�-action. Its corresponding cohomology is de-
noted by H0,q

� (G=(P, P)). Since s is right T�-invariant and holomorphic, from the



1002 MENG-KIAT CHUAH

natural map Ω0,q
2,�(L) �! Ω0,q

� (G=(P, P)) where �0 
 s 7! �0, we obtain

�: (Hq
!)� �! H0,q

� (G=(P, P)).

PROPOSITION 3.4. The map � intertwines with the K-action. If � 2 UF, then �
is an isomorphism. If � 6 2UF, then (Hq

!)� = 0.

Proof. By K-invariance of the section s, it follows that � intertwines with the
K-action.

We first assume that � 2 UF. For injection, suppose that �[�0 
 s] = [�0] =
0 2 H0,q

� (G=(P, P)) for some (0, q)-form �0. Since @̄�0 = 0 and �0 transforms by
� 2 t�� under the right T�-action, it also transforms by the complexified weight
�
C 2 h�� under the right H�-action. By ([5], Theorem 2(i)), H0,q

� (G=(P, P)) �=
H0,q
�
C(G=(P, P)). So since [�0] = 0 2 H0,q

�
C(G=(P, P)), there exists �0 satisfying
@̄�0 = �0 and R�h�0 = �(h)�0 for all h 2 H�. By Proposition 3.3, � = �0 
 s
is square-integrable because � 2 UF. It follows that � 2 Ω0,q�1

2,� (L). By (3.8),
@̄L� = �0 
 s. So [�0 
 s] = 0. This proves that � is injective.

For surjection, pick [�0] 2 H0,q
� (G=(P, P)). Since @̄�0 = 0 and R�t �0 = �(t)�0

for all t 2 T�, it follows that R�a�0 = �(a)�0 for all a 2 A�. By Proposition 3.3,
� = �0 
 s is square-integrable because � 2 UF. Hence [�] 2 (Hq

!)� and �[�] =
[�0]. This shows that � is surjective. We have proved the proposition for the case
� 2 UF.

Next assume that � 6 2UF. Pick a @̄L-closed element � = �0 
 s of Ω0,q
2,�(L).

By (3.8) we get @̄�0 = 0; and R�t �0 = �(t)�0 because s is right T�-invariant.
Therefore, �0 transforms by the complexified weight �
C 2 h�� under the right
H�-action. By Proposition 3.3, � = 0 because � 6 2UF. We conclude that the only
@̄L-closed element of Ω0,q

2,�(L) is 0. So (Hq
!)� = 0 whenever � 6 2UF. This proves

the proposition.

Proposition 3.4 leads to most of Theorem 2, except for the unitary structure
of the K-representation (Hq

!)�. The rest of this section aims to select a canonical
representative for each cohomology class in (Hq

!)�. This way, the L2-norms of
these representatives make (Hq

!)� a unitary K-representation.
The integral weight �
 C 2 h�� leads to a homogeneous line bundle

G��
C C �! G=P(3.9)

over the flag manifold G=P, denoted by L�. The natural fibration �: G=(P, P) �!
G=P leads to an injection

��: Ω0,q(G=P, L�) �! Ω0,q
� (G=(P, P)),(3.10)

whose image is denoted by Iq
�. In [5], we study the Dolbeault complex
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Ω0,q
� (G=(P, P)) as the product of two subcomplexes,

Ω0,q
� (G=(P, P)) = �r+s=qIr

� 
 (C1(A�)
 ^0,sh��).(3.11)

The next lemma shows that the various components of the bigrading (r, s) are
everywhere pairwise orthogonal under the K �H�-invariant Hermitian structure.

LEMMA 3.5. If (r, s) 6= (t, u), then

hIr
� 
 C1(A�)
 ^0,sh��, It

� 
 C1(A�)
 ^0,uh��i = 0.

Proof. Our Hermitian structure is obtained from one on the anti-holomorphic
bundle. So it suffices to show that

hC1(A�)
 ^0,1h��, I1
�i = 0.(3.12)

Suppose otherwise; namely, there exist � 2 C1(A�) 
 ^0,1h�� and � 2 I1
�

such that 0 6= h�,�i 2 C1(G=(P, P)). By the K � H�-action, we may assume
that

h�,�ie 6= 0,(3.13)

where e 2 G=(P, P) is the identity coset. Recall the following results from (2.3):
The complex vector space g=[p, p] decomposes into complex subspaces fh�, Vigi,
where i is indexed over the simple roots �i satisfying (�i,�) > 0. If we imbed
V� � (g=[p, p])� by the Killing form, then V� annihilates h�. Since � is in the
image of ��, �e annihilates ^0,1h�. Therefore, �e 2 ^0,1V�.

If we further identify ^0,1(g=[p, p])� with K�A�-invariant differential forms
on G=(P, P), then C1(A�)
^0,1h�� are right T�-invariant, while ^0,1V�i transform
by �i under the right T�-action. In other words, if �i: T� �! S1 are the characters
associated to the simple roots �i, then

R�t u = u, R�t vi = �i(t)vi; u 2 C1(A�)
 ^0,1h��, vi 2 ^0,1V�i .(3.14)

Replace � with a K � A�-invariant (0,1)-form 
 2 ^0,1V� � Ω0,1(G=(P, P))
satisfying 
e = �e. This way, h�, 
ie 6= 0 by (3.13). Write 
 =

P
i ci
i, with


i 2 ^0,1V�i . Then h�, ci
iie 6= 0 for some i. For such i, pick t 2 T� such that
�i(t) 6= 1. Then

0 6= h�, ci
iie = L�t R�t h�, ci
iie
= hR�t �, ciR

�
t 
iie by left invariance

= h�,�i(t)ci
iie. by (3.14).

This is a contradiction. We have proved (3.12), and the lemma follows.



1004 MENG-KIAT CHUAH

This lemma allows us to look at each component of the bigrading (r, s)
of (3.11) separately. It turns out that the component (r, s) = (q, 0) is the most
significant, as it is related to some data from G=P. To obtain useful information
from G=P, we now construct an Hermitian structure on Ω0,q(G=P, L�).

Recall from (3.10) that Ω0,q(G=P, L�) injects into Ω0,q
� (G=(P, P)) via ��. Also,

recall from (3.7) that E� is a K-invariant function on G=(P, P). The Hermitian
structure on Ω0,q

� (G=(P, P)) leads to one on Ω0,q(G=P, L�), still denoted by h�, �i,
by

h�,�i�(p) = h���,���ipE�2
� (p)(3.15)

for all �(p) = G=P and �,� 2 Ω0,q(G=P, L�). The next lemma shows that this
is well defined.

LEMMA 3.6. The value of (3.15) is independent of the choice of p in the fiber
of �, so the Hermitian structure on Ω0,q(G=P, L�) is well defined.

Proof. The fiber of � is H�=(H� \ (P, P)). We need to show that the value
of (3.15) stays the same if we replace p by ph, h 2 H�. Equivalently, we need
to show that the function h���,���iE�2

� 2 C1(G=(P, P)) is invariant under the
right H�-action.

Write h = ta 2 T�A�, and consider the right actions Rt, Ra seperately. For Rt,
note that E�2

� is automatically right T�-invariant because it is K-invariant. So we
only need to consider h���,���i. In this case,

R�t h���,���i = hR�t ���, R�t �
��i(3.16)

= h�(t)���,�(t)���i
= �(t)�(t)h���,���i
= h���,���i,

as �(t) 2 S1. So h���,���iE�2
� is right T�-invariant.

For Ra, observe that �(a) 2 R+. So by repeating the argument of (3.16), we
get R�ah���,���i = �(a)2h���,���i. Together with the factor E�2

� , we see that
h���,���iE�2

� is right A�-invariant. This proves the lemma.

From (3.15), it follows that

��h�,�i = h���,���iE�2
� 2 C1(G=(P, P))(3.17)

for all �,� 2 Ω0,q(G=P, L�).
It is well known that the flag manifold K=K� = G=P has K-invariant sym-

plectic forms; a fact which will also be discussed in the next section. There-
fore, the flag manifold has K-invariant volume form dk0. The fibration � re-



QUANTIZATION, REDUCTION, AND FLAG MANIFOLDS 1005

stricts to K=K�
ss �! K=K�, with compact fiber. So by normalizing dk0 suitably

([11], p. 95), Z
k2K=K�ss

(��')(k) dk =
Z
�(k)2K=K�

'(�(k)) dk0(3.18)

for all ' 2 C1(K=K�). This identity will be useful later.
By the previous lemma, both Ω0,q

� (L) and Ω0,q(G=P, L�) have Hermitian
structures. We respectively let @̄�L and @̄� denote the formal adjoints of @̄L and @̄
relative to the corresponding L2-structures. A square-integrable differential form
annihilated by @̄L and @̄�L (or @̄ and @̄�) is called harmonic. Recall from x1 that
� 2 Ω0,q(L) is said to annihilate h� if �(v)� = 0 for all v 2 ^0,1h�.

PROPOSITION 3.7. Each cohomology class in (Hq
!)� has a unique harmonic

representative which annihilates h�.

Proof. We may assume that � 2 UF, for otherwise the arguments of Propo-
sition 3.4 show that 0 is the only @̄L-closed element of Ω0,q

2,�(L), and there is
nothing to prove.

Let � 2 Ω0,q(G=P, L�). Since � 2 UF, Proposition 3.3 says that ��� 
 s is
square-integrable. We claim that

@̄�L(��� 
 s) = ��@̄�� 
 s.(3.19)

In view of Lemma 3.5, to prove (3.19), it suffices to show that

Z
p2G=(P,P)

h(���)f 
 s, @̄�L(��� 
 s)iLp�(3.20)

=
Z

p2G=(P,P)
h(���)f 
 s,��@̄�� 
 siLp�

for all square-integrable (���)f 
 s 2 Iq�1
� 
C1(A�)
L � Ω0,q�1(L). The first

integral of (3.20) is

Z
p2G=(P,P)

h(���)f 
 s, @̄�L(��� 
 s)iLp�(3.21)

=
Z

p2G=(P,P)
h@̄((���)f ),���ipe�F(p)� by (3.1)

=
Z

p2G=(P,P)
h(@̄���)f + (� 1)q�1��� ^ @̄f ,���ipe�F(p)�

=
Z

p2G=(P,P)
f h��@̄�,���ipe�F(p)� by Lemma 3.5

=
Z

k2K=K�ss

��h@̄�,�ik dk
Z

a2A�
f (a)�(a)2e�F(a) da by (3.17)
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=
Z
�(k)2K=K�

h@̄�,�i�(k) dk0

Z
a2A�

f (a)�(a)2e�F(a) da. by (3.18).

The second integral of (3.20) is

Z
p2G=(P,P)

h(���)f 
 s,��@̄�� 
 siLp�(3.22)

=
Z

p2G=(P,P)
f h���,��@̄��ipe�F(p)� by (3.1)

=
Z

k2K=K�ss

��h�, @̄��ik dk
Z

a2A�
f (a)�(a)2e�F(a) da by (3.17)

=
Z
�(k)2K=K�

h�, @̄��i�(k) dk0

Z
a2A�

f (a)�(a)2e�F(a) da by (3.18).

=
Z
�(k)2K=K�

h@̄�,�i�(k) dk0

Z
a2A�

f (a)�(a)2e�F(a) da.

So (3.21) and (3.22) imply (3.20), and hence (3.19).
Since � 2 UF, Proposition 3.3 says that we have the mapping

�: Ω0,q(G=P, L�) �! Ω0,q
2,�(L); �(�) = (���)
 s.(3.23)

Since G=P is compact, the standard Hodge theory says that every cohomology
class in H0,q(G=P, L�) has a unique harmonic representative. Clearly � is injective
and @̄L� = �@̄. Further, (3.19) says that @̄�L� = �@̄�. So the image Iq

�
s of � also has
the property that every cohomology class in H�(Iq

�
 s, @̄) has a unique harmonic
representative. We apply the Kunneth theorem to (3.11) and observe that the
subcomplex C1(A�) 
 ^0,qh�� has trivial cohomology. Hence (Hq

!)� �= H�(Iq
� 


s, @̄). The elements of Iq
�
 s are exactly those which annihilate h�. We conclude

that every cohomology class in (Hq
!)� has a unique harmonic representative which

annihilates h�. The proposition follows.

Proof of Theorem 2. Suppose that conditions (i) and (ii) in (1.7) are valid.
Then condition (i) and Proposition 3.4 say that (Hq

!)� �= H0,q
� (G=(P, P)). By

([5] Theorem 2(ii)), condition (ii) says that H0,q
� (G=(P, P)) is an irreducible K-

representation with highest weight � (� + �)� �.
Conversely, suppose that either condition in (1.7) fails. If (i) fails, then Propo-

sition 3.4 says that (Hq
!)� = 0. If (i) is valid but (ii) fails, then

(Hq
!)� �= H0,q

� (G=(P, P)) by (i) and Proposition 3.4

= 0. by failure of (ii) and [5] Theorem 2(ii).

We conclude that (Hq
!)� vanishes if either condition of (1.7) fails.
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By Proposition 3.7, each cohomology class � 2 (Hq
!)� is given by � =

[�], where � is the unique harmonic representative which annihilates h�. These
representatives form a unitary K-representation under the L2-structure (3.2). By
setting k�k = k�k, it makes (Hq

!)� a unitary K-representation. Theorem 2 follows.

4. Symplectic reduction. Let ! =
p�1@@̄F be a K � T�-invariant

pseudo-Kähler form on G=(P, P). In this section, we show that the right T�-action
is Hamiltonian, and perform symplectic reduction to it. Recall that Φ: G=(P, P) �!
k� is the K-moment map of !.

PROPOSITION 4.1. The right T�-action has a K-invariant moment map Φr: G=(P,
P) �! t��, which is unique up to addition by t��. If we further require that Φr agrees
with Φ on A�, then Φr is unique and is given by Φr(ka) = 1

2F0(a) 2 (t��)reg for all
ka 2 (K=K�

ss)A� = G=(P, P).

Proof. Given v 2 t�, let v l and vr respectively denote the infinitesimal
vector fields generated by the left and right T�-actions. The real 1-form � =p�1

2 ( � @F + @̄F) is K � T�-invariant and satisfies d� = !. By ([1], Theo-
rem 4.2.10), a moment map is given by

(Φr(p), v) = �(�, vr)p(4.1)

for all p 2 G=(P, P) and v 2 t�. Both � and vr are K-invariant, so Φr is K-
invariant. This shows the existence of a K-invariant moment map.

Since T� is abelian, any c 2 t�� defines another K-invariant moment map Ψr

by

(Ψr(p), v) = (Φr(p), v) + c(v).(4.2)

To prove the first statement of this proposition, it remains to show that conversely,
any K-invariant right moment map Ψr has the form of (4.2). Now let Ψr be a
K-invariant right moment map. Define �, : t� �! C1(G=(P, P)) by �v(p) =
(Φr(p), v) and  v(p) = (Ψr(p), v), for all p 2 G=(P, P) and v 2 t�. Then d�v =
�(vr)! = d v . Therefore, each v determines a constant c = c(v) in which  v��v =
c(v). The constant c varies linearly with v, so in fact c 2 t��. This shows that Ψr

has the form (4.2), which proves the first statement of this proposition.
By (4.1) and (4.2), an arbitrary K-invariant right moment map is given by

(Ψr(ka), v) = �(�, vr)a + c(v).(4.3)

Since T�A� is abelian, v l
a = vr

a for all a 2 A�. Therefore, (4.3) becomes

(Ψr(ka), v) = �(�, v l)a + c(v)

= (Φ(a), v) + c(v),
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by (2.1). So Ψr and Φ coincides on A� exactly when c = 0. In this case, Theorem 1
says that Φr(ka) = 1

2F0(a) 2 (t��)reg. This proves the proposition.

From now on, Φr denotes the canonical K-invariant right moment map of
Proposition 4.1. Let � 2 (t��)reg be in the image of Φr. We consider the reduced
space R� = Φ�1

r (�)=T�.

PROPOSITION 4.2. Each connected component of R� is a copy of the flag mani-
fold G=P.

Proof. Since ! is pseudo-Kähler, Theorem 1 says that F is nonsingular. By
the inverse function theorem, F0 is a local diffeomorphism. So there exists a
discrete set Γ � A� such that ( 1

2F0)�1(�) = Γ. By Proposition 4.1, Φ�1
r (�) =

(K=K�
ss)Γ � (K=K�

ss)A�. Consequently,

Φ�1
r (�)=T� = (K=(K�

ssT�))Γ = (K=K�)Γ = (G=P)Γ,(4.4)

and a typical connected component is (G=P)a, a 2 Γ.

Consider the inclusion { and the fibration �, given in (1.8). The reduced form
!� is defined to be the unique symplectic form on R� such that ��!� = {�!.
Since { and � commute with the K-action, it is clear that !� is K-invariant. Since
K is semi-simple, the Whitehead lemma ([10], x52) says that its Lie algebra
cohomology satisfies H1(k) = H2(k) = 0. Consequently ([10], Theorem 26.1), the
K-action preserving !� has a unique moment map

 : R� �! k�.

By (4.4), write a typical element of R� as ka, where k 2 K=K� and a 2 Γ.
If k is the identity coset, we write a = ka for simplicity.

PROPOSITION 4.3.  (a) = � 2 (t��)reg.

Proof. Pick x 2 k. By abuse of notation, let xl be the infinitesimal vector field
for the K-action on G=(P, P), Φ�1

r (�) or R�, depending on the context. Also, let
a denote the appropriate element in any of these three spaces. Since { and �
commute with the K-action,

{(a) = a,�(a) = a, {�(xl
a) = xl

a,��(xl
a) = xl

a.

Since k is semi-simple, up to linear combination, x = [u, v]. Then

( (a), x) = ( (a), [u, v]) = !�(ul, v l)a = ��!�(ul, v l)a = {�!(ul, v l)a(4.5)

= !(ul, v l)a = (Φ(a), [u, v]) = (�, [u, v]) = (�, x).

So  (a) = �, and the proposition follows.
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The standard complex structure of G=P is given by the complex Lie group
G under the quotient of its complex subgroup P. Since R� consists of copies of
G=P, it becomes a complex manifold under the standard complex structure of
G=P. This allows us to consider whether !� is pseudo-Kähler or Kähler.

PROPOSITION 4.4. The reduced form !� is a K-invariant pseudo-Kähler form
on R�. In particular it is Kähler if and only if � 2 �.

Proof. The K-invariance of !� follows from the above discussions. So it
remains to check its pseudo-Kähler and Kähler properties.

Recall �i, 
i 2 Vi � V from Proposition 2.3, where [�i, 
i] 2 t is identified
with �i by the Killing form. Here f�i, 
ig(�i,t�)>0 can be regarded as a basis of
k=k�. The complex structure of G=P sends � l

i to 
l
i , and 
l

i to �� l
i . Substitute

u = �i and v = 
i in (4.5), we get

!�(� l
i , 


l
i )a = !(� l

i , 

l
i )a = (�, [�i, 
i]) = (�,�i).(4.6)

Since ! is pseudo-Kähler, it follows from (4.6) that !� is pseudo-Kähler too. In
fact !� is Kähler if and only if (4.6) is positive for all (�i, t�) > 0, or equivalently
� 2 �. Hence the proposition.

For i = 1, 2, consider the reduced spaces (R�i , (!i)�i), with moment maps
 i: R�i �! k�. By the previous proposition, these reduced spaces are pseudo-
Kähler. So we can compare them under the notions of � and � introduced in
(1.10). If � does not hold, we write 6�.

PROPOSITION 4.5. Suppose that R�i have the same number of connected com-
ponents. Then (!1)�1 � (!2)�2 if and only if �1 � �2, and (!1)�1 � (!2)�2 if and
only if �1 = �2.

Proof. Suppose that this proposition has been proved for all connected reduced
spaces. Let R� be a reduced space, possibly nonconnected. For i = 1, 2, let
(G=P)ai be connected components of R�. By Proposition 4.3, their moment maps
satisfy  i(ai) = �. So by the present proposition for connected reduced spaces,
(G=P)a1 and (G=P)a2 are isomorphic pseudo-Kähler manifolds. We conclude that
all connected components of R� are isomorphic to one another, and so the present
proposition holds for nonconnected reduced spaces too.

From this observation, we only have to prove the proposition for connected
reduced spaces. So assume that R�i are connected for i = 1, 2. Write R�i =
(K=K�)ai, for some ai 2 A�.

Suppose that �1 � �2. Then there is a coadjoint orbit O � k� which contains
�1 and �2. By Proposition 4.3,  i(ai) = �i. By Proposition 4.1, �i 2 (t��)reg �
t�, so the isotropy subgroup of �i in K is K�. Hence O = K=K�. So  i is a
diffeomorphism from (K=K�)ai onto O. In fact  i is K-equivariant, so it identifies
(!i)�i with the Kirillov-Kostant-Souriau symplectic form !KKS onO. We conclude
that (!1)�1 � !KKS � (!2)�2 .
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Conversely, if (!1)�1 � (!2)�2 , then  i have the same image O. By Propo-
sition 4.3,  i(ai) = �i 2 O, so �1 � �2.

We next prove the last part of this proposition, where � is replaced with �.
Suppose that �1 = �2. By (4.5), for all u, v 2 k,

(!1)�1(ul, v l)a1 = (�i, [u, v]) = (!2)�2(ul, v l)a2 .(4.7)

Consider the K-equivariant biholomorphic map

�: (G=P)a1 �! (G=P)a2,�(ga1) = ga2.(4.8)

By (4.7), ��(!2)�2 and (!1)�1 agree on a1. By K-invariance, they agree every-
where. So � preserves the pseudo-Kähler structures, and (!1)�1 � (!2)�2 .

Conversely, suppose that �1 6= �2. If �i are in different coadjoint K-orbits,
then the first part of the proposition says that (!i)�i are not symplectomorphic,
so in particular (!1)�1 6�(!2)�2 . Hence we may assume that �i are in the same
orbit. Each connected component of (t��)reg � k� intersects a K-orbit at most
once. From �i 2 (t��)reg, �1 6= �2 and �1 � �2, we conclude that �i are in
different connected components of (t��)reg. The holomorphic map (4.8) fails to
preserve the pseudo-Kähler structures, because (4.6) and (4.7) show that there
is sign problem. Other symplectomorphisms between (!i)�i have to permute the
connected components of (t��)reg, so they cannot be holomorphic. We conclude
that (!1)�1 6�(!2)�2 . This proves the proposition.

By this proposition, the reduced form !� depends only on �, and not on !.
So whenever the reduced space is connected, the reduction process is given by
(1.11). Finally, we show that every pseudo-Kähler form on G=P can be obtained
by (1.11).

PROPOSITION 4.6. Every K-invariant pseudo-Kähler form on G=P can be ob-
tained by symplectic reduction from ! =

p�1@@̄F on G=(P, P), with F strictly
convex.

Proof. Let Ω be a K-invariant pseudo-Kähler form on G=P. Since K is semi-
simple, the K-action preserving Ω has a unique moment map ([10], x52 and
Theorem 26.1) �: G=P �! k�. Let e 2 G=P = K=K� be the identity coset. The
left action of K� fixes e, hence

x 2 k� =) xl
e = 0.(4.9)

We claim that �(e) 2 t��. Write k = t� + t?� + V as in (2.3). Up to linear
combination, a typical element of V can be written as [x, y] 2 V , where x 2 t

and y 2 V . Then

(�(e), [x, y]) = Ω(xl, yl)e = 0,(4.10)
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because it follows from t � k� and (4.9) that xl
e = 0. Consequently,

(�(e), V) = 0.(4.11)

Note that t?� � k�ss and k�ss is semi-simple. So up to linear combination, a typical
element of t?� can be written as [x, y] 2 t?� , where x, y 2 k�. By (4.9), xl

e = yl
e = 0.

Duplicating the arguments in (4.10) gives (�(e), [x, y]) = 0 and

(�(e), t?� ) = 0.(4.12)

By (4.11) and (4.12), �(e) 2 t�� as claimed.
For (�i,�) > 0, consider the basis �i, 
i 2 Vi from Proposition 2.3. Since Ω

is nondegenerate,

(�(e),�i) = Ω(� l
i , 


l
i )e 6= 0.

Therefore, �(e) 2 (t��)reg.
Write �(e) = � 2 (t��)reg. Let C� be the connected component of (t��)reg

containing �. So C� is an open cone in (t��)reg, and we let n be its dimension.
There exist �1, : : : ,�n 2 t�� such that � =

Pn
1 �i and

C� =

(
nX
1

ci�i; ci > 0

)
.(4.13)

Identify t�� �= a��, and define F 2 C1(a�) by

F(y) = 2
nX
1

exp (�i, y).(4.14)

By (1.4), we get F 2 C1K (G=(P, P)) and ! =
p�1@@̄F. We claim that ! is

pseudo-Kähler:
Identify a� with Rn by f�ign

1. Then the gradient function is F0(y) = (2 exp yi)i,
so UF = (R+)n = C�. The Hessian matrix of F is (2 @2

@yi@yj

Pn
1 exp yk)ij, which is

the diagonal matrix with entries (2 exp y1, : : : , 2 exp yn). This is a positive definite
matrix, so F is strictly convex. By Theorem 1, ! is pseudo-Kähler as claimed.

The K-moment map of ! is given by 1
2 F0. So at e = exp (0),

Φ(e) =
1
2

F0(0) = ( exp 0)i = (1, : : : , 1) = �.

Let  be the moment map of the reduced form !�. By Propositions 4.1 and 4.3,
 (e) = �. We conclude that the two moment maps satisfy �(e) =  (e). By an
argument similar to Proposition 4.5, it follows that Ω = !�.
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Proof of Theorem 3, Corollaries 3A and 3B. Theorem 3 follows directly from
Propositions 4.1 through 4.6. We now prove the corollaries.

Consider the situation where the reduced space is connected, thus R� = G=P.
Theorem 3 says that symplectic reduction (1.9) simplifies to (1.11). Let I � t��
be the set of all � 2 t�� that are in the image of some right moment map Φr.
According to Theorem 3, (1.11) sets up a bijective correspondence between I and
all the K-invariant pseudo-Kähler forms on G=P. So the proof of Corollary 3A
amounts to showing that

I = (t��)reg.(4.15)

By Theorem 1, it is clear that I � (t��)reg. So it remains to show the op-
posite. Given � 2 (t��)reg, we construct F by (4.14) so that ! =

p�1@@̄F is
pseudo-Kähler. As shown in Proposition 4.6, the moment map of ! sends e to �,
so � 2 I. This means that (t��)reg � I, which completes the arguments for (4.15).
Corollary 3A follows.

The arguments for Corollary 3B is very similar to Corollary 3A, with the
following minor modification: Here I is defined for Kähler forms instead of
pseudo-Kähler forms, and (4.15) is replaced by I = �. Also, in (4.13), the open
cone containing � is C� = �. By duplicating the above arguments, Corollary 3B
follows.

5. Signatures of pseudo-Kähler forms. In this section, we perform geo-
metric quantization to the flag manifold G=P. We shall study the relation between
quantization and reduction, compute the signature of the reduced form, and prove
Theorem 4.

Let � 2 t�� be an integral weight in the image of the right moment map
of some K � T�-invariant pseudo-Kähler form ! on G=(P, P). Suppose that the
reduced space is connected, namely (G=P,!�). Let L� be the pre-quantum line
bundle [14] over G=P corresponding to !�. It is equipped with a connection
whose curvature is !�. We again use this connection to define the (0, q)-Dolbeault
complex with coefficients in L�. They are automatically square-integrable because
G=P is compact, and we denote their cohomology by Hq

(!�). Let  be the moment
map of the K-action preserving !�. Proposition 4.3 says that � is in the image
of  . Hence the image of  is the coadjoint orbit containing �. Therefore [2],
L� is just the homogeneous line bundle described in (3.9). Then Hq

(!�) can be
computed by the Borel-Weil-Bott theorem [4]. Namely, Hq

(!�) is an irreducible
K-representation with highest weight � if there exists � 2 W of length q such that
� (�+�)�� = � is dominant, and it vanishes otherwise. Together with Theorem 2,
(Hq

!)� �= Hq
(!�). On the other hand, if � is not integral or does not lie in the image

of the moment map, then clearly both (Hq
!)� and Hq

(!�) vanish. We conclude that



QUANTIZATION, REDUCTION, AND FLAG MANIFOLDS 1013

geometric quantization commutes with reduction,

Hq
(!�)

�= (Hq
!)�.(5.1)

Recall from Theorem 2 that (Hq
!)� is a unitary K-representation, by using

the L2-norm of the unique harmonic h�-annihilating representative of each co-
homology class. Similarly, since G=P is compact, each element of Hq

(!�) has a
unique harmonic representative. Similarly, the L2-norm makes Hq

(!�) a unitary K-
representation. We now construct an explicit unitary K-intertwining isomorphism
for (5.1). We assume that � 2 UF, for otherwise everything vanishes. In this
case, Lemma 3.2 says that

R
a2A� �

2(a)e�F(a) da converges. For simplicity, write
N =

R
a2A� �

2(a)e�F(a) da; so 0 < N <1. Recall the section s of Proposition 3.1
and the injection �� of (3.10). Define

Θ: Hq
(!�) �! (Hq

!)�, Θ([�]) =
1p
N

[(���)
 s].(5.2)

PROPOSITION 5.1. The map Θ is a unitary K-equivariant isomorphism.

Proof. Since � commutes with the K-action and s is K-invariant, it is clear
that Θ also commutes with the K-action. If we compare Θ with � of (3.23), then
it follows from arguments of Proposition 3.7 that Θ is a bijection. It only remains
to show that Θ is unitary. Switching to another cohomologous representative if
necessary, let � 2 Ω0,q(G=P, L�) be the unique harmonic representative of [�].
By Proposition 3.7, (���)
s is the unique harmonic representative of [(���)
s]
which annihilates h�. So the norm of [�] is defined as k�k. Then

kΘ�[�]k2

=
1
N
k(���)
 sk2

=
1
N

Z
p2G=(P,P)

h���,���ipe�F(p)� by (3.1) and (3.2)

=
1
N

Z
p2G=(P,P)

��h�,�ipE2
�(p)e�F(p)� by (3.17)

=
Z

k2K=K�ss

��h�,�ik dk

=
Z
�(k)2K=K�

h�,�i�(k) dk0 by (3.18)

= k[�]k2.

Therefore, Θ is unitary.

To compute the signature of !�, we need the next proposition.
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PROPOSITION 5.2. Let� be a positive root. Suppose that � (�+�)�� is dominant
for � 2 W and integral weight �. Then � (�) is negative if and only if (�,�) < 0.

Proof. Suppose that � (�) is negative. Then

(� (� + �)� �, ��) � 0 =) (� + �,�) � (�, ��)

=) (� + �,�) < 0

=) (�,�) < 0.

Conversely, suppose that � (�) is positive. Then

(� (� + �)� �, ��) � 0 =) (� + �,�) � (�, ��)(5.3)

=) (� + �,�) > 0.

Since the weight � is integral, the last inequality in (5.3) implies that (�,�) � 0.
This completes the proof of Proposition 5.2.

Proof of Theorem 4 and Corollary 4A. The isomorphism Hq
(!�)

�= (Hq
!)� fol-

lows from (5.1). According to Proposition 5.1, an explicit unitary K-equivariant
isomorphism between them is given by (5.2). By Theorem 2, the spaces (Hq

!)� �=
Hq

(!�) either are unitary irreducible K-representations or vanish. Theorem 2 also
says that they are irreducible exactly when (1.7) holds. Condition (ii) of (1.7)
implies that � + � is regular. Therefore to prove Theorem 4, it remains only to
show that in this case, the signature of !� is (d � q, q). Here d is the dimension
of G=P.

For � in (1.7), there exist exactly q positive roots �i such that � (�i) are
negative. By Proposition 5.2, these are all the positive roots �i which satisfy
(�,�i) < 0.

The basis �i, 
i 2 Vi in Proposition 4.4 satisfies !�(� l
i , 


l
i )a = (�,�i). The

spaces f(Vl
i )ag(�i,�)>0 are mutually orthogonal with respect to !�. Since there are

exactly q positive roots �i in which (�,�i) < 0, there correspond exactly q pairs
of f�i, 
ig in which !�(� l

i , 

l
i )a < 0. So the pseudo-Kähler form !� has signature

(d � q, q). This proves Theorem 4.
For the signature (d � q, q) of !�, set q = 0 and q = d respectively for

the cases where !� and �!� are Kähler. Then Corollary 4A follows immedi-
ately.

6. Connectivity of reduced space. In this section, we consider the issue
of whether the reduced space is connected. By Proposition 4.1, connectivity of
the reduced space is equivalent to injectivity of the gradient function F0.

If ! or �! is Kähler, then F or �F is strictly convex, and so F0 is injective.
Consider however when ! is merely pseudo-Kähler, in particular when neither
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F nor �F is strictly convex. Then Theorem 1 says that F is nonsingular, and
UF � (t��)reg. Note that (t��)reg consists of a disjoint union of connected cones. We
can identify t�� with Rn by some suitable linear coordinates, such that the cone
which contains UF is identified with the first quadrant fx 2 Rn ; xi > 0g � Rn.
The gradient function becomes

F0 =
�
@F
@xi

�
i
: Rn �! Rn.

The connectivity problem of the reduced space can now be formulated in terms
of basic calculus:

PROBLEM 6.1. Suppose that the Hessian matrix of F 2 C1(Rn) is everywhere
nonsingular, and @F

@xi
> 0 for all i. When is F0 injective?

The obvious sufficient condition for injectivity is where F or �F is strictly
convex, such as F(x) =

P
i exp xi. However, other sufficient conditions are still

not known. In the general setting where a compact Lie group acts in Hamiltonian
fashion, a well known sufficient condition for the reduced space to be connected
is properness of the moment map ([16], Theorem 1.1). Unfortunately, this never
holds in our case:

PROPOSITION 6.2. The right moment map Φr, or equivalently F0, cannot be
proper.

Proof. Assume that F0 is proper. By Proposition 4.1, this is equivalent to Φr

being proper. Consequently ([16], Theorem 1.1), each Φ�1
r (�) is connected. This

means that F0 is injective. Since the Hessian of F is everywhere nonsingular, the
inverse function theorem says that F0 is a local diffeomorphism. Then F0, being
an injective local diffeomorphism, is a diffeomorphism onto an open set U � Rn.
The set U is not the entire Rn, due to the condition @F

@xi
> 0. Pick a boundary point

� of U. It does not lie in U because U is open. Let C be a compact set which
contains � as an interior point. Then the inverse image (F0)�1(C) is unbounded
and hence not compact. This contradicts properness of F0.

A better understanding of conditions for F0 to be injective, and answers to
Problem 6.1, would both be nice.
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