
An end-to-end flow control approach based on round trip time

Jin-Ru Chen, Yaw-Chung Chen* , Chun-Liang Lee

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan

Received 20 August 1999; revised 23 March 2000; accepted 23 March 2000

Abstract

Traditional TCP flow control schemes, such as Tahoe and Reno, continuously increase the window size until possible packet loss is
detected. These schemes generate congestion unnecessarily by themselves and utilize the buffer space inefficiently. Therefore, Vegas was
proposed to accommodate the drawbacks. It uses the measured round-trip time (RTT) to obtain the information required for the flow control.
In this work, we propose a flow control scheme, RTT-based TCP, which uses the RTT directly to control the window size adjustment. RTT-
based TCP comprises four mechanisms: the modified exponential window increment, the RTT measurement, the queue occupancy estima-
tion, and the quick queue-occupancy reduction. Simulation results show that RTT-based TCP outperforms Vegas in the aspects of through-
put, fairness and efficiency of buffer usage.q 2000 Elsevier Science B.V. All rights reserved.

Keywords: TCP; Congestion avoidance; Fairness

1. Introduction

The TCP flow control mechanisms have evolved for more
than two decades. From the observation of the evolution, we
found that the packet retransmission and the congestion
avoidance are two major mechanisms for TCP to provide
reliable and efficient data transport. Therefore, a variety of
approaches have been proposed to deal with these two issues
to improve TCP performance. FACK [13] and SACK [14]
improve the TCP retransmission mechanism to reduce the
bandwidth waste when the packet loss occurs. Other TCP
studies [1,5,18] deal with the congestion avoidance as does
this work.

The earliest window-based congestion control improve-
ment was implemented on TCP Tahoe, which maintained a
proper window size to control the number of outstanding
packets. Both probing and allocation of the available band-
width were accomplished through increasing the window
size gradually until packet loss occurs. Most of the window
size adjustment schemes that improve the TCP performance
are based on this approach, and its main advantage is the
simplicity in implementation. TCP Reno improves the
throughput of TCP Tahoe by introducing the fast recovery
algorithm [16], which sets the window size to a threshold
value instead of resetting it after a segment loss.

Both TCP Tahoe and Reno detect the available bandwidth
by self-generated congestion and packet losses. Although
their window adjustment schemes avoid the occurrence of
further congestion, both schemes are unable to fully utilize
the available bandwidth. To remedy the periodic conges-
tion, other schemes have been proposed. When queue occu-
pancies in intermediate nodes increase, the round-trip times
(RTTs) of the successfully acknowledged packets increase
as well. DUAL algorithm [6] is based on reacting to such
RTT increment. In Ref. [12], Jain proposed an approach
based on an analytic derivation of an optimum window
size for a deterministic network. Wang and Crowcroft
proposed another scheme called Tri-S [17], which takes
advantage of the fact that when the network approaches
congestion, the observed increment in throughput caused
by the window size increment will be flattened.

TCP Vegas [1] is the most known congestion avoidance
scheme, which achieves much better throughput than Reno.
It is similar to Tri-S but uses a different way to calculate
throughputs. Vegas features three improvements, early
timeout detection, window size adjustment and safe slow-
start. The latter two can be further enhanced to increase the
throughput, to improve the fairness and to use the buffer
more efficiently. In this article, we propose a flow control
scheme, RTT-based TCP, which uses the TCP optional
RTTM field [7] and the RTT threshold to decide how to
adjust the window. In our proposed scheme, safe slow-
start proposed in Vegas is no longer used, so that the
response time can be reduced when congestion does

Computer Communications 23 (2000) 1537–1547

0140-3664/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(00)00216-4

www.elsevier.com/locate/comcom

* Corresponding author. Tel.:1886-3-573-1864; fax:1886-3-5727-842.
E-mail addresses:jzchen@csie.nctu.edu.tw (J.-R. Chen), ycchen@

csie.nctu.edu.tw (Y.-C. Chen), leecl@csie.nctu.edu.tw (C.-L. Lee).



occur. Furthermore, the fair bandwidth sharing at the bottle-
neck switch can be achieved by keeping equal queue occu-
pancy for each connection.

Another class of congestion avoidance scheme, the rate-
based scheme [2,3,8], uses a detection mechanism to esti-
mate the allowed network service rate; in addition, it
controls the queue occupancy to avoid the congestion.
This is similar to some window-based congestion avoidance
schemes in which the dependency between the RTT and the
window size is accounted, so that periodic congestion can be
avoided. Generally speaking, rate-based congestion avoid-
ance schemes not only avoid the periodic congestion, but
also improve throughput and fairness. However, the perfor-
mance of existing schemes is not satisfactory enough.
Therefore, we try to use the probing approach and the
queue occupancy control to enhance the window-based
congestion avoidance scheme. This may achieve better
performance in throughput, fairness and efficiency of buffer
usage.

The rest of this paper is organized as follows. Section 2
addresses the aforementioned four mechanisms employed
by RTT-based TCP. Section 3 presents the implementation
approach. The simulation results are discussed in Section 4.
Section 5 concludes the work and discusses future research
directions for this work.

2. Proposed RTT-based TCP

Our proposed approach consists of four mechanisms,

which are designed to increase the throughput, to reduce
the bandwidth waste, to achieve fairness and to improve
the buffer usage. They are described as follows:

1. Modified exponential window increment:in most of
existing studies, the window size is increased exponen-
tially during the slow-start phase, and increased linearly
otherwise. However, the window increment strategy
outside the slow-start phase may be more aggressive
without incurring congestion. Our mechanism modifies
the exponential increment scheme to increase the
window size.

2. RTT-based window adjustment:this mechanism adjusts
the window size based on the RTT instead of the tradi-
tional window threshold. Without increasing the imple-
mentation complexity, this mechanism features faster
and safer window adjustment than the existing schemes
(e.g. TCP Vegas).

3. Queue occupancy estimation:it enables a source to esti-
mate the queue occupancy in the network. With the
precise estimation and the stable control of queue occu-
pancy, better fairness can be achieved.

4. Quick queue occupancy reduction:to avoid the waste of
buffer space usage, this mechanism quickly reduces the
queue occupancy when the queue occupancy is too large.

The details of these mechanisms and the relationship
between them will be discussed in subsequent subsections.

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–15471538

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13

time (RTTs)

w
in

do
w

si
ze

(s
eg

m
en

ts
)

Exponential

Linear

Proposed

Fig. 1. Comparison of different window increment approaches.



2.1. Modified exponential window increment

The operation in traditional TCP window increment
schemes consists of two phases: the slow-start and the
congestion avoidance. The window size of a source
increases exponentially every RTT in the slow-start phase,
and linearly in the congestion avoidance phase. The purpose
of the former is to approach the network service rate
quickly, and that of the latter is to reach the network service
rate safely. The timing for switching between these two
phases varies with different schemes. Their common objec-
tive is to increase the source window size as fast as possible
without self-generated congestion.

In our proposed window increment scheme, the tradi-
tional two phases are replaced by a single phase, called
“increment phase”. Within this new phase, the window
size still increases exponentially, but with a different
manner. As mentioned above, the traditional schemes
always double the window size based on the current window
every RTT, while in our scheme, the portion of exponential
increment always starts from one segment, and it doubles
every RTT regardless the starting window size. For exam-
ple, let SWND denote the starting window size and WNDi

denote the window size afteri RTTs. Assume that the
network service rate keeps increasing and there is no indica-
tion of congestion during thesei RTTs. Then we have the
following equations for calculating WNDi under different
window increment approaches:

(a) Under the linear increment, WNDi � SWND1 i:
(b) Under the traditional exponential increment, WNDi �
SWND× 2i

:

(c) Under our proposed exponential increment,

WNDi �
WNDi21 1 2i21 if i $ 1:

SWND if i � 0:

(

When the window starts growing from one segment (i.e.
SWND� 1�; both exponential increment approaches oper-
ate exactly the same. The window sizes of both approaches
grow from one segment to two segments, from two
segments to four segments, and so on. The difference
between the traditional exponential increment and our
proposed exponential increment can be observed when the
starting window is larger than one segment. Also, the larger
the starting window, the bigger the difference. In TCP
Vegas, when the available service rate increases, a source
may enter either the slow-start phase or the congestion
avoidance phase, then increases its window size exponen-
tially or linearly, respectively.

Fig. 1 shows the window adjustments under three afore-
mentioned approaches. Suppose that the slow-start phase is
from T � 0 to 5 RTTs, and the window size keeps stable
from T � 5 to 7 RTTs. AfterT � 7 RTTs, the available
service rate increases, and then the source is allowed to
increase its window size. As shown in Fig. 1, the traditional

exponential increment approach doubles the window size
every RTT, and the linear increment approach increases
the window size by one segment for every RTT. However,
neither exponential nor linear approach works satisfactorily.
The former increases the transmission rate too fast, and it
may cause congestion when the available service rate
increases more slowly. The latter needs a long time to
catch up the available service rate. In contrast with these
two approaches, our approach is more conservative than the
traditional exponential increment, but more aggressive than
the linear increment.

As compared with Vegas, our proposed exponential
window increment approach would be more efficient.
When the available network service rate increases, our
approach fills the rate gap exponentially, where the gap is
defined as the difference between the original rate and the
newly available rate. According to our approach, the portion
of exponential window increment always starts from one
segment, hence only few segments will be added to the
original window size within the first several RTTs. There-
fore, if the available service rate increase slowly, our
approach would be safer than the traditional exponential
window increment approach for avoiding the congestion.
Since our approach still increases the window size exponen-
tially, it is faster than the linear increment under the conges-
tion avoidance phase.

The following paragraphs discuss the differences between
the traditional exponential window increment, our proposed
exponential window increment and the linear window incre-
ment. Assume that the available service rate has been
increased. Letn denote the current window size andm
denote the window size for the newly available service
rate. Bothmandn are measured in the segments. Obviously,
m is larger thann.

1. The time duration required to reach the new service rate:
(a) Traditional exponential window increment:
dlog2�m=n�e RTTs.
(b) Our proposed exponential window increment:
dlog2�m2 n�e 1 1 RTTs.
(c) Linear window increment:�m2 n� RTTs.

2. The amount of over-increased window size:as described
above, the traditional exponential window increment is
dependent of the starting window size, while the
proposed exponential increment is not. Therefore, ifm
is slightly larger thann, the amount of over-increased
window size in our method will be smaller than that in
the traditional approach. In other words, when the avail-
able service rate only slightly increases, our method can
avoid the risk of self-generated congestion, which is
caused by over-increasing the window size. Even in the
case that the available service rate increased signifi-
cantly, our method still can perform as good as the tradi-
tional approach.

Although the window size increases more slowly under

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–1547 1539



our proposed exponential increment approach, the amount
of over-increased window will be mostly smaller than or at
least equal to that under the traditional exponential incre-
ment approach.

2.2. RTT-based window adjustment

The RTT of a connection can be computed by subtracting
the time a packet is sent by the source from the time that the
corresponding ACK is received. Traditionally, this informa-
tion is used to improve the preciseness of the RTT measure-
ment, as well as to achieve congestion avoidance because
the delay-based control schemes use the delay information
to adjust the window size. In the proposed approach, we use
the RTT threshold instead of the window threshold for
congestion avoidance. This not only can achieve shorter
response time but can also reduce the implementation
complexity.

Vegas-like congestion avoidance schemes [1,3,4,9] use
probing packets to detect the variation of RTTs. In these
schemes, a source always keeps a probing packet in the
network. The reason for doing so is to reduce the implemen-
tation complexity and to avoid confusion in the measured
information. However, it needs at least two RTTs to detect
whether the window adjustment increases or decreases the
RTT. Further details about this control information delay
are addressed in Section 2.4.

In order to solve the above problem, TCP Vegas proposed
the safe slow-start to avoid the side effect of delayed control
information. The drawback of this mechanism is the slower
window size increment. Compared with the traditional
exponential window increment, the safe slow-start requires
twice the time to reach the same window size, thus it
reduces the efficiency of the bandwidth usage. Therefore,
if both proper congestion detection and window reduction
scheme are effective, it is unnecessary to slow down the
window increment for avoiding the packet loss. Our RTT-
based mechanism serves for this purpose.

In our RTT-based mechanism, the RTT threshold is an
indicator used to stop the window increment. The source
calculates a new RTT threshold as well as records the
current window size every RTT. The RTT threshold is
derived from the virtual queue occupancy (VQO) and the
VQO threshold, which will be discussed later. Once an
acknowledgement packet is received, if the source is in
the window increment phase, the corresponding RTT will
be compared with the threshold. If the newly calculated
RTT is larger than the threshold, the window must not be
increased. Furthermore, the window size will be set to the
value recorded in the previous period to avoid further
increase of the buffer occupancy. As a result, the effect of
control information delay can be reduced.

As described above, the comparison between the RTT
and the RTT threshold is only meaningful in the window
increment phase. If the window stays in either stable phase

or decrement phase, there is no need to make the
comparison.

2.3. Queue occupancy estimation

The VQO [3,4] is introduced to reflect the queue occu-
pancy in the network. It is calculated every RTT to avoid
both computational complexity and ambiguity of the control
results. The main idea behind the VQO estimation is that
most of the queue occupancies would appear at the bottle-
neck node after the bandwidth contention period.

The VQO is derived from the measured RTT, which
basically consists of the fixed delay and the queuing
delay. The former comprises the round-trip propagation
delay and protocol processing time. This part is treated as
a fixed value, which is considered as the minimum RTT ever
measured. The latter is the packet queuing time in inter-
mediate nodes along the end-to-end path. Therefore, the
queuing delay is the measured RTT subtracting the ever-
measured minimum RTT.

When a packet is acknowledged, its total queuing delay is
the sum of the queuing delay experienced in all the inter-
mediate nodes along the round-trip path. Given an inter-
mediate node, if its queue occupancy isN and the network
service rate ism , the queuing delay of a newly arrived
packet at this node would beN/m . Since the service rates
for all the intermediate nodes are unknown to a source, the
above queuing delay calculation is meaningless unless it can
be modified so that we can use the parameters known by the
source. Assume thatNi denote the amount of queued data
belonging to a specific flow, and the buffer management
policy used in a node is common-FIFO. According to the
service characteristics of common-FIFO, we can have the
shared service ratemi of that specific data flow as follows:

mi � m × Ni

N
: �1�

According to Eq. (1), we can use�Ni =mi� instead of�N=m�
to calculate the queuing delay. Therefore, it is reasonable to
represent the queuing delay based on the per-flow
information.

Assume there aren queues along the end-to-end path, the
total queuing delay,Dtotal, is

Dtotal �
Xn
j�1

Nij

mj
; �2�

whereNij denotes the queue occupancy in thejth node for
connectioni, andm j denotes the service rate of thejth node.
Although the service rate of each queue is hard to know, the
bottleneck service rate can be derived from the packet
acknowledgement rate. If the service rate for connectioni
in the bottleneck queue ismmin, Eq. (2) can be rewritten as

Dtotal #

Xn
j�1

Nij

mmin
: �3�

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–15471540



Therefore, the maximum total queue occupancy can be
calculated asXn
j�1

Nij $ Dtotal × mmin: �4�

The way to calculate the VQO is through continuously
monitoring a single monitor packet, whose transmission
time and corresponding acknowledgment time are recorded
to estimate theDtotal. The amount of data acknowledged
during the monitoring period is also recorded. As a result,
the service ratemmin of the bottleneck queue can be
obtained. The VQO estimation based on the monitor packets
can then be calculated using Eq. (4).

2.4. Quick queue occupancy reduction

When the VQO grows larger than the preset threshold,a ,
the queue occupancy control will be activated to restrict the
number of packets transmitted into the network. The control
mechanism must decide how to reduce the queue occu-
pancy. We will describe the characteristic of the control-
information delay before discussing the queue occupancy
reduction.

At the start of each control cycle, the first packet to trans-
mit is assigned as a monitor packet, whose queuing delay is
then used to calculate the VQO using Eq. (4). Starting from
the second cycle, the source will adjust its window size
based on the calculated result. However, the queuing
delay experienced by the monitor packet for the second
cycle is due to the queue occupancy carried over from the
first cycle, and the effect of the reduction will not be seen
until the end of the third cycle. Therefore, the control
mechanism should take the effect of control delay into
consideration. The way to derive the reduction ratio is
based on the assumption that the queue occupancy remains
nearly constant throughout the control period. Since the
occurrence of congestion would only increase the queue
occupancy, this assumption would work in avoiding over-
reduction of the queue occupancy. Two parameters are
used:

1. K: the ratio of the queue occupancy to be reduced, 0#
K # 1:

2. N: the queue occupancy to be reduced at the start of the
control cycle.

The valueN can be estimated in the first and the second
cycles. Then, it can be reduced byN × K in each cycle.
Since the reduction effect will appear in the third cycle,
the estimated queue occupancy would beN × �1 2 K� pack-
ets and the queue occupancy reduced isN × �1 2 K�K:

Therefore, the reduced number of packets in each cycle is

f �1� � N × K

f �2� � N × K

f �3� � N × �1 2 K� × K

..

.

f �i� � N 2
Xi 2 2

j�1

f �j�
0@ 1A × K; ;i $ 3

These functions can be derived recursively. It is guaran-
teed that the queue occupancy will never be over-reduced if
the following equation is heldX∞
i�1

f �i� # N: �5�

From Eq. (5), we are able to derive the maximum value ofK,
which is about 0.25. Therefore, when the queue occupancy
is larger than the threshold,a , the reduced amountR of the
queue occupancy can be calculated as follows:

R� �VQO 2 a� × 0:25; �6�
where

N � VQO 2 a:

3. Implementation approach

In our proposed mechanisms, each source may operate in
either normal state or error recovery state.

3.1. Normal state

The algorithm for normal state consists of two parts: the
packet transmission and the packet reception.

3.1.1. Packet transmission
When the total size of unacknowledged packets is

smaller than the window size, more packets are allowed
to transmit. If there is no monitor packet for detecting
the RTT, the next packet to be transmitted will be the
monitor packet and its transmission time will be
recorded.

3.1.2. Packet reception
In the following, we use a variablephaseto indicate the

state of window adjustment. For each source, the window
adjustment will be in one of the three phases: theincrement
phase, thedecrementphase, and thestable phase. Also,
a variableRTT_Thresholdis used to decide whether to
leave the increment phase. To implement the exponen-
tial window increment regardless of the starting
window size, two variables,offset and bound, are used
to restrict the ratio of window increment. Initially,
phase is set to increment; RTT_Thresholdis set to the
maximum value;offset is set to one segment;bound is
set to zero. A parametera is used to control the target
queue occupancy.

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–1547 1541



The algorithm is described as follows:

I. If an acknowledgement packet is received and it is able
to advance the window
if (phase� increment) then

Calculate the RTT of this packet;
if (RTT , RTT_Threshold) and (offset$ bound) then
window_size� window_size1 1;

offset� offset1 1;
bound� bound1 2;

endif
if (RTT . RTT_Threshold) then

phase� stable;
window_size� previous_window;

endif
else if (phase� decrement) and (offset# bound) then

window_size� window_size2 1;
offset� offset1 1;
bound� bound1 2;

endif

II. If the acknowledged packet is a monitor packet
bound� 0;
previous_window� window_size;
Calculate VQO,RTT_Threshold, and the RTT of this
packet;
if (VQO . a ) then

phase� decrement;
offset� (VQO 2 a )*0.25;

else if (VQO, a ) and (phase± increment) then
phase� increment;
offset� 0;

else if (VQO� a ) then
phase� stable;

endif

3.2. Error recovery

Since the design objectives of RTT-based TCP are to
avoid the self-generated packet loss and to keep the fair
bandwidth sharing, the error recovery procedure can follow
the well-developed fast recovery algorithm, New-Reno [5],
which successfully overcomes the weakness of Reno
algorithm used in TCP Vegas under the multiple-packet-
loss situation.

The RTT-based TCP can avoid the periodic congestion
and the resulted packet loss. Therefore, the reason for packet
loss would be limited to the transmission error or congestion
generated by other flows. In the former case, New-Reno can
retransmit the lost packet without wasting the bandwidth.
On the other hand, in the latter case, the New-Reno
improvement is able to recover the packet loss without
having to redo the fast recovery phase.

After the error recovery phase, RTT-based TCP can keep

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–15471542

Fig. 2. Simple configuration.

Fig. 3. Parking-lot configuration.



its window stable and restart the calculation of RTT thresh-
old. Once a new RTT threshold is obtained, the window size
adjustment mechanism will start to catch up the available
service rate quickly.

4. Simulation and numerical results

4.1. Performance metrics

The performance of RTT-based TCP is evaluated based
on the throughput and the fairness. To evaluate the fairness
among sources with different round trip times, we use Jain’s
fairness index [11], which is defined as follows. Given a set
of throughputs (x1, x2,…,xn), the following formula calcu-

lates the fairness index of the set:

f �x1; x2;…; xn� �

Xn
i�1

xi

 !2

n
Xn
i�1

x2
i

:

Since the throughput values are nonnegative, the fairness
index always results in values between 0 and 1. In particular,
the fairness index value 1 represents that all links share the
bandwidth equally.

4.2. Network configurations for the simulation

Two network configurations are used to evaluate the
proposed approach. The first is a simple configuration,

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–1547 1543

Fig. 4. Comparison of window size.

Fig. 5. Comparison of queue occupancy.



which consists of two intermediate nodes and four end
systems, as shown in Fig. 2. A TCP connection and an
UDP connection are established. This configuration is used
to compare the basic differences between RTT-based TCP
and TCP Vegas. The second is a parking-lot configuration,
which is shown in Fig. 3. It is used to compare the throughput,
fairness and queue occupancy between these two schemes.

The buffer management approach used in each intermedi-
ate node is common-FIFO. The transmission rates of all
sources are only constrained by the congestion avoidance
schemes. The simulation times are 4.5 s and 2 s. The link
error probability is ignored due to the advance of transmis-
sion technology, which is able to provide very low channel
error rate.

4.3. Numerical results

In the simple configuration, the UDP source generates
20 Mbps data traffic fromT � 1:5 to 3 s. Therefore, the
basic behavior for each control scheme under both large
service rate reduction and large rate increment can be
demonstrated. Both RTT-based TCP and TCP Vegas need
to reduce its window size first and then increase it. The
following figures demonstrate the comparison results.

As shown in Fig. 4, RTT-based TCP responses faster than
TCP Vegas. Therefore, when the service rate is reduced
dramatically, the maximum queue occupancy in RTT-
based TCP will be smaller than that in Vegas, as shown in
Fig. 5. When the available service rate increases at 3 s,

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–15471544

Fig. 6. Window size of RTT-based TCP.

Fig. 7. Window size of TCP Vegas.



RTT-based TCP also responses faster than TCP Vegas
without increasing too much queue occupancy.

Next, the contention between sources with different RTTs
is demonstrated under parking-lot configuration. For the
sake of clarity, five sources shown in Fig. 3 are divided
into two groups. The window sizes for three sources with
longer access links are demonstrated in Figs. 6 and 7. As
seen in the figures, RTT-based TCP features both shorter
ramp-up time and faster window size adjustment than TCP
Vegas.

Figs. 8 and 9 show the window sizes for source3, source4,
and source5. Since RTT-based TCP increases the window
size as well as reduces the queue occupancy faster than
Vegas, it features a period of window size fluctuation.
However, this would not cause any harm, because the fluc-

tuation is small and the window size becomes stable after a
period of time.

Fig. 10 demonstrates the queue occupancies of two differ-
ent congestion avoidance schemes under the parking-lot
configuration. Although RTT-based TCP increases the
queue occupancy more quickly due to its faster window
size increment, its faster window size reduction reduces
the maximum queue occupancy at the bottleneck switch.
As shown in Fig. 10, the maximum queue occupancy in
Vegas is 65 segments, while it is 45 segments in RTT-
based TCP. For the routers with small buffer space, RTT-
based TCP reduces the possibility of packet loss caused by
congestion.

The performance of TCP Vegas and RTT-based TCP is
compared in Table 1. Since TCP Vegas has already

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–1547 1545

Fig. 8. Window size of RTT-based TCP.

Fig. 9. Window size of TCP Vegas.



demonstrated its excellent throughput [1], RTT-based TCP
is only a little better than TCP Vegas in terms of throughput.
However, the fairness in RTT-based TCP is significantly
improved comparing with TCP Vegas. This can be attribu-
ted to the quick window-size adjustment and the use of a
single control parameter.

5. Conclusion and future work

In this paper, we propose an end-to-end flow control
scheme, RTT-based TCP. It is derived from the original
idea of TCP Vegas, but it provides better performance
than TCP Vegas. RTT-based TCP consists of four mechan-
isms. First of all, the modified exponential increment
scheme is used to increase the window size. It provides
safer and faster window increment than TCP Vegas.
Second, the RTT measurement is used as the control objec-
tive instead of the window threshold used in TCP Vegas.
This can reduce the implementation complexity and achieve
shorter response time. Third, the idea of VQO is introduced
to estimate the queue occupancy of the intermediate nodes
in the network. The estimation results are used for a source
to adjust its window. Finally, quick queue occupancy reduc-
tion is used to decrease the window size of a source when
the VQO is larger than the threshold. These four proposed
mechanisms together improve both throughput and fairness
of TCP. Besides, it reduces the maximum queue occupancy,
and this in turn reduces the possibility of congestion.

The proposed scheme adjusts the window size of a source
based on the measured RTT information. It is initially
designed for wired networks. In wireless networks, some
reasons may cause unexpected RTT variations, which lead
to performance degradation. For example, if a mobile host
roams from a base station to another base station, extra
delay may incur before the handoff is complete. Also,
since the route is changed, the round-trip propagation
delay may also be changed. Another RTT variation may
happen if dynamic channel allocation scheme, such as
CDPD [15], is used. As a result, the proposed approach
may not work as efficiently as in wired networks if it is
directly applied in wireless networks without any modifica-
tions. We are currently working on developing an RTT-
based TCP applicable in both wired and wireless networks.

References

[1] L.S. Brakmo, L.L. Peterson, T.C.P. Vegas, TCP Vegas: end to end
congestion avoidance on a global Internet, IEEE Journal on Selected
Areas in Communications 13 (8) (1995) 1465–1480.

[2] R.F. Chang, L. Huynh, J. Gray, Adaptive rate-based congestion
control versus TCP-SS: a performance comparison, International
Conference on Network Protocols (1993) 186–197.

[3] J.R. Chen, Y.C. Chen, C.T. Chan, A distributed end-to-end rate
control scheme for ABR service, IEEE GLOBECOM (1998) 2446–
2451.

[4] J.R. Chen, Y.C. Chen, C.T. Chan, Performance evaluation of an end-
to-end rate control approach for ABR services, IEICE Transactions on
Communications 12 (1998) 2400–2412.

[5] S. Floyd, T. Henderson, The New Reno modification to TCP’s fast
recovery algorithm, RFC2582, April 1999.

[6] L. Huynh, R.F. Chang, W. Chou, Performance comparison between
TCP slow-start and a new adaptive rate-based congestion avoidance
scheme, MASCOTS’94 (1994) 300–307.

[7] V. Jacobson, R. Braden, D. Borman, TCP extensions for high perfor-
mance, RFC1323, May 1992.

[8] S. Keshav, A control-theoretic approach to flow control, ACM
SIGCOMM, August 1991, pp. 189–201.

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–15471546

Fig. 10. Total queue occupancy under parking-lot configuration.

Table 1
Performance index

TCP Vegas RTT-based TCP

Throughput 97.2% 97.3%
Fairness 0.871 0.999



[9] L. Kalampoukas, A. Varma, K.K. Ramakrishnan, Explicit window
adaptation: a method to enhance TCP performance, IEEE INFOCOM
(1998) 242–251.

[11] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and
Modeling, Wiley, New York, 1991.

[12] R. Jain, A delay-based approach for congestion avoidance in inter-
connected heterogeneous computer networks, ACM Computer
Communication Review 19 (5) (1989) 56–71.

[13] M. Mathis, J. Mahdavi, Forward acknowledgment: refining TCP
congestion control, ACM Computer Communication Review 26 (4)
(1996) 281–291.

[14] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP selective
acknowledgement options, RFC2018, October 1996.

[15] M. Streetharan, R. Kumar, Cellular Digital Packet Data, Artech
House, 1996.

[16] W. Stevens, TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms, RFC2001, January 1997.

[17] Z. Wang, J. Crowcroft, A new congestion control scheme: slow start
and search (Tri-s), ACM Computer Communication Review 21 (1)
(1991) 32–43.

[18] Z. Wang, J. Crowcroft, Eliminating periodic packet loss in 4.3 Tahoe
BSD TCP congestion control algorithm, ACM Computer Communi-
cation Review 22 (2) (1992) 9–16.

J.-R. Chen, Y.-C. Chen / Computer Communications 23 (2000) 1537–1547 1547


