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Abstract

A simple approach is proposed to investigate the stabilization of driftless systems. By

taking the control input as a function of system states, we can transform the stabili-

zation design into a stability problem. The known stability results on the nonlinear

autonomous system are then employed to derive the asymptotically stabilizing con-

trollers by solving an algebraic equation. Existence conditions of the asymptotic sta-

bilizing feedback controller for the driftless systems by employing the stability criteria

on linear systems and a class of third-order homogeneous systems are obtained to

demonstrate the application of the approach. Ó 2000 Elsevier Science Inc. All rights

reserved.
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1. Introduction

In the recent years, feedback stabilization of nonlinear systems, speci®cally,
the nonlinear critical systems, has attracted lots of attention (see e.g.,
[1,5,10,11]). Critical systems are the systems of which the linearized models
possess eigenvalues lying on the imaginary axis with the remaining eigenvalues
in the open left half of the complex plane. For the most degenerate case, the
system linearization may possess only zero eigenvalues. A class of such systems
is the so-called ``driftless systems''. Practical examples of driftless systems
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include the control model of a synchronous satellite's orbital motion [2,3] and
the car-like robot [17].

The recent study of the asymptotic stabilization of nonlinear driftless sys-
tems include the existence conditions of time-invariant smooth stabilizers
[4,12±14], design of time-varying stabilizers [7,15], design of time-invariant
piecewise smooth stabilizers [6] and numerically ®nding controls which achieve
a desired state transfer [16]. In the design of time-invariant asymptotic stabi-
lizers, in general, the derived control laws explicitly depend on the choice of
Lyapunov function. However, in general, it is not easy to construct an ap-
propriate Lyapunov function. Furthermore, the stabilizer might be very
complicated due to the highly nonlinearity of given system dynamics.

In this paper, instead of seeking Lyapunov functions for the stabilization
design of driftless systems as given by _x � g�x�u, we propose another ap-
proach. By assuming the controller to be a function of system states, that is,
letting u � u�x�, we can then transform the stabilization design into a sta-
bility problem. The known stability results on general nonlinear systems can
then be employed to derive the corresponding state feedback asymptotic
stabilizers for the original driftless systems. That is, suppose for some vector
®elds f �x� we know the origin of system _x � f �x� is asymptotically stable.
By letting g�x�u�x� � f �x�, we can then transform the stabilization design
into an algebraic equation for solving u�x�. If such a solution u�x� exists, it
will also stabilize the original driftless system. Two examples of f �x� are
given to verify the application of the approach. One is to have f �x� � Ax,
where A is an arbitrary Hurwitz matrix. The other is to have
f �x� � C�x; x; x�, a trilinear system with ÿxTC�x; x; x� being a locally positive
de®nite function.

There are several advantages of the approach. Firstly, the stabilization
problem of the driftless systems can be transformed into the problem of solving
an algebraic equation. Secondly, the stabilizability conditions and the design of
corresponding controllers can be derived from the well-documented stability
results. Thirdly, this approach is entirely independent of the construction of
Lyapunov function.

The organization of this paper is as follows. The main approach of the study
is given in Section 2. It is followed by two case studies, which demonstrate the
application of the main approach. Finally, Section 4 gives the conclusions.

2. Main approach

Consider a class of nonlinear driftless systems as given by

_x � g�x�u �
Xm

k�1

ukgk�x�; �1�
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where x 2 Rn, u � �u1; . . . ; um�T 2 Rm and g�x� � �g1�x�; . . . ; gm�x�� 2 Rn�m: In
addition, gi�x� are assumed to be smooth vector ®elds of Rn for 16 i6m.
Various results have been presented regarding the asymptotic stabilization of
the operating point of system (1) (see e.g., [6,7,9,12±17]). Two practical ex-
amples of the driftless systems are also given by Ahmed and Sen [2,3] and
Walsh et al. [17]. The former cites the control model of the orbital motion of
synchronous satellites; while the latter cites the motion equation of car-like
robots. In the sequel, for simplicity and without loss of generality, the origin is
assumed to be the operating point of interest.

For most of the existing stabilization results above, the stabilizing control-
lers for system (1) were obtained by constructing appropriate Lyapunov
functions. However, in general, it is not easy to construct such a Lyapunov
function. To relax the burden of ®nding Lyapunov functions, in this paper, we
consider another approach. This is achieved by employing the known stability
criteria for general nonlinear autonomous systems to derive the stabilizing
control laws for system (1). Details are given as follows.

It is known that the origin of system (1) is asymptotically stabilizable if there
exists a function u � u�x� such that the origin of system (2) below is asymp-
totically stable:

_x � g�x�u�x�: �2�
Denote S a subset of the set of the vector ®eld V as de®ned by

V :� ff �x�jf �0� � 0 and the origin of _x � f �x� is asymptotically stableg:
�3�

We then have the following obvious result.

Lemma 2.1. The origin of system (1) is asymptotically stabilizable if there exists a
function u� u(x) such that g�x�u�x� 2S. Moreover, suppose for some given
f �x� 2S such that Eq. (4) below holds:

g�x�u�x� � f �x�: �4�
Then the solution u�x� is an asymptotic stabilizer for system (1).

Lemma 2.1 above provides a guideline for the stabilization design. In the
following, we will discuss how to apply Lemma 2.1 to system (1). First, we
consider the case of which g�0� is a nonsingular matrix. It is obvious that
Eq. (4) is solvable around a neighborhood of the origin no matter what
f �x� 2S is chosen. However, if rank�g�0�� < n (i.e., m < n or g�0� loses rank),
the origin of system (1) may still be asymptotically stabilizable while Eq. (4)
may not be solvable for some speci®c vector ®eld f �x� 2S. Thus, in general, it
is not easy to check the asymptotical stabilizability of the origin of system (1)
through the solvability of Eq. (4) for some speci®c f �x� 2S. This motivates us
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to work on the solvability of Eq. (4) for any f �x� 2S. One example of S can
be chosen as

S � f �x�jf �0�� � Af x � Qf �x; x� � 0

and ÿ xTCf �x; x; x� is an lpdf for x 2 Rn
	
; �5�

where Af , Qf �x; x� and Cf �x; x; x� denote the Jacobian matrix, the quadratic
terms and the cubic terms of f �x�, respectively. The asymptotic stabilizability
condition of the origin of system (1) as stated in Lemma 2.1 can then be de-
termined by whether the intersection of given S and spanfg1; . . . ; gmg is
nonempty.

There are several advantages of the application of Lemma 2.1. Firstly, the
stabilization problem of the driftless systems (1) can be transformed into the
problem of solving algebraic equation as in Eq. (4). Secondly, the stabiliz-
ability conditions on g�x� and the design of corresponding controllers can be
derived from the well-documented stability results. Thirdly, this approach is
entirely independent of the construction of the Lyapunov function. Suppose
the chosen S is de®ned for polynomial type systems. Then the asymptotic
stabilizers can be chosen as a polynomial function too. The checking condi-
tions can hence be simpli®ed by invoking Taylor's series expansion on g�x� and
the asymptotic stabilizer can be obtained by checking the coe�cients of the
corresponding order of polynomials. Two cases are studied in the next section
to demonstrate the application of the main approach.

3. Case study

By taking Taylor's series expansion on gi�x� up to the third order for each i,
16 i6m, we have

gi�x� � gi�0� � Lix� Qi�x; x� � Ci�x; x; x� � o�jjxjj3�: �6�
Here, o�jjxjjk� denotes terms of order higher than k. In the following, with gi�x�
as given in Eq. (6), two special classes of S are selected for the demonstration
of possible application of Lemma 2.1. One is de®ned in Eq. (5) and the other
is associated with Hurwitz stability for linear system. Details are given as
follows.

3.1. Quadratic-plus-cubic state feedback controller

First, we seek for the stabilizability condition on g�x� and the corresponding
asymptotic stabilizers for the driftless system by the use of Lemma 2.1 with S
as de®ned in Eq. (5). For simplicity, let the control be given by

ui�x� � xTqix� ci�x; x; x� for each i: �7�
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It follows that

ui�x�gi�x� � �xTqix�gi�0� � �xTqix��Lix� � ci�x; x; x�gi�0� � o�jjxjj3�: �8�
It is known that the lowest order of a smooth asymptotically stable dynamics
cannot be an even number (see e.g., Corollary 2.1 of Koditschek and Narendra
[8]. From the de®nition of S as in Eq. (5) and Lemma 2.1, we then have the
next result.

Theorem 3.1. Suppose the control input is a quadratic-plus-cubic function of state
x in the form of Eq. (7). Then the origin of system (1) is asymptotically stable if
the following two conditions hold:

(i)
Pm

i�1 �xTqix�gi�0� � 0; and
(ii) ÿPm

i�1 f�xTqix��xTLix� � ci�x; x; x�xTgi�0�g is a locally positive definite
function:

When the column vectors g1�0�; . . . ; gm�0� are linearly independent, the
Condition (i) of Theorem 3.1 can never be satis®ed unless qi � 0 for all
i � 1; . . . ;m: This leads to the next result.

Corollary 3.1. Suppose g�0� is of full rank. Then there exists no purely quadratic
asymptotic stabilizer for the origin of system (1).

It is known from Brockett [4] that the origin of system (1) is not stabilizable
by any smooth time-invariant control law if g�0� is of full rank and m < n (i.e.,
the number of input is less than that of system states). Corollary 3.1 further
claims that system (1) does not possess purely quadratic asymptotic stabilizer
even when rank�g�0�� � n.

Though system (1) does not possess quadratic asymptotic stabilizer when
g�0� is of full rank, it does possess a cubic asymptotic stabilizer as given in the
next result which follows directly from Theorem 3.1.

Corollary 3.2. Suppose g�0� is of full rank. Then the origin of system (1)
is asymptotically stabilizable by a purely cubic controller in the form of
ui�x� � ci�x; x; x� for 16 i6m if and only if m � n. Moreover, a set of candidates
of ci�x; x; x� are

ci�x; x; x� � ÿ�xTMix�xTgi�0�; �9�
where Mi denotes an arbitrary symmetric positive de®nite matrices.

Next, we consider the case of which the constant matrix g�0� loses rank.
Denote by N�g�0�� the null space of g�0�. To satisfy Condition (i) of Theorem
3.1, qi can be chosen as qi � aiH ; where the vector a � �a1; . . . ; am�T 2 N�g�0��
and H is a square matrix. In addition, choose ci�x; x; x� to be xTHxxTgi�0�. Then
Condition (ii) of Theorem 3.1 becomes
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ÿ�xTHx�xT
Xm

i�1

faiLi � gi�0�gT
i �0�gx is an lpdf : �10�

Denote by Ls
i the symmetric part of the matrix Li. It is known that

xTLix � xTLs
i x for all x, we then have the next obvious result.

Corollary 3.3. Suppose there exists a nonzero vector a � �a1; . . . ; am�T 2 N�g�0��
such thatXm

i�1

faiLs
i � gi�0�gT

i �0�g is a positive definite matrix: �11�

Then the origin of system (1) is asymptotically stabilizable by a quadratic-plus-
cubic control in the form of Eq. (7). Moreover, asymptotic stabilizers can be
selected with qi � aiH and ci�x; x; x� � xTHx xTgi�0� for all i � 1; . . . ;m; where H
is a negative de®nite matrix.

Suppose there exists some k 2 f1; . . . ;mg such that gk�0� � 0 and Ls
k is

a de®nite matrix. The next result follows readily from Corollary 3.3 and
Theorem 3.1.

Corollary 3.4. Suppose there exists some k 2 f1; . . . ;mg such that gk�0� � 0 and
Ls

k is a de®nite matrix. Then the origin of system (1) is asymptotically stabilizable
by a purely nonlinear control in the form of Eq. (7). Moreover, the control input
can be selected with qk � akH ; qi � 0 if i 6� k and ci�x; x; x� can be zero or
ci�x; x; x� � xTHx xTgi�0� for all i � 1; . . . ;m: Here, H may be any negative
de®nite matrix, ak > 0 (resp. a < 0) if Ls

k is a positive de®nite matrix (resp. if Ls
k

is a negative de®nite matrix).

On the other hand, if all the matrices Li are not de®nite, then the cubic terms
ci�x; x; x� in Condition (ii) of Theorem 3.1 should be selected to compensate
ÿPm

i�1�xTqix��xTLix� for forming an lpdf. For this purpose, we decompose
Ls

k as

Ls
k � V TDV �

Xn

j�1

djvjvT
j ; �12�

where V T � �v1; . . . ; vn� 2 Rn�n denotes an orthogonal matrix and D �
diag�d1; . . . ; dn� is a diagonal matrix with

dj > 0 for 16 j6 r1; �13�
dj � 0 for r1 � 16 j6 r2; �14�
dj < 0 for r2 � 16 j6 n: �15�

We then have the next theorem.
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Theorem 3.2. Suppose there exists some k 2 f1; . . . ;mg such that gk�0� � 0 and
Ls

k is decomposed into the form as in Eq. (12) with

spanfv1; . . . ; vr2
g � spanfg1�0�; . . . ; gm�0�g: �16�

Then the origin of system (1) is asymptotically stabilizable by nonlinear control in
the form of Eq. (7). Moreover, the controller can be chosen with qi � 0 if i 6� k; qk

being a symmetric positive de®nite matrix and ci�x; x; x� � �xTMx�xTgi�0�: Here,
M is a symmetric matrix satisfying

kmax�M� < ÿ kmax�Ls
k�kmax�qk�
a

�17�

with a being the smallest nonzero eigenvalue of
Pm

i�1 gi�0�gT
i �0�.

Proof. Let

/�x� � �xTqkx��xTLs
kx� � xTMx

Xm

i�1

xTgi�0�gT
i �0�x; �18�

where Ls
k is given in Eq. (12). According to Theorem 3.1, we only need to check

whether the function ÿ/�x� is an lpdf. Let W1 �spanfg1�0�; . . . ; gm�0�g and
W2 �spanfv1; . . . ; vr2

g. Denote by W?
1 and W?

2 the orthogonal complement of
W1 and W2, respectively. Then for any nonzero vector n, we have

n � nw1
� nw?

1
; n � nw2

� nw?
2
; �19�

where nw1
2W1, nw2

2W2, nw?
1
2W?

1 and nw?
2
2W?

2 . It is clear from (16) that

W2 �W1, W?
1 �W?

2 and jjnw2
jj6 jjnw1

jj.
If nw1

� 0, then we have n � nw?
1
. This implies that nTgi�0�gT

i �0�n � 0 for all
i. Thus, we have

/�n� � �nTqkn��nTLs
kn� � �nTqkn��nT

w?
1
Ls

knw?
1
� < 0;

where the inequality follows from nw?
1
2W?

2 and Eqs. (13)±(15). On the other
hand, if nw1

6� 0, we then have

/�n� � �nTqkn��nTLs
kn� � nTMn

Xm

i�1

nTgi�0�gT
i �0�n

� �nTqkn��nT
w2

Ls
knw2
� � nTMn

Xm

i�1

nT
w1

gi�0�gT
i �0�nw1

< kmax�qk�jjnjj2 � kmax�Ls
k�jjnw2

jj2 ÿ kmax�qk�kmax�Ls
k�

a
jjnjj2 � ajjnw1

jj2

6 0

since knw2
k6 knw1

k. The conclusion of Theorem 3.2 is hence implied. �
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Note that, the results of Theorem 3.2 can be easily applied to the case of
which there exists some k 2 f1; . . . ;mg such that Ls

k is semide®nite matrix.
Details are omitted.

For the special case of which gi�0� � 0 for all 16 i6m, the next result
follows readily from Theorem 3.1.

Corollary 3.5. Suppose gi�0� � 0 for all 16 i6m. Then the origin of system (1) is
asymptotically stabilizable by the nonlinear control in the form of Eq. (7) if

ÿ
Xm

i�1

�xTqix��xTLix� is an lpdf : �20�

Moreover, a set of candidates for qi are qi � ÿLi for all i � 1; . . . ;m:

Remark 3.1. The checking condition of Corollary 3.5 as in Eq. (20) can be
simpli®ed asXm

i�1

�xTLix�2 being an lpdf �21�

due to the following reason. Suppose
Pm

i�1�xTLix�2 is not an lpdf. Then for any
neighborhood of the origin, there exists a nonzero point x1 such thatPm

i�1�xT
1 Lix1�2 � 0. This implies that xT

1 Lix1 � 0 for each i. Thus, Condition (20)
can never hold regardless of the value of qi. On the other hand, if Condition
(21) holds, then one set of candidates of qi can be qi � ÿLi for 16 i6m.
However, this choice is not unique for system stabilization.

3.2. Constant-plus-linear state feedback controller

Next, we seek for the stabilizability condition on g�x� and the corresponding
asymptotic stabilizer for the driftless system by the use of Lemma 2.1 with S as
de®ned by

S � ff �x�jf �0� � 0 and Af is a Hurwitz matrix for x 2 Rng: �22�
For simplicity, choose

ui�x� � ai � lT
i x for all 16 i6m: �23�

It follows that

ui�x�gi�x� � aigi�0� � fgi�0�lT
i � aiLigx� o�jjxjj1�: �24�

In general, if a purely constant controller is taken, that is, ui � ai for all
16 i6m, the problem of stabilizability of the origin of system (1) is then
reduced to determine the stability of the origin of the system
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_x �
Xm

i�1

aigi�x�: �25�

We have the next obvious result.

Lemma 3.1. Suppose there exists some k such that gk�0� � 0 and the origin of the
system _x � gk�x� or _x � ÿgk�x� is stable. Then the origin of system (1) is
asymptotically stabilizable by constant control.

From Lemma 2.1, we then have the next theorem.

Theorem 3.3. Suppose the control laws are in the form of (23). Then the origin of
system (2) is asymptotically stable if the following two conditions hold:

(i)
Pm

i�1 aigi�0� � 0; and
(ii)
Pm

i�1 fgi�0�lT
i � aiLs

ig is a Hurwitz matrix:

It is observed that the stabilizability conditions of Theorem 3.3 above are
very similar to those in Theorem 3.1. Thus, the results presented in Section 3.1
might be applicable to the systems de®ned by Eq. (24).

Suppose g�0� is of full rank. It is obvious from Condition (i) of Theorem 3.3
that the origin of system (1) does not possess constant asymptotic stabilizer.
Analogous to the discussion in Section 3.1, we have the following trivial result
for the case of which g�0� is of full rank.

Corollary 3.6. Suppose g�0� is of full rank with m � n. Then the origin of system
(1) is asymptotically stabilizable by a purely linear controller with ui�x� � lT

i x for
all i � 1; . . . ;m. One candidate of linear stabilizers is to have li � gi�0� for all
i � 1; . . . ;m.

If gi�0� � 0 for all i � 1; . . . ;m, we can seek for constant controller which
makes the matrix

Pm
i�1 aiLi being Hurwitz [13].

Let the control function ui be a purely linear function of x. Then system (1)
becomes

_x � g�x�Ax; where A �
lT

1

..

.

lT
m

0B@
1CA 2 Rm�n: �26�

It is noted that if m < n, there are at least nÿ m dimensional vector space which
makes Ax � 0. This implies that system (26) possesses at least nÿ m dimen-
sional equilibrium points passing through the origin. We then have the next
result.
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Lemma 3.2. Suppose ui�x� � lT
i x for 16 i6m and m < n. Then the origin of

system (26) is not an isolated equilibrium point and it is hence not asymptotically
stable.

According to Lemma 3.2, in order that system (1) has a linear asymptotic
stabilizer, we must have the condition of m � n. Moreover, in addition to the
condition m � n, the matrix A should be selected to be a nonsingular matrix so
that the origin is an isolated equilibrium point. Thus, we have the next result.

Lemma 3.3. Suppose ui�x� � lT
i x for 16 i6m and m � n. Then the origin of

system (1) is asymptotically stable if g�0� is of full rank and g�0� � A is a Hurwitz
matrix, where A is as given in Eq. (26). Moreover, a candidate of A is
A � ÿgT�0�.

For the general study of system stabilization when g�0� is not of full rank,
due to the similarity, it is not di�cult to check that the stabilizability conditions
presented in the preceding subsection for the design of nonlinear stabilizers are
also true for the design of constant-plus-linear stabilizers. Since the derivations
are very similar, in the following, we only present the results.

Corollary 3.7. Suppose there exists a nonzero vector a � �a1; . . . ; am� 2 N�g�0��
such thatXm

i�1

�aiLs
i � � g�0�gT�0� is a positive definite matrix: �27�

Then the origin of system (1) is asymptotically stabilizable by a control of the
form (23). Moreover, a set of candidates of ai and li are

ai � ÿai and li � ÿgi�0� for all i � 1; . . . ;m: �28�
If there exists a k 2 f1; . . . ;mg such that gk�0� � 0 and Ls

k is a de®nite matrix,
then we have the next result which is similar to those of Corollary 3.4.

Corollary 3.8. Suppose there exists some k 2 f1; . . . ;mg such that gk�0� � 0 and
Ls

k is a de®nite matrix. Then the origin of system (1) is asymptotically stabilizable
by a control of the form (23). Moreover, a set of candidates of ai and li are

ak � ak; ai � 0 if i 6� k; �29�
li � 0 or ÿ gi�0� for all i � 1; . . . ;m: �30�

Here, ak < 0 (resp. ak > 0) if Ls
k is a positive de®nite matrix (resp. if Ls

k is a
negative de®nite matrix).

Corollary 3.9. Suppose there exists k 2 f1; . . . ;mg such that gk�0� � 0 and Ls
k has

the form (12)±(15) satisfying
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spanfv1; � � � ; vr2
g � spanfg1�0�; . . . ; gm�0�g: �31�

Then the origin of system (1) is asymptotically stabilizable by a control of the
form (23). Moreover, a set of candidates for ai and li are

ak � 1; ai � 0 if i 6� k; and li � bgi�0�: �32�
Here,

b < ÿ kmax�Ls
k�

a
; a � the smallest nonzero eigenvalue of

Xm

i�1

gi�0�gT
i �0�:

�33�

4. Conclusions

In this paper, we have studied the stabilization problem of driftless systems
from the stability point of view. It is achieved by taking the control input as a
function of system states and then transforms the stabilization design into the
problem of solving corresponding algebraic equation. We have obtained sta-
bilizability conditions and the corresponding asymptotic stabilizers for two
special cases to demonstrate the application of the proposed approach. It is
believed that through such an approach, asymptotic stabilizability conditions
for the driftless system can be easily obtained from the well-documented sta-
bility results without constructing Lyapunov functions.
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