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Geometric Understanding of Likelihood 
Ratio Statistics 

Jianqing FAN, Hui-Nien HUNG, and Wing-Hung WONG 

It is well known that twice a log-likelihood ratio statistic follows asymptotically a chi-square distribution. The result is usually 
understood and proved via Taylor's expansions of likelihood functions and by assuming asymptotic normality of maximum like- 
lihood estimators (MLEs). We obtain more general results by using a different approach: the Wilks type of results hold as long as 
likelihood contour sets are fan-shaped. The classical Wilks theorem corresponds to the situations in which the likelihood contour 
sets are ellipsoidal. This provides a geometric understanding and a useful extension of the likelihood ratio theory. As a result, even 
if the MLEs are not asymptotically normal, the likelihood ratio statistics can still be asymptotically chi-square distributed. Our 
technical arguments are simple and easily understood. 

1. INTRODUCTION 

One of the most celebrated folk theorems in statistics 
is that twice the logarithm of a maximum likelihood ratio 
statistic is asymptotically chi-square distributed. This result, 
due to Wilks (1938), is proved via a Taylor expansion of 
a likelihood function and by assuming that the maximum 
likelihood estimator (MLE) is asymptotically normal (see 
also Wald 1941; Wilks 1962; and heuristics given in popular 
textbooks such as Cox and Hinkley 1974 and Kendall and 
Stuart 1979, among others). Although this understanding 
is insightful, it has three drawbacks. First, the likelihood 
function must be sufficiently smooth to admit a second- 
order Taylor expansion. Second, the MLE must be asymp- 
totically normal and this itself relies on Taylor expansions 
and the central limit theorem. Third, assumptions on the 
independence of observations are typically made. Rigorous 
technical proofs of the first two steps are by no mean sim- 
ple. This is probably why rigorous statements and heuristic 
proofs are suppressed in many popular graduate textbooks 
(see, e.g., Bickel and Doksum 1977, p. 229; Casella and 
Berger 1990, p. 381; Lehmann 1986, p. 486). 

We contend that much simpler insight to the Wilks theo- 
rem is available. If the contour sets of a likelihood function 
around an MLE are of fan shape, then the Wilks type of re- 
sults hold. The classical Wilks theorem corresponds to the 
situations in which the contour sets are ellipsoidal. In gen- 
eral, the asymptotic normality of the MLE is not required, 
and the asymptotic distribution of the MLE need not exist. 
One can easily construct an example in which the MLE is 
not asymptotically normal, but a Wilks type of results hold; 

Jianqing Fan and Wing-Hung Wong are Professors, Department of 
Statistics, University of California, Los Angeles, CA 90095 (E-mail: 
jfan@stat.ucla.edu and whwong @stat. ucla.edu). Fan is also Professor, De- 
partment of Statistics, Chinese University of Hong Kong. Hui-Nien Hung 
is Associate Professor, Institute of Statistics, National Chiao-Tong Univer- 
sity, Taiwan (E-mail: hhung@stat.nctu.edu.tv). Fan's research was partially 
supported by National Science Foundation (NSF) grant DMS-9803200 
and National Security Agency grant 96-1-0015. Hung's research was 
partially supported by the National Science Council of Taiwan grant 
NSC892118M009007. Wong's work was partially supported by the Math- 
ematical Sciences Research Institute of the Chinese University of Hong 
Kong and by NSF grant DMS-9703918. The authors would like to thank 
the editor, an associate editor, and two referees for valuable comments on 
an earlier draft of this article, which led to an improved presentation. 

see Examples 1 and 2 in Section 3. An additional benefit is 
that our technical arguments are simple and can be under- 
stood without much probability background. 

We begin with the simplest case, in which the null hy- 
pothesis consists of only one point, 

Ho: 0 = 00 versus Hi: 0 #0 0o, (1) 

with 0 a vector of unknown parameters in an Euclidean 
space. Let X f(x; 0) be a random vector from which a 
sample of data is drawn, and let 1(0; x) = log f(x; 0) be the 
log-likelihood function. Let 0 denote the MLE. Set 

W(00, X) l(0, X) - I(0o, X), (2) 

which is the log-likelihood ratio statistic for the test of hy- 
potheses (1). Our idea is simple; it uses some simple tools 
of Bayesian statistics. We assign a continuous prior den- 
sity wF(.) for the parameter 0. We can then easily show that 
the posterior distribution of W(0, X) given X is asymptot- 
ically a gamma distribution, independent of the prior dis- 
tribution. This implies that the marginal distribution of W 
is also asymptotically a gamma distribution. Because the 
result holds for every continuous prior distribution, it must 
follow that the distribution of W given 0 is asymptotically 
a gamma distribution. A similar kind of argument has been 
made before by, for example, Bickel and Ghosh (1990) and 
Dawid (1991). In particular, when the shape parameter of 
the gamma distribution is one-half of an integer, the random 
variable 2W follows asymptotically a chi-square distribu- 
tion. In other words, the Wilks theorem is a specific case 
of our generalized results. 

The foregoing arguments can be readily extended to the 
cases in which the null hypothesis contains nuisance pa- 
rameters. The key to our success relies on the regenerating 
property of gamma distributions. 

The article is organized as follows. Section 2 derives the 
posterior distributions of likelihood ratio statistics. Section 
3 presents the sampling distributions of the likelihood ratio 
statistics from the posterior distributions. Section 4 extends 
the arguments to the cases in which the null hypothesis 
contains nuisance parameters. 
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2. POSTERIOR DISTRIBUTION 

Assume that 0 C RP has a prior density wF(0). Then the 
posterior density of 0 given X = x is given by 

fe exp{l(0,x)*}(0) do = exp{-W(0, x)}F(0)/9g(x), 

where 

gn(X) J exp{-W(0, x)}wr(0) dO. 

Let Sw {0 E E0 W(0, x) = w} be a likelihood contour 
set. Our aim is to show that the posterior distribution of 
W(0, X) given X = x is asymptotically gamma distributed 
if the likelihood contour set can be approximated as 

Sw 0 + anW S (3) 

for a sequence of an - 0, r > 0 and a surface S in RP. This 
is an extension of classical conditions on the Wilks theorem 
in which the likelihood contour sets are approximated by 
ellipses. 

Condition (3) is not rigorous. To formally state the result, 
we assume that there exists a function h on RP such that 

h(tO) tll/rh(0), V t > 0 

and 

S = {6 h(6J) =1.(4) 

This and (3) imply heuristically that 

W(0,x) - h(a7-(0 - aj-b'rh(0-o). 

Let Wn (0, x) = a'/$W(0, x). The formal conditions can be 
expressed as follows: 

Al. There exist a function m(.) and a constant N such 
that when n > N, 

inf{Wn(0, x) 0-0 >61> }m(5)>0 V0>0. 

Moreover the MLE 0 is a stochastically bounded sequence. 
A2. There exists a function h(.) such that the likelihood 

contour sets are fan-shaped in the following sense: 

~~~ ~Wn*(0, x)-h(0 -0) -0 lim lim sup sup 0 .0x-h6-} 
n--+no? 110-011<6 | h( - 0) l 

A3. The function h satisfies h(tO) - tl/rh(0) and 
inm{h(0) :11011 1} > 0. 

Condition A2 is a rigorous condition of (3). The latter 
can be intuitively understood as saying that the unit volume 
around surface Sw is proportional to w(rP-1); namely, 

lim Y-1V{0: W(0, X) E w + //2} 

is proportional to w(rP-l). (5) 

where V(A) denotes the volume of a set A. In other words, 
as long as the contour sets {Sw } are rigid for all w > 0, the 
Wilks type of results hold. 

Theorem 1. Suppose that wF(O) is a bounded positive 
continuous function. Then, under the regularity conditions 
A1-A3, the conditional distribution of the log-likelihood 
ratio statistic W given that X = x has an asymptotic gamma 
distribution with shape parameter rp and scale parameter 1, 
namely, 

?(WIX = x) -X gamma(rp). 

The proof of this theorem uses the following lemma, 
whose proof is similar to that of the Laplace approxima- 
tion (Tierney and Kadane 1986). The proof is elementary 
but somewhat tedious. 

Lemma 1. Under conditions A1-A3, we have 

gn(x) = wF(O) aPV(O)F(rp + 1)(1 + o(1)), 

where V(O) is the volume of the set 0 = [0,1] x S with S 
given by (4). 

Proof. By condition Al, when n > N, 

exp{-W(O, x)}wr(O) dO < exp{ a-/rm(5)} 

For any given E > 0, when d is sufficiently small, we deduce 
from conditions A2 and A3 that 

O-bj< exp{-W(O, x)}wr(O) dO 

> exp{-(1 + E)a/-1rh(O - O)}r(O) dO 

> A exp{-(1 + E)a/-1rh(O - O)}w(O) dO 
0ERP 

- exp{-(1 + E)a-j/r5a/rc}, 

where c = inf{h(,q): 11,q1I = 1}. By a change of variables, 
the first term is given by 

apn1 + ?) -P I exp{ h(0)}wr(O + an(1 + ) r0) do. 
0ERP 

By invoking the dominated convergence theorem, the fore- 
going expression is bounded from below by 

wT(0)(1 - E)aa1 + )P JRP exp{-h(O)} dO 
0ERP 

-F(O)(1 - E)aP(1 + E)-rPV(O)rp | -ttrpl dt. 

By letting n -? oo, and then d -? 0 and E - 0, we have 

lim inf a -P (O-lgn(x) > V(O)F(rp + 1). 
n -4 n 

In a similar vein, we can easily show that 

lim sup an-Pr(O>-lgn(x) < V(O9)FQrp + 1). 

This concludes the proof of Lemma 1. 

This content downloaded from 140.113.38.11 on Mon, 28 Apr 2014 03:29:32 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


838 Journal of the American Statistical Association, September 2000 

Proof of Theorem 1. Note that 

P (W < wJX = x) = gn(x)- 
{0 w(O x)<wl 

x e-W(O X) wF(0) dO. 

We need only evaluate the integral term in the foregoing 
expression. The arguments follow similar lines to those in 
the proof of Lemma 1. More precisely, by condition A2, 
we have 

IW(O,x <~exp{-W(0, x)}T(0) dO 
w(O,X)<w 

< J exp{-W(O, x)}w(O) dO 
11b 011>j 

+ j exp{- W(0, x)}Ir(0) dO. 

By condition Al, the first integral is bounded by 
exp{-a7_l/rm(5)}. By condition A2 and a change of vari- 
able, the second integral is bounded by 

exp{_a7 `l/r (1- )h(O - O)}w(O) dO 
h(0-b)<w(1+E)an1 

/,- 

f(0) <W(1 +E) (1 -E) 

x exp{-h(O)}wr(O + a$/r(l - E)0) dO 

< w(0)(1 + E)a7P( E) -P e d{V(trc)} 

W(j E2) 

- (0)(1 + E)aaP E6) -rPrpV() j( 

x e-ttrp-l dt. 

Using the same method, we have 

IW(O,x)< exp{-W(O, x)}1T(O) dO 
w(O,X)<w 

W(1_E2) 

> w(O)(1-E)aP(1 + )-rPrp] e-ttrP-1 dt. 

Thus we have 

lim a7wP7(O) exp{- W(0 x)}w(0) dO 
n--oo W(O,x)<w 

W 

=V(O)J e-ttrP-1 dt. 

This, together with Lemma 1, prove Theorem 1. 
By noting that if Y gamma(s), then 2Y X22, we 

have the following result. 

Corollary 1. Under the regularity conditions Al-A3, 
we have 

? (2W|X =x) -< X2rp: 

provided that 2rp is an integer. 

3. SAMPLING DISTRIBUTION 
In this section we derive the asymptotic distributions of 

likelihood ratio statistics from the frequentist viewpoint. 
Let &)? be a bounded open set in an Euclidean space. To 
stress its dependence on n, we let Pn (W < w 0) denote 
the sampling distribution. To apply the asymptotic poste- 
rior distribution established in Theorem 1, conditions Al 
and A2 are required in the following sense [weaker than 
requiring conditions Al and A2 to hold almost surely]: 

Al*. There exists a function m(.) such that 

P{dn (X, d ) > mT0)} -?1 

where dn(x, 5) = inf{Wn(0, x) 0- 0O > (5}. Moreover, 
the MLE 0 is stochastically bounded. 

A2*. There exists a function h( ) such that 

|Wn*(01 X) -h(0-0 |p 

iib 011<6 l h(0 - 0) 

as n - oo and then d - 0. 

Theorem 2. If Pn (W < w 0) is equicontinuous in 0 C 

6? for every w, then under conditions Al*, A2*, and A3, 

C(WlOo) -? gamma(rp), V 00 C EB0. 

Proof. Let {m (0) } be a sequence of bounded con- 
tinuous prior distributions of 0 that shrink to the point 
00. Denote the marginal distribution of W by an,m(W) = 
f Pt (W < w 0)7rn, (0) dO. Recall that a sequence converges 
in probability if and only if for any subsequence there exists 
a further subsequence that converges almost surely. By The- 
orem 1, we have 1m(W X) -4 gamma(r) for all m, where 
1mC(WIX) is the conditional distribution of W under the 
prior Wr. By using the dominated convergence theorem, 

lim an,m (w) = F(w, rp), (6) 
n-40oo 

where F(w, rp) is the cumulative distribution of gamma(rp). 
By the equicontinuity assumption, we have 

lim an,m(w) = Pn(W < WIOo), m-o00 
and the convergence is uniform in n. (7) 

It follows from (6) and (7) that 

lim P77(W < wI00) = li r ni anr,7(w) n-+oo n-0oo m-0oo 

lim lim an,2 (w) F(w, rp). 
m oo n-0oo 

This completes the proof. 

Remark]1. In many cases (see Examples 1-3), the sam- 
pling distribution of Wi is independent of 0 and hence is 
equicontinuous. This condition is used to show the existence 
of the limit distribution of W and can be replaced by the 
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assumption that the limiting distribution of an- (0 - 0) ex- 
ists. To see this, under the latter assumption, by conditions 
A2 and A3, the likelihood ratio statistic W = h(a-n-(0- 
0))(1 + op(l)) converges weakly. Let G(w, 0) be the limit 
of Pn (W < wI 0). Then by (6), EG(w,0) = F(w,rp) for 
every continuous prior -w. Hence G(w, 0) = F(w, rp) for 
almost all 0 C W0. 

Theorems 1 and 2 reveal that the Wilks type of results 
hold as long as the likelihood contour is of fan shape. It 
provides a good geometric interpretation for conditions for 
the validity of the approximation being studied. The classi- 
cal Wilks theorem is usually derived under the conditions 
similar to Cramer's (see, e.g., conditions C1-C5 of Le Cam 
and Yang 1990, p. 102). These conditions imply that the 
log-likelihood function can be locally approximated by a 
quadratic function (see Le Cam and Yang 1990) and the 
likelihood contour is ellipsoidal, 

Sw~ 0 + (2w/l)1/2S, 

where S = {O: O'EO 1} and E is the Fisher information 
matrix at the true underlying parameter. Hence this is a 
specific case of our results. 

We contend that the Wilks type of result holds for a much 
larger class of likelihood contours. The shapes of the like- 
lihood contours do not have to be ellipsoidal, and the radii 
are not necessarily proportional to w1/2. Hence the shape 
parameter of the gamma distribution does not need to be 
p/2, where p is the number of parameters, and the MLE is 
not required to be asymptotically normal. 

Example 1. Suppose that we have a random sample of 
size n from the exponential distribution model 

X 0 +E, 

where X, 0, and E are p-dimensional vectors and the com- 
ponents of E are independent having the standard exponen- 
tial distribution. Then the MLE is 0 = min(Xi, ... ,Xn), 
where the operator "min" is applied componentwise. Thus 
n(O - 0) -, which is not asymptotically normal. The like- 
lihood ratio statistic 

W(0, X) = Z (- 0) gamma(p), 

where the operator E is applied to the components of the 
vector. Hence 

2W(0, X) X2 
Note that the degree of freedom is 2p instead of p. The 
likelihood contour in this case is 

S-= {0: nE (0-0) = w,0 ? 0} =0 + (wfn)S, 

where S = {0 : E Oi = -1, Oi < 0} is a hypertriangle. 
Conditions A1*, A2*, and A3 are satisfied with h(0) 

EP1 Oi(Oi < 0) and r = 1, an = 1/n. 
The foregoing example provides evidence that a Wilks 

type of result continues to hold even though the MLE is not 
asymptotically normal. Such an example is not uncommon. 
We provide an additional one. 

Example 2. Suppose that we have a random sam- 
ple of size n from the uniform distribution on the p- 
dimensional hyperrectangle [0,01. Then the MLE is 0 = 
max(Xl,... ., Xn), where the operator "max" is applied 
componentwise. The log-likelihood ratio statistic is 

p 
W(O, X) = n 1 og(Oj/bj)I(Oj > bi) -gamma(p) . 

i=l1 

Again, 0 is not asymptotically normal, and the degree of 
freedom for 2W is 2p instead of p. The likelihood contour 
in this example is approximately a hypertriangle, 

Sw r10 + (wln)S 

where S ={0 : Zp>(0i/0io) 1, Oi > 0} with 
(1O,i... ., 0Po) the true underlying parameters. Condi- 
tions A1*, A2*, and A3 are satisfied with h(0) - 

j= (0i/0io)I(0i > 0) and r = l,an = 1/n. 
The Cramer condition for the Wilks theorem depends 

critically on parameterization. This drawback is attenuated 
under our formulation. 

Example 3. Suppose that we parameterize a normal 
population as N(03,Ip), where 0 (01,...,Op)' is a p- 
dimensional unknown vector, 03 - (03 ... ,3)', and IJ 
is a p x p identity matrix. Based on a random sample of 
size n, the MLE is given by 0 - X13, where X is the 
sample mean. Let Z be the p-dimensional standard nor- 
mal random vector. It is clear that when the true parameter 
0 = 0, n1/6b Z1/3, which is not asymptotically normal. 
Hence the Cramer conditions do not hold under this pa- 
rameterization. In this case the likelihood function can be 
approximated as 

W(0, X) n 1 nflX-03fl2 

2 P = - E 1Xl/3-S t0 

i=l1 

for 0 in a neighborhood of 0, where 0o = (Oo,... , PO)T 
are the true underlying parameters. The likelihood contour 
is fan-shaped, 

Sw ={0 n| X: - nl 2 = 2w} X (2w/n) 

where S is an ellipse given by S = {0: Z> 0O< - 

1/9}. Thus conditions A1*, A2*, and A3 hold with h(O) 
9/2 =1 0i 04/3 , r = 1/2, and an = n- 1/2 

Another advantage of our new results is that they can 
accommodate situations in which different parameters can 
have different rates of convergence. We elaborate this fur- 
ther in the following remark. 

Remark 2. In some cases different components of 0 
can have different asymptotic behavior. For example, sup- 
pose that 0 =(0k, 02) and that X and Y are two inde- 
pendent random variables with distributions uniform[O, Oil 
and N(02, 1). To apply Theorems 1 and 2 to this kind 
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of problem, we need to modify conditions Al-A3 as 
follows: 

Al'. The function W* (0, x) = a, W (0, X) satisfies 

inf{W*(0,x): 110-011 > }6 > m(d) > 0 V > 0. 

A2'. The likelihood function can be approximated by 

lirn urn ~W,*(0, x) - h(0 - 0) 0 lim lim sup j 0(. )-(- 
6-*O0 n-+oo 

116-0116 
I h(0-0) l 

A3'. The function h satisfies h(trlO1, tr202) = th(0), 
where 0 (01, 02) with 01 E RP1 and 02 C RP2. Further, 
inf{h(0) 001 1} > 0. 

Then we need only replace the shape parameter rp in The- 
orem 1 by rip, + r2p2. The unit volume in (5) is now pro- 
portional to rlpl + r2p2 - 1 in this case. 

4. EXTENSION TO CASES WITH 
NUISANCE PARAMETERS 

We now consider situations with composite null hy- 
pothesis. Partition the parameter vector ( into two parts 

(0k, AT)T, where 0 c RP and A c R . Under the null 
hypothesis that 0 = 00, the likelihood ratio test statistic is 

W1 (0o, X) = 1(0, A, X) - 1(00, X00 X), 

where Ao0 is the MLE under the null hypothesis that 0 = 00. 
Decompose the likelihood ratio W(0, A, X) =1(0, A, X)- 

l(0,A,X) as 

W(0,A ,X) = W1(0,X) + W2(0, A,X), (8) 

where 

W2(O,A, X) = l(0,0,X) - l(0,A,X). 

As in Section 2, we first consider the posterior dis- 
tributions of W(0, A, X) and W21(0, A, X). The regular- 
ity conditions are similar to Al-A3 and are stated as 
follows: 

B 1. The likelihood function W(0, A, X) satisfies condi- 
tions Al-A3. 

B2. For each given 0 in a bounded open set 00, the like- 
lihood function W2 (0, A, X) satisfies conditions A1-A3. 

Conditions B 1 and B2 admit similar geometric interpreta- 
tion as that given in Section 2. In particular, the likelihood 
contour sets must be fan-shaped. These regularity condi- 
tions can be understood as 

lim A-1 V{(0, A) : W(0, A, X) E w ? A/2} 

is proportional to w'(p+q)- 

and 

lrn i\A1V{A: W2 (0, A, X) E W ? A/2} 

is proportional to Wr -* 

Theorem 3. Suppose that 7r(O, A) is a bounded positive 
continuous prior on a bounded open set 00 x Al. Then 
the posterior distribution of the likelihood ratio statistic 
WI (0, X) has an asymptotic gamma distribution, 

{W1 (0, X) |X = x} I- gamma(rp). 

Proof. By Theorem 1, we have 

L2{W(0, A, X) IX} - gamma(r(p + q)) 

and 

L2{W2(0, A, X) IX,0} X gamma(rq). 

Because r is independent of 0, conditioning on X, W2 (0, A, 
X) is asymptotically independent of 0 and hence indepen- 
dent of WI (0, X). It follows that the characteristic functions 
satisfy 

E{exp(itW) IX} = E{exp(itWi)E{exp(itW2) IX, 0} IX} 

= E{exp(itW W) IX}I(t, rq) + o(l), 

where 0(t, rq) is the characteristic function of gamma(rq). 
Thus 

E{exp(itW1) IX} = b(t, r(p + q) - rq) + o(l) 

This completes the proof. 
From the posterior distribution, we can similarly obtain 

the sampling distribution. 

Theorem 4. If ?{WI (0, X) 0, A} is equicontinuous in 
(0, A) c 00 x Al, an open set in the Euclidean space, or 
if the limiting distributions of the MLEs (OT, XT)T and Ao 
exist upon suitable normalization, then the likelihood ratio 
statistic has an asymptotic gamma distribution, 

{W1 (0, X) I0, A} - gamma(rp), 

for almost all (0, A) c 00 x Al. 
Note that situations similar to those described in Remark 

2 can also be accommodated in Theorem 4. For simplicity, 
we omit the details. 

[Received March 1998. Revised August 1999.] 
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