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Word Boundary Detection with Mel-Scale Frequency
Bank in Noisy Environment
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Abstract—This paper addresses the problem of automatic word
boundary detection in the presence of noise. We first propose an
adaptive time-frequency(ATF) parameter for extracting both the
time and frequency features of noisy speech signals. The ATF
parameter extends the TF parameter proposed by Junquaet
al. from single band to multiband spectrum analysis, where the
frequency bands help to make the distinction of speech and noise
signals clear. The ATF parameter can extract useful frequency
information by adaptivelychoosing proper bands of the mel-scale
frequency bank. The ATF parameter increased the recognition
rate by about 3% of a TF-based robust algorithm which has been
shown to outperform several commonly used algorithms for word
boundary detection in the presence of noise. The ATF parameter
also reduced the recognition error rate due to endpoint detection
to about 20%. Based on the ATF parameter, we further propose a
new word boundary detection algorithm by using a neural fuzzy
network (called SONFIN) for identifying islands of word signals in
noisy environment. Due to the self-learning ability of SONFIN, the
proposed algorithm avoids the need of empirically determining
thresholds and ambiguous rules in normal word boundary
detection algorithms. As compared to normal neural networks,
the SONFIN can always find itself an economic network size in
high learning speed. Our results also showed that the SONFIN’s
performance is not significantly affected by the size of training set.
The ATF-based SONFIN achieved higher recognition rate than
the TF-based robust algorithm by about 5%. It also reduced the
recognition error rate due to endpoint detection to about 10%,
compared to an average of approximately 30% obtained with the
TF-based robust algorithm, and 50% obtained with the modified
version of the Lamelet al.algorithm.

Index Terms—Mel-scale frequency, multiband, neural fuzzy net-
work, self-learning ability, spectrum analysis.

I. INTRODUCTION

A N important problem in speech processing is to detect
the presence of speech in noisy environment, where the

word boundary is hard to detect exactly. This problem is often
referred to as the robust endpoint location problem. The inac-
curate detection of word boundary will be harmful to recogni-
tion. The energy (in time domain), zero-crossing rate, and du-
ration parameters have been usually used to find the boundary
between the word signal and background noise [1]–[4]. It has
been found that the energy and zero-crossing rate parameters
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are not sufficient to get reliable word boundaries in noisy en-
vironment, even if more complex decision strategies are used
[5]. Especially, the zero-crossing rate is very sensitive to the
additive noise. Up to date, several other parameters were pro-
posed, such as linear prediction coefficient (LPC), linear pre-
diction error energy [6], [7] and pitch information [8]. Although
the LPC’s are quiet successful in modeling vowels [9], they are
not particular suitable for nasal sounds, fricatives, etc. The reli-
ability of the LPC parameter depends on the noise environment.
The pitch information can help to detect the word boundary, but
it is not easy to extract the pitch period correctly in noisy envi-
ronment. Four endpoint detection algorithms were compared in
[5]: an energy-based algorithm with automatic threshold adjust-
ment [3], [4], use of pitch information [8], a noise adaptive algo-
rithm, and a voiced activation algorithm. These four algorithms
are strongly dependent on the noise condition. The reliability of
the parameters used by the four algorithms also depends on the
noise condition.

In the connection, Junquaet al. [5] proposed the time-fre-
quency (TF) parameter. They used the frequency energy in the
fixed frequency band 2503500 Hz to enhance the time en-
ergy information. The TF parameter is the result obtained after
smoothing the sum of the time energy and frequency energy.
The frequency energy helps us to make the distinction between
speech and noise. Based on the TF parameter, a robust algo-
rithm was proposed in [5] to get more precise word boundary in
noisy environment. This robust algorithm includes noise clas-
sification, a refinement procedure, and some preset thresholds.
Although this algorithm outperforms several commonly used al-
gorithms for word boundary detection in the presence of noise, it
needs to empirically determine thresholds and ambiguous rules
which are not easily determined by human. Some researchers
used the neural network’s learning ability to solve this problem.
In [6], [7], [10], multilayer neural networks are used to classify
the speech signal into voiced, unvoiced, and silence segments. In
the neural network approach, the decision rules are in the form
of input-output mapping, and can be learned by the training pro-
cedure (supervised leaning). However, the proper structure of
the network (including numbers of hidden layers and nodes) is
not easy to decide.

To develop a more robust word boundary detection algorithm
and avoid the problems of the above approaches, this paper
first proposes a modified TF parameter and then uses a neural
fuzzy network to detect word boundary based on this parameter.
Since the frequency energy (i.e., magnitudes of the spectrum)
of different types of noise focus on different frequency bands,
more accurate frequency information can be obtained by con-
sidering multiband analysis of noisy speech signals. With this
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motivation, we propose a new robust parameter, calledadaptive
time-frequency(ATF) parameter, which extends the TF param-
eter from single-band to multiband spectrum analysis based on
the mel-scale frequency bank (20 bands). A procedure is pro-
posed such that the ATF parameter can extract more informative
frequency energy than the single-band approach to compensate
the time-energy information byadaptivelychoosing proper fre-
quency bands. The ATF parameter is the result obtained after
smoothing the sum of the time energy and frequency energy. It
makes the word signal more obvious than the TF parameter. Ac-
cording to our experiments, the new ATF parameter can increase
by about 3% the recognition rate of the robust algorithm pro-
posed by Junquaet al.[5], in which all the thresholds have been
tuned exhaustively for our test environment. The ATF-based ro-
bust algorithm also reduced the recognition error rate due to
endpoint detection to about 20%, compared to an average of ap-
proximately 30% obtained with the TF-based robust algorithm,
and 50% obtained with the modified version of the Lamelet al.
algorithm [3], [4].

Based on the ATF parameter, we further propose a new word
boundary detection algorithm by using a neural fuzzy network
for identifying islands of speech signals in noisy environment.
The neural fuzzy network is called self-constructing neural
fuzzy inference network (SONFIN) that we proposed previ-
ously in [11]. Due to the self-learning ability of SONFIN, the
proposed algorithm avoids the need of empirically determining
thresholds and ambiguous rules in normal word boundary
detection algorithms. The SONFIN can always find itself an
economic network size in high learning speed, and thus avoids
the need of empirically determining the number of hidden
layers and nodes in normal neural networks [12], [13]. Our ex-
perimental results showed that the proposed scheme achieved
higher recognition rate by about 2% than the well-tuned
ATF-based robust algorithm, or by about 5% than the original
well-tuned TF-based robust algorithm. It also reduced the
recognition error rate due to endpoint detection to about 10%,
compared to about 20% obtained with the ATF-based robust
algorithm. Our experiments also showed that the SONFIN’s
performance was not significantly affected by the size of
training set.

This paper is organized as follows. The ATF parameter is de-
rived in Section II, where the performance evaluation and com-
parisons of this new parameter are also done. In Section III,
the structure and function of the SONFIN is briefly introduced,
and then the SONFIN-based word boundary detection scheme is
proposed. The performance evaluation and comparisons of the
proposed scheme using the ATF parameter are performed exten-
sively also in Section III. Finally, the conclusions of our work
are summarized in Section IV.

II. A DAPTIVE TIME-FREQUENCY(ATF) PARAMETER

In this section, we generalize the single-band analysis of the
TF parameter to multiband analysis based on mel-scale fre-
quency bank and propose a newadaptive time-frequency(ATF)
parameter.

Fig. 1. Mel-scale filter-bank in which each filter has a triangular bandpass
frequency response with bandwidth and spacing determined by a constant
mel-frequency interval.

A. Auditory-Based Mel-Scale Filter Bank

There is a evidence from auditory psychophysics that the
human ear perceives speech along a nonlinear scale in the fre-
quency domain [14]. One approach to simulating the subjective
spectrum is to use a filter bank, spaced uniformly on a nonlinear,
warped frequency scale, such as the mel scale. The relation be-
tween mel-scale frequency and frequency (Hz) is described by
the following equation [15]:

(1)

where is the mel-frequency scale andis in Hz. The filter
bank is then designed according to the mel scale as shown in
Fig. 1, where the filters of 20 bands are approximated by simu-
lating 20 triangular band-pass filers,

, over a frequency range of 04000 Hz. Hence, each
filter band has a triangular bandpass frequency response, and
the spacing as well as the bandwidth is determined by a constant
mel frequency interval by (1). The value of the triangular func-
tion, , in the figure also represents the weighting factor
of the frequency energy at theth point of the th band.

With the mel-scale frequency bank given in Fig. 1, we can
now calculate the energy of each frequency band for each
time frame of a speech signal. Consider a given time-domain
noisy speech signal, , representing the magnitude
of the th point of the th frame. We first find the spectrum,

, of this signal by discrete Fourier transform
(128-point DFT)

(2)

(3)

where
magnitude of the th point of the spectrum of
the th frame;
128 in our system;
number of frames of the speech signal for
analysis.
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We then multiply the spectrum by the weighting
factors on the mel-scale frequency bank and sum the
products for all to get the energy of each frequency
band of the th frame

(4)

where
filter band index;
spectrum index;
frame number;
number of frames for analysis.

In order to remove some undesired impulse noise in (4), we
further smooth it by using a three-point median filter to get

(5)

Finally, the smoothed energy, , is normalized by re-
moving the frequency energy of background noise, Noise_freq,
to get the energy of almost pure speech signal, , where
the energy of background noise is estimated by averaging the
frequency energy of the first five frames of the recording

Noise freq

(6)

With the smoothed and normalized energy of theth band of the
th frame, , we can calculate the total energy of the

almost pure speech signal at theth band as

(7)

Since our goal is to select some useful bands having the max-
imum word signal information, we need a parameter to stand
for the amount of word signal information of each band. It is
obvious that in (7) is a good indicator for the amount of
speech information, since the more the word signal information
is covered by the noise, the smaller the is. In other words,
the larger the is, the more word signal information theth
band has. Hence, we can extract useful frequency information
for word boundary detection by adopting the bands having large

.
Since the band with higher contains more pure speech

information, we shall sort the 20 mel-scale frequency bands ac-
cording to their values. This is also a preparatory task for
the adaptively band-chosen method developed in the following
subsection. Let be the set of all

(8)

The sorting is performed as follows:

Max

Max

Max
...

Max (9)

where is the maximum total energy, and is the min-
imum total energy. Let the band index corresponding to
be represented by for . That is, is the
index of band having the maximum total energy , and
is that having the minimum total energy . We observed
that not all of the 20 bands were helpful in making the distinction
between word signal and background noise. The next problem is
how to select the useful bands. We shall deal with this problem
in the following subsection.

B. Adaptive Band Selection

Before we consider the adaptive choices of suitable bands
for extracting useful frequency information, we first make some
observations on the effect of additive noise on each frequency
band. Obviously, larger background noise will add more noise
component into each band, and thus reduce each. How-
ever, some bands are corrupted more seriously than the others.
These seriously obscured bands have little word signal informa-
tion left, and are not useful, if not harmful, for word boundary
detection. In other words, the number of useful bands decreases
as the energy of background noise increases. We denote the
number of bands useful for producing reliable frequency energy
as . Large should be used at high SNR. On the contrary,
small is used at low SNR because most bands are corrupted
seriously by the additive noise. On the other experiments, we
observed that even at the same noise energy level (SNR), the
useful bands are different under different noise conditions. This
is because different noise sources focus their energy on different
frequency bands. Hence, there are two factors affecting the se-
lection of useful bands, SNR, and noise characteristics. The ef-
fects of these two factors can be detected by the total frequency
energy in (7).

For illustration, the smoothed and normalized frequency en-
ergies of a clean speech signal, in (6), for 20 bands

and 100 frames are shown
in Fig. 2(a). Specifically, the energies of the fifth and eighteenth
bands, and , are shown in Fig. 2(b). From
the figure, we observe that the word signal is clear (in the sense
of frequency energy) in both the fifth and eighteenth bands,
whose maximum values are about 40 and 30, respec-
tively. If we consider the total frequency energy in (7),
both and are large with .
Hence, both the fifth and eighteenth bands can help us to find
the word signal part, and are recognized as useful frequency
bands. We then add white noise (10 dB) to the same clean speech
signal to see the effects of adding noise on each band. The
corresponding values of the 20 bands are shown in
Fig. 3(a), and the new and values are given
in Fig. 3(b). We observe that the additive noise reduces
and , and thus reduces and , but we still
have . Hence, both the two bands are corrupted
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Fig. 2. Multiband spectrum analysis of a clean speech signal with length of
100 frames. (a) Smoothed and normalized frequency energies,X(m; i), on 20
frequency bands. (b) Smoothed and normalized frequency energies,X(m; 5)
andX(m; 18), on the fifth and eighteenth frequency bands.

by the additive noise. However, Fig. 3(b) shows that the eigh-
teenth band is corrupted by the added noise more seriously than
the fifth band ( and ). The word signal
is still clear in the fifth band whose maximum value
is about 30, but the word signal is ambiguous in the eighteenth
band whose maximum value falls below ten. As a
result, we cannot extract helpful word signal information from
the eighteenth band, and we will not use this band as a useful
frequency band. On the other hand, the fifth band is still a useful
frequency band in the added white-noise environment.

In order to provide some physical justification for that higher
noise level will lead to a smaller value of , the average
number of bands whose total energy is greater than
300 under different noise conditions and SNRs is shown in
Table I (with a total of 600 utterances.) We can easily find
that the number of useful bands decreases as the energy of the
background noise increases.

Based on the above discussion and illustrations, we now
propose a way to choose the number of useful bands adaptively
for extracting helpful frequency information. More precisely,
after ordering the band indexes according to their total fre-
quency energy as in (9), we want to decide the number

such that the first bands can
produce helpful frequency energy,

. At first, we observed
from our experiments that the first 18 bands (after ordering)
could provide the maximum improvement for word boundary
detection in clean environment. Little improvement was
observed with the addition of the other two bands. We also ob-
served that one or two bands only cannot give helpful frequency

Fig. 3. Multiband spectrum analysis of the speech signal in Fig. 2 with
additive white noise of 10 dB. (a) Smoothed and normalized frequency
energies,X(m; i), on 20 frequency bands. (b) Smoothed and normalized
frequency energies,X(m; 5) and X(m; 18), on the fifth and eighteenth
frequency bands.

TABLE I
EXPERIMENTAL STATISTICS ON THE

AVERAGE NUMBER OF BANDS WHOSEE(i) � 300 UNDER DIFFERENTNOISE

CONDITIONS AND SNRS

information in our test cases. Hence, we bound thevalues
between 3 and 18 for the noisiest and clean environments,
respectively. Within the range (3, 18), is tuned adaptively
according to the strength of background noise; higher noise
level should lead to smaller value as observed in Table I. To
obtain a reliable tuning rule for , we first observed from our
experiments that the average frequency energy of background
noise, Noise_freq [see (6)], is 83 in clean environment, and
is 93 at a low SNR value (5 dB). We set the corresponding
numbers of useful bands to be 18 and 3 for these two extreme
cases, respectively. For computation simplicity, we assume that
the relation between and Noise_freq is linear. With the
above experimental observations and assumption, we sketch the
relation diagram between and Noise_freq in Fig. 4. From
this figure, we can derive the tuning rule for as follows:

Noise freq

is an integer (10)
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which gives

Noise freq

is an integer (11)

Rewriting the above result into a general form, we have

Noise freq

and (12)

where is a function used to denote the rounding to nearest
integer operation, and and are constants determining the
slop and offset, respectively, of the linear relation between
and Noise_freq, where is negative.

With the number of useful bands, , decided by (12), we
then sum the total energies of the first bands (after ordering)
in (9) to get the final frequency energy, , of frame

(13)

The proposed adaptive time-frequency (ATF) parameter of the
th frame is the result obtained after smoothing the sum of the

frequency energy in (13) and time energy

ATF SMOOTHING (14)

where SMOOTHING is performed by a three-point median
filter as in (5), constant is a proper weighting factor, and
the time energy is given by smoothing and normalizing
the logarithm of the root-mean-square (rms) energy of the
time-domain speech signal

(15)

(16)

Noise time

(17)

where is the length of the frame, which is 120 (15 ms) in
our system. The procedure to calculate the ATF parameter is
illustrated in Fig. 5(a). The details of the block with label “Select

useful bands to produce frequency energy” of this figure is
shown in Fig. 5(b).

C. Evaluation of the ATF Parameter

In this section, we shall test the performance of the proposed
ATF parameter, and compare it to the original TF parameter.
The tests are performed by using either ATF or TF parameter
as input feature of a word boundary detection algorithm. The
detected word signal is then sent into a speech recognizer. Since
inaccurate detection of word boundary is harmful to recognition,
the performance of the word boundary detection process, and
thus the performance of the ATF parameter, is examined by the

Fig. 4. Relation betweenN andNoise_freq.

recognition rate of speech recognizer. In the following, we shall
introduce the used word boundary detection algorithm, speech
recognizer, test database, and the evaluation results.

1) Robust Word Boundary Detection Algorithm:The algo-
rithm adopted for word boundary detection in this subsection
is the robust algorithm proposed by Junquaet al. [5]. This ro-
bust algorithm used the TF parameter and was shown to out-
perform several commonly used algorithms for word boundary
detection in the presence of noise. We shall feed this algorithm
with the proposed ATF parameter instead of TF parameter later
for performance comparisons. The robust algorithm first per-
forms a noise classification procedure to determine noise level
(high, medium, or low) and the noise category (high or low
zero-crossing rate) by using ten frames of “relative” silence at
the beginning of the recording, and computing an average of
the logarithm of the rms energy and the zero-crossing rate on
these frames. A set of empirically determined threshold values
are used to perform the noise classification. After noise classifi-
cation, the robust algorithm applies a noise adaptive procedure
to determine the word boundary. It uses the TF parameter with
some thresholds to find the islands of reliability boundary. Fi-
nally, the refinement procedure which also depends on the noise
classification results is applied to the initial boundary. It tries
to find the earliest boundary by subtracting adjustment value
(typically 20 ms) from the beginning boundary to obtain new
boundary (maximum up to 100 ms from the beginning island
of reliability boundary.) Then, using some thresholds to deter-
mine the end of finding final beginning boundary. It tries to find
the latest boundary by adding adjustment value (typically 50
ms) from ending boundary to obtain new boundary (maximum
up to 150 ms from the ending island of reliability boundary).
Then, using some thresholds to determine the end of finding
final ending boundary. The thresholds in the refinement proce-
dure include the logarithm of the time-domain rms energy and
zero-crossing rate.

2) Speech Recognition System:The speech recognition
system used in this paper for evaluating the performance
of word boundary detection algorithms is a robust isolated
word recognition system consisting of two parts, feature
extractor and classifier. In the feature extractor, the modified
two-dimensional cepstrum (modified TDC-MTDC) [16]–[19]
is used as the speech feature. The MTDC can simultaneously
represent several types of information contained in the speech
waveform: static and dynamic features, as well as global and
fine frequency structures. To represent an utterance, only some
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Fig. 5. (a) Flowchart for computing the ATF parameter. (b) Adaptive band selection procedure in (a) for computing frequency energy.

MTDC coefficients need to be selected to form a feature vector
instead of the sequence of feature vectors. The MTDC has
the advantage of simple computation and is suitable for noisy
speech recognition due to its choices of robust coefficients.
In the classifier, a Gaussian clustering algorithm is used. The
training was done on clean speech pronounced in a clean
environment (without background noise.) In the training phase,
each model is trained by a mixture of four Gaussian distribution
density functions. We use a total of 1000 utterances for training.
The details of the above isolated word recognition system can
be found in [19].

3) Test Environment and Noise Speech Database:In the
recognition procedure, the frame window used for obtaining
the MTDC features is 30 ms in length, and is with 15
ms overlapping between two frames. In the word boundary
detection procedure, the frame length is set to be 15
ms in order to get more accurate endpoint location. The

sampling rate of our system is 8 KHz. The noise signals
are taken from the noise database provided by the NATO
Research Study Group on Speech Processing (RSG.10)
NOISE-ROM-0 [20]. The database consists of 24 noise
sources in order to offer as wide as possible variations in
characteristics. Among these noise sources, we take four
typical types of noise for speech contamination in our
experiments. They are multitalker babble noise, cockpit
noise, noise on the floor of car factory, and white noise.
The original NOISE-ROM-0 data were sampled at 19.98
KHz and stored as 16-bit integers. In our experiments,
they are prepared for use by downsampling to 8 KHz and
applying attenuation on them. The attenuation was applied
to enable the addition of noise without causing an overflow
of the 16-bit integer range. The speech data used for our
experiments are the set of isolated Mandarin digits. They
are ten digits spoken by 10 speakers and each speaker
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Fig. 6. Recognition rates of three word boundary detection algorithms (ATF-based robust algorithm, TF-based robust algorithm, and TF without robust algorithm)
in an MTDC-based recognition system across six SNRs and four noise conditions.

pronounced 20 times of the ten digits. The recording
sampling rate is 8KHz and stored as 16-bit integer. To
set up the noisy speech database for testing, we added
the prepared noisy signals to the recorded speech signals
with different signal-to-noise-ratios (SNRs) including 0 dB,
5 dB, 10 dB, 15 dB, 20 dB, and dB. The duration
of each utterance used for testing the performance of the
word boundary detection algorithm is about one second
(including silence.) A total of 600 utterances were used in
our experiments.

4) Experimental Results:Three algorithms were used in our
experiments; they are ATF-based robust algorithm, TF-based
robust algorithm, and TF without robust algorithm. The TF
without robust algorithm uses no noise classification and no
refinement procedure. It is used only for a reference to see the
performance of the robust algorithm. The recognition rates of
these three algorithms for four types of noise with different
SNRs are shown in Fig. 6. The results show that the ATF-based
robust algorithm outperforms the other two algorithms. In fact,
the ATF-based robust algorithm achieves higher recognition
rate than the TF-based robust algorithm by 3% on average. This
shows that the ATF parameter outperforms the TF parameter
for word boundary detection in noisy environment. The main
reason is that ATF can adaptively extracts useful frequency
information based on the mel-scale frequency bank.

By our previous study, there are two factors affecting the dis-
tribution of useful frequency bands for the ATF parameter. One
is SNR and the other is the characteristics of the noise condition.
In our experiments (with a total of 600 utterances), the proba-
bility that each band is selected as useful band for contributing to
the frequency energy under different noise conditions and SNRs
is shown in Table II. We used three noise conditions to see the
effect of noise characteristics; they are multitalker babble noise,
cockpit noise, and white noise. From the table, we have the fol-
lowing observations. At high SNR (clean, greater than 20 dB),
the probability of each band being selected as useful band in
the clean environment is nearly the same, since little noise con-
taminates any band in this case. At medium SNR (20 dB, 15
dB, 10 dB), the useful bands gradually concentrate on the low
frequency part (band 1band 7). This is because the energy of
noise usually concentrates on high frequency bands. This con-
centration situation is more obvious at low SNR (5 dB, 0 dB),
where the low-frequency speech signals are less contaminated.
When considering different noise conditions, we find that the
useful bands under white noise and cockpit noise with low SNRs
more concentrate in low frequency than those under the mul-
titalker babble noise. In other words, the useful bands under the
multitalker babble noise spread wider than those under the other
two types of noise. The reason is that the characteristics of mul-
titalker babble noise are very similar to those of word signals.
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TABLE II
PROBABILITY OF EACH FREQUENCY BAND BEING SELECTED AS A USEFUL BAND FOR CONTRIBUTING

TO THE FREQUENCYENERGY UNDERDIFFERENTNOISE CONDITIONS AND SNRS

They are both pronounced by human, not by the machine or
the others. Hence, the energy distribution of the additive (mul-
titalker babble) noise on each band is very close to that of the
word signal on each band.

Our experiments show that the ATF parameter can extract
useful frequency information (energy) of word signal by using
the first maximum total-energy bands without the need to
recognize SNRs and the types of noise. It can reliably yield ob-
vious word boundary and can be used to distinguish the word
signal from noise. The main feature of the ATF parameter is its
ability to track the properties of varying noisy environment. The
reliability of the ATF parameter less depends on SNRs and the
characteristics of noise due to its adaptation ability.

The robust algorithm developed in [5] and used in the
above experiments requires empirically chosen thresholds
and ambiguous rules, which are not easily determined by
human. In fact, in our experiments, we have made every
effort in tuning the thresholds of the robust algorithm to get
the best performance for our noisy speech database and test
environment. Some researchers used neural network’s learning
ability to attack this tuning problem. Even though, the number
of hidden layer and the number of the nodes per hidden layer
for a neural network still need to be determined. The lack of
an effective method to learn the network structure is usually
a drawback. In the following section, we shall use a neural
fuzzy network with structure learning ability to develop another

robust word boundary detection scheme based on the proposed
ATF parameter.

III. N EURAL FUZZY NETWORK FORWORD BOUNDARY

DETECTION

In this section, we shall first introduce a neural fuzzy network
and then propose a robust word boundary detection scheme
based on this network with the ATF parameter as input pattern.

A. Self-Constructing Neural Fuzzy Inference Network

The neural fuzzy network that we used for word boundary
detection is called the self-constructing neural fuzzy inference
network (SONFIN) that we proposed previously in [11]. The
SONFIN is a general connectionist model of a fuzzy logic
system, which can find its optimal structure and parameters
automatically. There are no rules initially in the SONFIN, and
they are created and adapted as on-line learning proceeds via
simultaneous structure and parameter learning. The SONFIN
can always find itself an economic network size, and the
learning speed as well as the modeling ability are all superior
to normal neural networks.

The structure of the SONFIN is shown in Fig. 7(a). This six-
layered network realizes a fuzzy model of the following form:

Rule IF is and and is

THEN is (18)
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Fig. 7. (a) Network structure of the SONFIN. (b) Flowchart of the SONFIN-based word boundary detection procedure.

where
fuzzy set;

center of a symmetric membership function on;

consequent parameter.

It is noted that unlike the traditional TSK model [12], [21], [22]
where all the input variables are used in the output linear equa-
tion, only the significant ones are used in the SONFIN, i.e., some

’s in the above fuzzy rules are zero. We shall next describe the
functions of the nodes in each of the six layers of the SONFIN.

Each node in Layer 1, which corresponds to one input vari-
able, only transmits input values to the next layer directly. Each
node in Layer 2 corresponds to one linguistic label (small, large,
etc.) of one of the input variables in Layer 1. In other words, the
membership value which specifies the degree to which an input
value belongs a fuzzy set is calculated in Layer 2. A node in
Layer 3 represents one fuzzy logic rule and performs precon-
dition matching of a rule. The number of nodes in layer 4 is

equal to that in Layer 3, and the result (firing strength) calcu-
lated in Layer 3 is normalized in this layer. Layer 5 is called
the consequent layer. Two types of nodes are used in this layer,
and they are denoted as blank and shaded circles in Fig. 7(a),
respectively. The node denoted by a blank circle (blank node)
is the essential node representing a fuzzy set of the output vari-
able. The shaded node is generated only when necessary. One
of the inputs to a shaded node is the output delivered from Layer
4, and the other possible inputs (terms) are the selected signif-
icant input variables from Layer 1. Combining these two types
of nodes in Layer 5, we obtain the whole function performed
by this layer as the linear equation on the THEN part of the
fuzzy logic rule in (18). Each node in Layer 6 corresponds to
one output variable. The node integrates all the actions recom-
mended by Layer 5 and acts as a defuzzifier to produce the final
inferred output.

Two types of learning, structure and parameter learning, are
used concurrently for constructing the SONFIN. The structure
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Fig. 8. Recognition rates of three word boundary detection algorithms (ATF-based SONFIN, ATF-based robust algorithm, and hand labeling) in an MTDC-based
recognition system across six SNRs and four noise conditions.

learning includes both the precondition and consequent struc-
ture identification of a fuzzy if-then rule. For the parameter
learning, based upon supervised learning algorithms, the param-
eters of the linear equations in the consequent parts are adjusted
to minimize a given cost function. The SONFIN can be used
for normal operation at any time during the learning process
without repeated training on the input–output patterns when
on-line operation is required. There are no rules in the SONFIN
initially, and they are created dynamically as learning proceeds
upon receiving on-line incoming training data by performing
the following learning processes simultaneously: a) input/output
space partitioning, b) construction of fuzzy rules, c) optimal
consequent structure identification, and d) parameter identifi-
cation. Processes a), b), and c) belong to the structure learning
phase and process D belongs to the parameter learning phase.
The details of these learning processes can be found in [11].

B. SONFIN for Word Boundary Detection

The procedure of using the SONFIN for word boundary de-
tection is illustrated in Fig. 7(b). The input feature vector of the
SONFIN is a combination of the average energy of background
noise (Noise_time), adaptive time-frequency (ATF) parameter,
and zero-crossing rate. The three parameters in an input feature
vector are obtained by analyzing a frame of signal. Hence there
are three (input) nodes in Layer 1 of the SONFIN. Here the noise

energy, Noise_time, as in (17), is the average of the logarithm
of the rms energy on the first five frames of “relative silence” at
the beginning of the recording. Before entering the SONFIN, the
three input parameters are normalized to be in [0, 1]. For each
input vector (corresponding to a frame), the output of SONFIN
indicates whether the corresponding frame is a word signal or
noise. For this purpose, we used two (output) nodes in Layer 6
of the SONFIN, where the output vector of (1, 0) standing for
word signal, and (0, 1) for noise.

The SONFIN was trained by a set of 80 training patterns,
which were randomly selected from four noise conditions with
different SNRs. These training patterns are classified as word
signal or noise by using waveform, spectrum displays and audio
output. Among the 80 training patterns, 40 patterns are from
word sound category with the desired SONFIN output vector
being (1, 0), and the other 40 from noise category with the
desired SONFIN output vector being (0, 1). We usually used
the frames around the word-noise transition area as the training
patterns, because these ambiguous training patterns make the
SONFIN get more accurate word boundary in noisy environ-
ment. After training, there were only 14 rules generated in the
SONFIN.

The SONFIN after training is ready for word boundary detec-
tion. As shown in Fig. 7(b), the outputs of the SONFIN are pro-
cessed by a decoder. The decoder decodes the SONFINs output
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Fig. 9. Recognition error rates of four word boundary detection algorithms (ATF-based SONFIN, ATF-based robust algorithm, TF-based robust algorithm, and
TF without robust algorithm) in an MTDC-based recognition system across six SNRs and four noise conditions.

vector (1, 0) as value 100 standing for word signal, and (0, 1) as
value 0 standing for noise. In addition, we let the output wave-
form of the decoder pass through a three-point median filter
to eliminate the undesired “impulse” noise. Finally, we recog-
nize the word-signal island as the part of the filtered waveform
whose magnitude is greater than 30, and duration is long enough
(by setting a threshold value). We then send the part of original
signal corresponding to the allocated word-signal island to our
word recognition system.

To verify the performance of the SONFIN for word boundary
detection, the experiments performed in Section II-C are per-
formed here again, with the robust algorithm replaced by the
SONFIN. The results are shown in Fig. 8. Again, the perfor-
mance evaluation of word boundary detection is based on the
recognition rate of the same speech recognition system as in
Section II-C. In Fig. 8, we also show the performance of the ro-
bust algorithm with ATF parameter used in Section II-C, and the
performance of hand labeling (i.e., manually determined bound-
aries.) Considering another performance index, we examined
the recognition error rates averaged across the four noise con-
ditions due to word boundary detection as a function of SNRs
as shown in Fig. 9. Here, the recognition error rate is the ratio
of the recognition errors due to wrong word boundary detec-
tion (taking recognition scores obtained with hand-labels as a

reference) to the total number of recognition errors of the de-
tection algorithm [5]. More precisely, let the recognition errors
obtained when using hand labeling be , and the recognition
errors obtained when using automatic word boundary detec-
tion algorithm be . Then the recognition error rate is given
by . This index represents the percentage of
recognition errors attributable to word boundary detection er-
rors relative to the total number of errors, where the recogni-
tion rate with hand-labeled boundaries is used as a reference.
These results show that, by using the same three parameters
(Noise_time, ATF, and zero-crossing rate), the SONFIN out-
performs the robust algorithm by about 2% in recognition rate.
As a total, the ATF-based SONFIN had higher recognition rate
than the TF-based robust algorithm in [5] by about 5%. Also,
the ATF-based SONFIN reduced the recognition error rate due
to endpoint detection to about 10%, compared to about 20%
obtained with the ATF-based robust algorithm, about 30% ob-
tained with the TF-based robust algorithm, about 40% obtained
with the TF without robust algorithm, and about 50% obtained
with the modified version of the Lamelet al.algorithm [3], [4].
We also found that the SONFIN could approach the result of
hand labeling, which is usually considered as the optimum re-
sult for reference. Notice that, in the above tests, all the thresh-
olds of the robust algorithm were tuned exhaustively to achieve
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Fig. 10. Recognition error rates of four word boundary detection algorithms (ATF-based SONFIN, ATF-based robust algorithm, TF-based robust algorithm, and
TF without robust algorithm) in an MFCC-based HMM recognition system across six SNRs and four noise conditions.

the best performance in our test environments. In the hand la-
beling process for word boundary detection, we allowed three
trials. That is, if the hand-labeled segment of the test signal was
not recognized correctly by the speech recognizer, the signal
was relabeled again manually. If the second trial failed, we per-
formed the third trial. A hand-labeled segment was classified as
an error word boundary only when all the three trials failed. This
rigor hand labeling process might be the reason that the average
recognition error rate of the TF-based robust algorithm in our
tests is higher than that reported in [5].

After learning, the SONFIN generated ten membership
functions in the input dimension (variable) “Noise_time”
representing the energy of environment noise [see (17)]. In
other words, the SONFIN automatically classified the energy
of background noise into tenfuzzycategories. As compared
to the robust algorithm in [5] (see Section II-C) which classi-
fied the noise energy into threecrispy levels (high, medium,
and low) by empirically human determination, the SONFIN
provided more precise noise classification by self-learning.
Similarly, the SONFIN automatically classified the other two
features, ATF and zero-crossing rate, into 11 and 14fuzzy
categories by learning proper membership functions. This is the
important reason why the SONFIN could get reasonably high
classification rate by using only 14 rules for the word boundary

detection in the noisy environment. Due to the self-learning
ability of SONFIN, the proposed algorithm avoids the need
of empirically determining thresholds and ambiguous rules in
normal word boundary detection algorithms. This is the first
motivation for us to use SONFIN in such an application. Due to
the physical meaning of fuzzy if-then rule, each input node in
the SONFIN is only connected to its related rule nodes through
its term nodes, instead of being connected to all the rule nodes
in Layer 3 of the SONFIN. This results in a small number of
weights to be tuned in the SONFIN. In contrast, in the normal
fully connected neural networks such as backpropagation
network and radical basis function network [23], the number of
tuning weights is usually large as compared to the number of
rule nodes learned in the SONFIN for the same learning task.
This forms our second motivation for the use of SONFIN in
this paper.

In order to see the performance of our algorithms on other
speech features and recognizer, we replace the MTDC-based
recognizer used in the previous experiments by the MFCC
(mel-frequency cepstral coefficient)-based HMM recognizer
with temporal filter in another set of experiments, where the
temporal filter is used to remove the noise components in the
feature extraction phase. The number of coefficients of each
frame used in this HMM recognizer is 26, including MFCCs,
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energy, delta MFCCs and delta energy, and the analysis
order is 24. Each Mandarin digits is modeled by a five-state,
left-to-right, continuous density HMM. In the HMM, each
state is split into two streams, and a mixture Gaussian density
with two mixture components in each stream is assigned to
each state observation probability. The recognition error rates
averaged across the four noise conditions due to word boundary
detection as a function of SNRs are shown in Fig. 10. The
results show that the conclusions on the good performance of
the proposed word boundary detection algorithms still hold on
the common speech features and recognizer.

Although the SONFIN has the advantages of small network
size, high learning speed, and high learning accuracy, its merits
are obtained at the expense of longer CPU time. The CPU time
of these algorithms running in Pentium 90 for processing 100
frames of a speech signal is recorded as follows:

Feature extraction procedures:
TF parameter (0.4945 s)
ATF parameter (0.5494 s)

Word detection algorithms:
TF-based robust algorithm (0.5011 s)
ATF-based SONFIN (0.9513 s)

Extracting the ATF parameter needs more computation time
than the TF parameter due to the multiband analysis of the
former as compared to the single-band analysis of the latter. The
computation time of SONFIN is mainly taken in calculating
the Gaussian membership functions, compared to the crispy
decision rules (threshold comparisons) in the robust algorithm.

IV. CONCLUSIONS

In this paper, we have proposed a reliable parameter,adap-
tive time-frequency(ATF), that possesses both the time and fre-
quency features for word boundary detection in noisy environ-
ment. This parameter adaptively adopts some useful bands from
20 mel-scale frequency bands for producing useful frequency
feature to enhance time feature in noisy environment. Compar-
ative study has shown that the ATF parameter is very beneficial
for several SNRs and noise conditions (including clean speech,
for which very good results were obtained.) The new ATF pa-
rameter increased by about 3% the recognition rate of a robust
word detection algorithm, which adopts the original TF param-
eter (TF-based robust algorithm). It also reduced the recogni-
tion error rate due to endpoint detection to about 20%, com-
pared to an average of approximately 30% obtained with the
TF-based robust algorithm, 40% obtained with TF without ro-
bust algorithm, and 50% obtained with the modified version of
the Lamelet al. algorithm. Based on the ATF parameter, we
have also proposed a word boundary detection scheme based
on a neural fuzzy network, SONFIN. The SONFIN can learn by
itself the (fuzzy) word boundary detection rules and the classi-
fication of background noise. The performance of the SONFIN
with ATF parameter has been evaluated across several SNRs
and noise conditions. Our experiments showed that the proposed
scheme (ATF-based SONFIN) achieved higher recognition rate

by about 2% than the ATF-based robust algorithm, and thus by
about 5% than the TF-based robust algorithm. On the other per-
formance index, the ATF-based SONFIN reduced the recogni-
tion error rate due to endpoint detection to about 10%, compared
to about 20% obtained with the ATF-based robust algorithm.
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