
Multimedia File Allocation on VC Networks
Using Multipath Routing

Pao-Yuan Chang,
Deng-Jyi Chen, Member,

IEEE Computer Society, and
Krishna M. Kavi, Senior Member, IEEE

AbstractÐThe problem of allocating high-volume multimedia files on a virtual

circuit network with the objective of maximizing channel throughput (and

minimizing data transmission time) is addressed. The problem is formulated as a

multicommodity flow problem. We present both the optimal and suboptimal

solutions to the problem using novel approaches.

Index TermsÐFile allocation, virtual circuit, cut, maximum flow, linear

programming, branch and bound.

æ

1 INTRODUCTION

AS web-based computing is becoming commonplace, timely access
to data files that are distributed over a large number of nodes
becomes critical. This in turn requires optimal allocation of data
files to nodes to improve the data transfer time. The class of
problems dealing with the assignment of files to processing nodes
to optimize performance is commonly known as the file allocation
problem (FAP). This class of problems with different objectives
and constraints has been addressed in the literature [1], [2], [3], [5],
[7], [10], [12], [14], [15], [17], [18], [19]. Since FAPs are complex
integer programming problems with no known efficient solutions
[4], heuristics are used to find optimal solutions.

In this paper, we address FAP in a virtual circuit network
environment. A virtual circuit enables bandwidth to be reserved
throughout the connection [6], [9], [11]. We assume a multipath
routing that allows multiple routes for simultaneous data
transmission such that a high probability of successful connection
for on-demand high-bandwidth multimedia data transfer can be
achieved. We also assume that the combined size of the files is too
large to fit on any single node. Under these assumptions, the FAP
can be described as follows: Given the location of computing
nodes, data files needed for the computation, their sizes, available
link capacities, and other allocation constraints, allocate the files to
nodes to achieve minimum time for data transfer. In a high
bandwidth network with well-behaved traffic, the data transfer
time for a file is primarily determined by transmission throughput
rather than by link delays (including queuing delay, propagation
delay, and transmission time). The objective for our problem is the
allocation of files to achieve maximum overall data transfer rate.

However, unlike other FAPs, such an objective cannot be
represented by a simple linear or nonlinear function. The objective
function itself is a multicommodity flow problem and finding a
feasible solution requires the use of linear programming (LP)

techniques. A simplistic approach to finding an optimal solution
formulates and solves every corresponding LP subproblem for
every possible valid file allocations. This approach is prohibitively
expensive in terms of computational cost. We present an alternate
method that uses the critical cut method (instead of the LP) to
compute the objective function. An algorithm, OFA (Optimal File
Allocation Algorithm), based on branch-and-bound with the
evaluation functions derived from critical cut concept is developed
in finding the optimal allocation. While this approach is more
efficient than the exhaustive search of LP, the optimal solution still
requires exponential time. We then present a polynomial-time
heuristic algorithm HFA (Heuristic File Allocation Algorithm).

2 PROBLEM FORMULATION

We assume that a distributed computing system can be described
as an undirected graph with nodes representing computing sites
and edges representing communication links. We assume virtual
circuits and multipath routing for communication between a
source and a destination. Intermediate nodes do not buffer packets,
but simply send all received packets immediately. Link propaga-
tion delay is assumed negligible. We assume that the combined
size of the files is too large to fit on any single node and a file
cannot be split for distribution among multiple sites. A commu-
nication path is necessarily acyclic.

In a packet-switched subnet, files are broken into packets for
transmission. In general, the size of a packet is much smaller than
that of a multimedia file. A flow model can therefore accurately
reflect the data transmission behavior. Let M be the number of
data files to be allocated and N be the number of computer sites in
the network. We label the data files with F1; F2; . . . ; FM and the
computer sites with 1; 2; . . . ; N , respectively. An allocation A �
�Aij� of the data files is defined as an M �N matrix, where

Aij � 1 if data file Fi is allocated to node j
0 otherwise:

�
The nodes on which data files are allocated are referred to as the
source nodes. The computing node (which accesses files) is referred
to as the target node. In our case, the objective function is the
shortest time required to transfer data from the source nodes to the
target node. For a given allocation A, the objective function
COST �A� can be described by the following formulation:

MinimizeMax
xij
�� ��
capij

i > j; j � 1; 2; 3; . . . ; N ÿ 1; capij > 0
��� �

subjectto
XN
i�j

xij ÿ
Xj
k�1

xjk

�
ÿLj�A� if node j is a source node

L if node j is the target node for j � 1; 2; . . . ; N

0 otherwise

8><>:
xij � 0 if nodes i and j are not adjacent;

for all i > j; j � 1; 2; . . . ; N ÿ 1;

�1�

where

capij � link capacity between nodes i and j,

xij � a variable indicating the number of bytes to be transferred
from node i to its adjacent node j (note, if the solution to the
variable xij is negative, then data flows from nodes j to i),

Lj�A� � the number of bytes assigned to node j for allocation A,

L � the number of bytes in all data files.

The constraints in (1) stem from a balanced inflow and outflow
should. The term jxijj=capij in (1) is the time for transmitting data

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 971

. P.-Y. Chang is with the Department of Information Management, Ta Hwa
Institute of Technology, Hsin Chu, 30700, Taiwan.
E-mail: pychang@et4.thit.edu.tw.

. D.-J. Chen is with the Computer Science and Information Engineering
Department, National Chiao Tung University, Hsin Chu, 30050 Taiwan.
E-mail: djchen@csie.nctu.edu.tw.

. K.M. Kavi is with the Department of Electrical and Computer Engineering,
University of Alabama at Huntsville, 301 Sparkman Dr., Room EB267,
Huntsville, AL 35899. E-mail: Kavi@ece.uah.edu.

Manuscript received 13 July 1998; revised 19 May 1999; accepted 14 Apr.
2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 107142.

0018-9340/00/$10.00 ß 2000 IEEE

from nodes i to j, or from nodes j to i, depending on the sign of xij.
The link having the maximum value of jxijj=capij is the bottleneck.
Since the inherent link delay was ignored, the actual transfer time is
limited by the time required to transfer data over the bottleneck link.
The objective is to minimize the data transfer time through this link.

Our FAP is thus expressed as

Minimize COST �A� subject to
XN
j�1

Aij � 1 for i � 1; 2; � � � ;M

and any other constrains (e.g., limited storage size).

3 COMPUTATION OF COST �A�
3.1 Critical Cut

COST(A) as formulated in (1) can be transformed into an LP

problem and then solved. In this section, we present an alternative,

the critical cut method that is based on cut-sets of an undirected

graph, to compute COST(A). Proofs of theorems and lemmas

associated with our method are not included in this paper due to

space limitations.

Notation

eij Edge connecting nodes i and j.

�X;X� The cut separating the nodes in set X (with target node in
X) from the other nodes.

cap�X;X� Capacity of the cut �X;X�.
LV �A� The number of bytes from the data files allocated to V in an

allocation A, where V denotes a single node or a set of nodes.

Definition 1. Let S be the set of source nodes for an allocation A and
C � f�X1; X1�; �X2; X2�; . . . ; �Xm;Xm�g be the set of cuts that
separate the target node from S or a subset thereof (except the empty
set). Cut �Xt;Xt��2 C� is called a critical cut if

L
Xt
�A�

cap�Xt;Xt�
�

L
Xi
�A�

cap�Xi;Xi�
for i � 1; 2; . . . ; m.

Theorem 1. The shortest time required for the target node to receive the

data from source nodes can be computed by
L
Xt
�A�

cap�Xt;Xt� , where �Xt;Xt�
is a critical cut.

The application of Theorem 1 itself is inefficient since it involves
the enumeration of all cuts in set C. We now present an approach
that reduces the number of cuts that must be examined in finding
the critical cut. The cut reduction is based on the concept of cut-tree
proposed by Hu [8]. Consider the example in Fig. 1. Fig. 1a shows
the original network, G, along with link capacities. Fig. 1b shows
the cut-tree generated by Hu's algorithm. Fig. 1c illustrates that
each link of the cut-tree represents a minimum cut of G. Since these
minimum cuts do not cross each other, we call them the partitioned
cuts.

Definition 2. Let ci � �X;X� and cj � �Y ; Y � be two cuts that do not
cross. If X � Y (or, equivalently, X � Y), ci is said to be an ancestor
of cj and cj a descendant of ci. If X \ Y � ;, ci and cj are said to be
siblings of each other.

The relationship between any pair of partitioned cuts can be
easily identified by the corresponding cut-tree. Let li and lj be the
links in the cut-tree corresponding to the partitioned cuts ci and cj.
By letting the target node be the root of the cut-tree, if there is a
path from the root to a leaf containing li and lj, then ci and cj have
an ancestor/descendent relationship. Cut ci is the ancestor of cj if li
is closer to the root than lj is in this path. If no such a path can be
found, then ci and cj have a sibling relationship.

Definition 3. Let R be the set of partitioned cuts. Cut c 2 R is called a
primary cut if, except c itself, there is no ancestor cut of c can be
found in R, or there are ancestor cuts of c in R, but the capacity of c is
less than that of any of its ancestor.

Definition 4. Edge e in the network is called a primary edge if at least
one primary cut contains edge e; otherwise, edge e is called a
nonprimary edge.

For example, in Fig. 1, if node 2 is the target node, then c2 �
�f2; 4g; f1; 3g� i s a n a n c e s t o r o f c1 � �f2; 3; 4g; f1g�; c3 �
�f1; 2; 3g; f4g� is a sibling of c1 and c2. Cuts c2 and c3 are primary
cuts, but cut c1 is not. All edges except e13 are primary edges.

Lemma 1. A critical cut contains only primary edges.

However, an arbitrarily collection of primary edges is not
necessarily a cut. To effectively find the cuts containing only
primary edges, we have the following definition.

Definition 5. Let ci � �X;X� and cj � �Y ; Y � be two noncrossed cuts.
The exclusive-or operation, denoted by �, is defined as follows: If ci

972 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 1. (a) The original network G. (b) The cut-tree of G. (c) The partitioned cuts.

and cj have a sibling relationship, then ci � cj � �X \ Y ;X [Y � and

if ci is an ancestor of cj, then ci � cj � �X [Y ;X \ Y �.

The following properties of exclusive-or operation can be easily

proven.

. If cuts are represented by sets of edges, then, for two
noncrossed cuts ci and cj, ci � cj � ci [cj ÿ ci \ cj.

. Exclusive-or operation is commutative and associative.

. ci � cj is also a cut.

. If ci and cj are siblings, ci � cj is an ancestor of both ci
and cj.

. If ci is an ancestor of both cj and ck, then ci is also an
ancestor of cj � ck.

. If ci is a sibling of both cj and ck, then ci is also a sibling of
cj � ck.

Lemma 2. Any cut in a network can be factored into partitioned cuts

based on exclusive-or operations.

Theorem 2. The critical cut can be factored into primary cuts based on

exclusive-or operation and none of these primary cuts is an ancestor

(or descendant) of any of the others.

Proof. We first prove that a critical cut can be factored into primary

cuts (Part 1) and then prove that any pair of these primary cuts

are not ancestor/descendant of each other (Part 2).

The proof to Part 1 is derived from Lemmas 1 and 2.

Lemma 1 states that a critical cut contains only primary edges.

Therefore, we can combine adjacent nodes connected by

nonprimary edges into a super node. We denote the combined

network G�. Since there is no nonprimary edge in G�, all the

partitioned cuts in G� are primary. Thus, Part 1 follows

immediately from Lemma 2.

The proof to Part 2 is as follows: Let cut c be the result of

applying exclusive-or operations on a set of primary cuts, S,

which contains a pair of cuts having ancestor/descendant

relationship. If there is more than a pair of primary cuts in S

having ancestor/descendant relationship, we may select a cut

pair p1 � �V ; V � and p2 � �W;W � for consideration, where p1 is

the only ancestor cut of p2 in S. Such a selection is always

feasible since, for example, assuming that c � p̂1 � p̂2 � p̂3 �
p̂4 � p̂5 and p̂1 is an ancestor of p̂2, p̂2 is an ancestor of p̂3, and p̂4

and p̂5 are siblings of p̂1, we thus choose the pair p̂1 and p̂2,

rather than other ancestor/descendent pairs: p̂1 and p̂3, p̂2 and

p̂3, for consideration. The other members of S, according to their

relationships to p1 and p2, can be grouped into three distinct

sets: S1, S2, and S3, where S1 is the collection of p1's sibling

cuts, S2 is the collection of cuts which are not only p1's

descendants but also p2's siblings, and S3 is the set of p2's

descendants. Let c1 � �X;X�, c2 � �Y ; Y �, and c3 � �Z;Z� be

the results of applying exclusive-or operations on S1, S2, and

S3, respectively. Cut c thus equals to p1� p2� c1� c2� c3.

According to the properties of exclusive-or operation, cut c1 is

p1's sibling, cut c2 is p2's sibling and p1's descendant, and cut c3

is p2's descendant. The relationships among cuts p1, p2, c1, c2,

and c3 can be clearly observed in Fig. 2a. It is obvious that

Fig. 2a is a cut-tree of Fig. 2b, which is reduced from the original

graph by letting the nodes A � V \X, B � W \ V \ Y , C � X,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 973

Fig. 2. (a) The cut-tree presenting the relationships among p1, p2, c1, c2, and c3. (b) The reduced graph, where the edges presented by bold lines is the cut

p1� p2� c1� c2� c3. (c) The graph obtained by removing the cut p1� p2� c1� c2� c3 (note that a cut is a set of edges). (d) The graph obtained by removing the cut

fEAB;EAF ; EBC; EBD;EBE;ECD;ECE; ECF ; EDF ; EEF g.

D � Z \W , E � Y , and F � Z, and the capacities of edges EIJ

for I; J 2 fA;B;C;D;E; Fg be given by
P

nodei2I; node j2J cap�eij�.
If a cut is presented by a set of edges,

p1� p2� c1� c2� c3 �
fEAB;EAC; EAF ; EBD;EBE;ECD;ECE;EDF ; EEFg

is a cut separate fA;D;Eg from fB;C; Fg (see Fig. 2c). The bold

lines in Fig. 2b show these edges. Consider cut

p1 � fEAB;EAD;EAE;EAF ;EBC;ECD;ECE; ECFg
and the cut

fEAB;EAF ; EBC; EBD;EBE;ECD;ECE;ECF ;EDF ; EEFg
(see Fig. 2d). Both cuts separate A from B, but cut p1 is known

as the minimum cut. Thus, we have

cap�EAB� � cap�EAD� � cap�EAE� � cap�EAF � � cap�EBC�
� cap�ECD� � cap�ECE� � cap�ECF �� �
cap�EAB� � cap�EAF � � cap�EBC� � cap�EBD� � cap�EBE�
� cap�ECD� � cap�ECE� � cap�ECF � � cap�EDF � � cap�EEF �

�2�

or, equivalently,

cap�EAD� � cap�EAE�� �
cap�EBD� � cap�EBE� � cap�EDF � � cap�EEF �:

�3�

On adding cap�EAB� � cap�EAC� � cap�EAF � to the lefthand

side of (3) and cap�EAB� � cap�EAC� � cap�EAF � � cap�ECD� �
cap�ECE� to the righthand side of (3), we obtain

cap�EAB� � cap�EAC� � cap�EAD� � cap�EAE� � cap�EAF � �
cap�EAB� � cap�EAC� � cap�EAF � � cap�EBD� � cap�EBE�
� cap�ECD� � cap�ECE� � cap�EDF � � cap�EEF �:

�4�

The lefthand side of (4) is the capacity of the cut p1� c1
(i.e., the cut �fAg; fB;C;D;E; Fg�� and the righthand side of

(4) is the capacity of cut p1� p2� c1� c2� c3 (i.e., the cut

�fA;D;Eg; fB;C; Fg��. Thus, the cut p1� c1 is more critical

than the cut obtained by p1� p2� c1� c2� c3 (i.e., cut c). Cut c

is thus not critical. This proves Part 2 and Theorem 2 thus

follows. tu

3.2 Algorithm

Theorem 2 suggests that we may apply exclusive-or operations on

primary cuts in order to generate a set of cuts, say S, which contains

the critical cut. The members inS are referred to as the possible critical

cuts. The following procedure, Find_Possible_Critical_Cuts realizes

the process of generating possible critical cuts.

PROCEDURE Find-Possible-Critical-Cuts

/* S is the set of possible critical cuts. */

/* Initially S is empty. Finally, S holds the possible critical cuts. */

/* Q is a queue of cuts. Initially Q is empty. */

Construct the cut-tree of the original network.

Decide primary cuts

Add all primary cuts to set S

Enqueue all primary cuts to Q

REPEAT

c � dequeue�Q�
FOR each of the primary cuts, cP

Add and enqueue c� cP to S and Q, respectively unless

cond.1: c contains a factor cut which is an ancestor,

or a descendent, of cP .

cond.2: c \ cP � ;
END_FOR

UNTIL Q is empty

END_PROCEDURE

3.3 Example

Consider the network in Fig. 1a. Files sizes and distribution are

given as follows: Node 3 is the computing node (i.e., target node).

File F1 (jF1j � 300k) is on node 2; file F2 (jF2j � 400k) is on node 1;

file F3 (jF3j � 800k) is on node 4. By letting node 3 be the root of the

cut-tree, we observe that all partitioned cuts are primary cuts. Fig. 3

lists the steps in generating possible critical cuts. Four possible

critical cuts are generated. The shortest data transfer time can be

calculated by

MAX
400

1500
;
1100

1150
;
800

850
;
1500

1650

� �
� 1100

1150
� 0:96:

4 OPTIMAL FILE ALLOCATION ALGORITHMS

4.1 Algorithm

In this section, we present an algorithm, OFA (Optimal File

Allocation algorithm), which uses branch & bound techniques for

constructing a search tree and obtaining the optimal allocation for

out FAP. Each tree node corresponds to the assignment of a

particular file to a specific computer site. The internal nodes of the

search tree correspond to partial allocations; the leaf nodes

represent complete allocations. Associated with each node in the

search tree is the evaluation function for the current assignment.

To ensure that the searching always yields the optimal solution,

the evaluation function for the internal nodes should under-

estimate the path cost [20]. In the OFA, the evaluation function for

a current allocation A, denoted by f�A�, is defined as

974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 3. Steps in generating possible critical cuts (S: set of possible critical cuts).

f�A� �Max
i

L
Xi
�A�

Cap�Xi;Xi�

 !
for i � 1; 2; . . . ; k;

where �X1; X1�; �X2; X2�; . . . ; �Xk;Xk� are primary cuts.
The actual cost of the current allocation A, denoted by f��A�,

can be computed by

f��A� �Max
i

L
Xi
�A�

Cap�Xi;Xi�

 !
for i � 1; 2; . . . ; l;

where �X1; X1�; �X2; X2�; . . . ; �Xl;Xl� are possible critical cuts.
For a partial allocation A, both functions f and f� under-

estimate the cost, albeit f� is more accurate than f . We use f

instead of f� to improve the efficiency of the algorithm; the

function f� is used only when a complete allocation is encoun-

tered. This function f� is applied to find the critical cut and

compute the data transfer time, i.e., the cost function COST �A�.
OFA starts by executing the procedure Find_Possible_Critical_

Cuts to locate primary cuts (for the computation of f) and generate

possible critical cuts (for the computation of f�). The search tree is

then expanded by recursively calling procedure Sub_OFA. Initi-

ally, no file is assigned. The root node is thus denoted as r:(-,-,...,-).

(We use a vector notation to present file allocation: For example

(3,-,1) means that F1 is assigned to site 3, F2 has not yet been

assigned, and F3 is assigned to site 1.)
While expanding on partial allocations the algorithm uses the

following rules:

. Larger files are assigned prior to smaller files.

. Among all nodes (or assignment) at the same level in the
search tree, the one with the smallest f value is expanded
first.

. If two file assignments have the same f value, the one that
allocates the file to the ancestor node (or computer sites) in
the cut-tree is expanded prior to the assignment that
allocates the same file to the descendant node.

ALGORITHM Optimal_File_Allocation

/* f�op; Aop; �Xop;Xop� are global (or static) variables. */

f�OP � 1
Execute PROCEDURE Find_Possible_Critical_Cuts to generate

primary cuts and possible critical cuts.

root node r � (-,-,...,-).

CALL Sub OFA�r�
Return AOP

END_ALGORITHM

PROCEDURE Sub OFA�v�
IF the associative allocation of v, denoted by Av, is a complete

allocation THEN

Find critical cut �X;X� and calculate f��Av�
IF f� � f��Av� < f�OP THEN

AOP � Av; f
�
OP � f�; �Xop;Xop� � �X;X�

END_IF

Return

END_IF

Expand node v by assigning the next file to each of the

processing nodes without violating the constraints to

generate all successive nodes of node v

Determine the expanding order of all successive nodes.

FOR each of all the successive nodes, say u

IF f�Au� < f�OP AND L
XOP
�Au� < L

XOP
�AOP � THEN

CALL Sub OFA�u�
END_IF

END_FOR

END_PROCEDURE

4.2 Example

Consider the network shown in Fig. 1a. The conditions are given as

follows. Node 3 is the target node; three data files with sizes

jF1j � 300k, jF2j � 400k, jF3j � 800k are to be allocated; disk

capacities of node 1 is 600 k, node 2 is 1,200 k, node 3 is 100 k,

and node 4 is 900 k. OFA results in the following trace (see Fig. 4).

. Initially, v0 is the root.

. Expand v0 by allocating file F3 to get v1 and v2.

. Expand v1 (with f � 0:7) by allocating file F2 to get v3, v4,
and v5.

. Expand v3 (with f � 0:7) by allocating file F1 to get v6

and v7.
. Since node 2 is the ancestor of node 4 in the cut-tree,

expand v6 and obtain v8. Compute f��� 0:96� and obtain

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 975

Fig. 4. The state space tree generated by OFA applied to the example in Section 4.

critical cut �f1; 3g; f2; 4g�. So, f�OP � 0:96; AOP � �2; 1; 2�;
�Xop;Xop� � �1; 3; 2; 4�. Return to the higher level.

. Since the f value of v7 is not less than f�OP , return to the
higher level.

. Since the f values of v4 and v5 are not less than f�OP , return
to the higher level.

. Expand v2 (with f � 0:94) by allocating file F2 to get v9

and v10.
. Expand v9 (with f � 0:94) by allocating file F1 and get v11.
. Since the f value of v11 is not less than f�OP , return to the

higher level.
. Since the f value of v10 is not less than f�OP , return to the

higher level.
. Return to the main program and the program terminates.

4.3 Performance

Here, the execution time of OFA is compared with that of the linear

programming approach (LPA). LPA is implemented by enumerat-

ing all valid allocations and, then, solving the corresponding linear

programming problems to determine the optimal allocation. The

simplex method [16] is used to solve linear programming problems

in LPA. In this work, the LPA and OFA programs are coded in C++

and run on a PC (Pentium 100).
Our experiments investigate the performance of OFA by

varying the number of files to be allocated on a network with

21 nodes and 26 links. File sizes are randomly generated, ranging

from 100 k to 1,500 k. Each node (except the target node) can be

allocated with, at most, two data files. Allocating data files on

target node in disallowed.
Fig. 5 summarizes the performance comparison between the two

algorithms. OFA performs much better than LPA. When the number

of data files exceeds 3, OFA is about 104 times faster than LPA.

5 HEURISTIC FILE ALLOCATION ALGORITHM (HFA)

OFA may fail to yield an optimal solution in a reasonable
amount of time if the number of data files is large. We modify
OFA by letting the searching stops as soon as the first complete
allocation is obtained. The modified algorithm, known as HFA,
has a polynomial-time complexity. The analysis of time
complexity of HFA is as follows: In the phase of constructing
the cut-tree, N ÿ 1 maximum flow computations must be
performed [8]. Since an O�N3� algorithm is available for the
maximum flow computation [13], the cut-tree construction has
time complexity O�N4�. In the second phase of file allocation,
the tree-expanding process has a complexity of O�MN�, where
M is the number of data files to be allocated. Since M is often
small than N3, the complexity of HPA is O�N4�.

To compare HFA and OFA, we consider the test data used in
Section 4. For example, with four data files, OFA visits 16,261
nodes in the search tree, while HFA visits only 81 nodes. For the
case of five data files, the number of nodes visited by OFA rapidly
increases to 346,672, while HFA visits only 101 nodes. The
performance of HFA for the test cases described in Section 4 is
shown in Fig. 6 (as histograms). The X-axis in Fig. 6 is the ratio
COST �AH�=COST �AOP �, where AH denotes the assignment
obtained by HFA and AOP represents the optimal assignment.
The Y -axis shows the percentage of test cases for the various
values on X-axis.

6 CONCLUSION

In this paper, we described a multipath routing model for the
allocation of files in a distributed system using the virtual circuit
scheme. Our research addressed efficient techniques for solving
the file allocation problem (FAP) which attempts to minimize data
transfer time based on the multipath routing. Two algorithms
(OFA and HFA) using the branch & bound technique are
developed to obtain an optimal and a suboptimal allocations.

976 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 5. Performance comparison between LPA and OFA.

Fig. 6. Performance of HFA.

The evaluation functions used in branch & bound are based on the
critical cut concept. The experimental results suggest that the
critical cut approach outperforms the linear programming
approach in finding an optimal file allocation and routing of the
data. The results also suggest that the heuristic file allocation
algorithm (HFA) is a good approximation for the optimal FAP.

Our data transmission model is appropriate for an application
requiring massive data transfer from multiple files, such as
multimedia database retrieval. It is also applicable to different
types of applications that can be modeled as multiple-source-
single-sink flow problems.

ACKNOWLEDGMENTS

The work is partially supported by the National Science Council in
Taiwan under contract No. NSC872213E009094.

REFERENCES

[1] P.S. Chen and J. Akoka, ªOptimal Design of Distributed Information
Systems,º IEEE Trans. Computers, vol. 29, no. 12, pp. 1,068-1,080, Dec. 1980.

[2] R.S. Chen, D.J. Chen, and Y.S. Yeh, ªReliability Optimization of Distributed
Computing Systems Subject to Capability Constraints,º Int'l J. Computers &
Math. with Application, vol 29, no. 4, pp. 93-99, 1995.

[3] W. Chu, ªOptimal File Allocation in a Computer Network,º Computer-
Comm. Systems, pp. 82-94, Englewood Cliffs, N.J.: Prentice Hall, 1973.

[4] L.W. Dowdy and D.V. Foster, ªComparative Models of File Assignment
Problem,º ACM Computer Surveys, vol. 14, no. 2, pp. 287-313, June 1982.

[5] A.E. El-Abd, ªModeling Resources Allocation and Performance Measures
in Distributed Computer Networks,º Proc. IEEE Singapore Int'l Conf.
Networks/Int'l Conf. Information Eng., pp. 581-586, July 1995.

[6] D. Ferrari, A. Banerjea, and H. Zhang, ªNetwork Support for Multimedia:
A Discussion of the Telnet Approach,º Computer Networks and ISDN
Systems, pp. 1,267-1,280, July 1994.

[7] D.V. Foster, L.W. Dowdy, and J.E. Ames, ªFile Assignment in a Computer
Network,º Computer Network, vol. 5, pp. 341-349, Sept. 1981.

[8] T.C. Hu, Combinatorial Algorithms, pp. 60-83. Menlo Park, Calif.: Addison-
Wesley, 1986.

[9] B. Jabbari, ªA Bandwidth Allocation Technique for High Speed Networks,º
Proc. IEEE GLOBECOM '90, vol. 1, pp. 355-359, Dec. 1990.

[10] J.F. Kurose and R. Simha, ªA Microeconomic Approach to Optimal
Resource Allocation in Distributed Computer Systems,º IEEE Trans.
Computers, vol. 38, no. 5, pp. 705-717, May 1989.

[11] A. Lazar and C. Pacifici, ªControl of Resources in Broadband Networks
with Quality of Service Guarantees,º IEEE Comm., pp 66-73, Oct. 1991.

[12] S. Mahmoud and J.S. Riordon, ªOptimal Allocation of Resources in
Distributed Information Networks,º ACM Trans. Database Systems, vol. 1,
no. 1, pp. 66-78, Mar. 1976.

[13] V. Malhotra, M. Pramodh Kumar, and S.N. Maheshwari, ªAn O�jvj3�
Algorithm for Finding Maximum Flows in Networks,º Information
Processing Letters, vol. 7, no. 6, pp. 277-278, 1978.

[14] L. Morgan and K.D. Levin, ªOptimal Program and Data Locations in
Computer Networks,º Comm. ACM, vol. 20, no. 5, pp. 315-322, May 1977.

[15] R. Narsinhan, ªDatabase Allocation in a Distributed Environment:
Incorporating Concurrency Control & Queuing Costs,º Management Science,
vol. 40, no. 8, Aug. 1994.

[16] M.J. Panik, Linear Programming: Mathematics, Theory and Algorithms. Kluwer
Academic, 1996.

[17] R.M. Pathak, A. Kumar, and Y.P. Gupta, ªReliability Oriented Allocation of
Files on Distributed Systems,º Proc. IEEE Symp. Parallel and Distributed
Processing, pp. 886-893, Dec. 1991.

[18] S. Ram and R.E. Marsten, ªA Model for Database Allocation Incorporating
a Concurrency Control Mechanism,º IEEE Trans. Knowledge and Data Eng.,
vol. 3, pp. 389-395, Sept. 1991.

[19] V. Ramamoorthy and K.M. Chandy, ªOptimization of Memory Hierarchies
in Multiprogrammed Systems,º J. ACM, vol. 17, no. 3, pp. 426-445, July
1970.

[20] P.H. Winston, Artificial Intelligence, pp. 81-100. Addison-Wesley, 1992.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 977

