
Reaching Fault Diagnosis Agreement
under a Hybrid Fault Model

Hsien-Sheng Hsiao, Member,
IEEE Computer Society,

Yeh-Hao Chin, Senior Member, IEEE, and
Wei-Pang Yang, Senior Member, IEEE

AbstractÐThe goal of the fault diagnosis agreement (FDA) problem is to make

each fault-free processor detect/locate a common set of faulty processors. The

problem is examined on processors with mixed fault model (also referred to as

hybrid fault model). An evidence-based fault diagnosis protocol is proposed to

solve the FDA problem. The proposed protocol first collects the messages which

have accumulated in the Byzantine agreement protocol as the evidence. By

examining the collected evidence, a fault-free processor can detect/locate which

processor is faulty. Then, the network can be reconfigured by removing the

detected faulty processors and the links connected to these processors from the

network. The proposed protocol can detect/locate the maximum number of faulty

processors to solve the FDA problem.

Index TermsÐByzantine agreement, fault diagnosis agreement, fault-tolerant

distributed system, hybrid fault model, mixed fault model.

æ

1 INTRODUCTION

IN order to maintain the performance and integrity of a distributed
system, fault diagnosis models have been proposed to detect/
locate faulty processors. Under a distributed environment, two
fault diagnosis models, namely nonagreement [1], [23], [25], [32],
[36] and agreement [33], have been presented to identify faulty
processors. With the nonagreement fault diagnosis model, one or
more processors can detect the faulty processors, but the detection
results of one may not agree with those of the others. Conversely,
the detection results of every fault-free processor eventually agree
with those of the others when the fault diagnosis agreement model
is used. In a highly reliable system, such as flight control system
[34], each fault-free processor should have a common agreed upon
a set of faulty processors in the system. After the set of faulty
processors is detected/located by all the fault-free processors, the
system can be reconfigured (eliminate the detected faulty
processors) to make the system's state safe. Therefore, an
agreement approach is more useful than a nonagreement approach
for fault diagnosis in a highly reliable fault-tolerant distributed
system. For this reason, the fault diagnosis agreement (FDA) problem
[33] is considered in this paper. The protocol designed for the FDA
problem should make each fault-free processor detect/locate a
common set of faulty processors, and it must also satisfy the
following conditions:

Consensus: All the fault-free processors identify the common set of

faulty processors. In other words, the number of faulty

processors and the identifiers of these faulty processors are

identical with respect to each fault-free processor; and

Fairness: No fault-free processor is falsely detected as faulty by any

fault-free processors.

The FDA problem is considered in a network model with the

following properties:

1. The underlying network topology does not have to be fully
connected.

2. More than one fault type can exist on the processors (also
referred to as mixed fault model or hybrid fault model [6], [13],
[18], [31]). According to the symptoms of faults, there are
two broad classes of faults, called dormant and arbitrary
faults, classified by Meyer and Pradhan [18]. A dormant
fault reflects the case where the fault consists merely of
omission of messages or delay in sending or relaying
messages while an arbitrary fault can exhibit arbitrarily
behavior.

3. The relative processor speeds and communication delays
are finite and bounded, i.e., a synchronous network [10], [30]
is considered.

For such a network model, we propose a protocol, called

FDAMIX, for solving the FDA problem. FDAMIX is an evidence-

based fault diagnosis approach [25]. FDAMIX first collects the

messages which have accumulated in a Byzantine agreement (BA)

protocol as evidence1 and then detects/locates the common set of

faulty processors by examining the collected evidence. The BA

problem [8], [9], [12], [20], [17], [19] is one of the most important

problems for designing a fault-tolerant distributed system. The

goal of the BA protocol is to make each fault-free processor reach a

common agreement in a general network. Most of the applications

of a distributed system, such as clock synchronization and system

reconfiguration [2], require that agreement be reached among all

the fault-free processors prior to executing the cooperating tasks.

Therefore, a BA protocol can be treated as the building block

(primitive component) or prestep for distributed applications. To

influence the system operations, the symptoms of a faulty

processor may eventually appear in the collected messages during

execution of the BA protocol. Thus, these symptoms can be used to

detect/locate faulty processors.
Traditionally, most of the fault diagnosis protocols, either test-

based approaches [15], [16], [22] or evidence-based approaches [4], [23],

[25], have been designed with single fault type only. In a test-based

approach, when a processor P tests a processor Q, the result of the

test can absolutely specify the healthy condition of Q (whether fault-

free or faulty). However, arbitrary faults can hide their faulty

behavior and pass the test by other fault-free processors [25]; thus,

test-based approaches are not suitable for arbitrary fault. The main

goal of an evidence-based fault diagnosis approach is to handle

arbitrary faults. Shin and Ramanathan [25] proposed an evidence-

based protocol to detect faulty processors. In their protocol, all

faults are treated as arbitrary faults. This treatment ignores the fact

that faulty behaviors of dormant faults are more easily detectable

than those of arbitrary faults. Thus, based on the discussion of the

mixed fault model [13], [18], [27], [28], [31], this protocol is unable

to detect the maximum number of faulty processors if dormant

faults existed. Also, this protocol is a nonagreement approach.
In an asynchronous distributed system, in which message

transmission times and relative processor speeds are both

unbounded, Chandra and Toueg [5] proposed failure detectors

for crash fault on processors. This is an important result since most

of the previous research of fault diagnosis focused on synchronous

network. However, the mixed fault model has not be solved in this

solution. In this paper, synchronous network is considered.

980 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

. H.S. Hsiao is with the Department of Industrial Technology Education,
National Taiwan Normal University, Taipei, Taiwan 106, ROC.
E-mail: hssiu@ite.ntnu.edu.tw.

. Y.-H. Chin is with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan 30043, ROC.

. W.-P. Yang is with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan 30050, ROC.

Manuscript received 27 June 1996; revised 27 Apr. 2000; accepted 20 June
2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102045.

1. An evidence is a diagnosis information received from one processor
that is validated by diagnosis information received from other processors.

0018-9340/00/$10.00 ß 2000 IEEE

As for the agreement approach for fault diagnosis, Wang et al.

[33] proposed a test-based protocol to detect the arbitrary faults.

Similarly to of [13], [18], [27], [28], [31], this protocol is unable to

detect the maximum number of faulty processors if the mixed fault

model is considered.
Table 1 lists the differences among previous protocols and the

proposed protocol. To summarize the above discussion, no

existing fault diagnosis protocol can solve the FDA problem with

hybrid fault model such as the one shown in Fig. 1. In this paper,

we provide such a solution.

2 THE SYSTEM MODEL

The FDA problem is considered for a synchronous network in which

the bounds on processing and the communication delays of fault-

free components are finite [10], [30]. The notations are summarized

below:

. N : the set of all processors, the processor's identifier is
unique, and jN j � n.

. T : the Transmitter of a BA protocol.

. V : the set of all possible values of a BA protocol.

. vt: the initial value of T to be broadcast to all other
processors, and vt 2 V .

. Pa: the number of processors subjected to an arbitrary
fault.

. Pd: the number of processors subjected to a dormant fault.

. c: the connectivity of the underlying network. Following the
Menger theorem [7], at least c disjoint paths exist between
any pairs of processors S and R if the connectivity of the

network is c. For any two paths, the only common
components are S and R.

Since the detected results among the fault-free processors
should be common, the constraints on failures for the FDA

problem should follow those of the BA problem. Based on the
constraints on failures for the BA problem stated in [27], [28], the

FDA problem can be solved if:

(CF1) n > 3Pa � Pd and

(CF2) c > 2Pa � Pd.
The first constraint specifies the total number of processors

required. After the influence of the dormant faults is removed the
fault detection agreement can be reached if nÿ Pd > 3Pa, namely

n > 3Pa � Pd [27]. On the other hand, the second constraint
specifies the required connectivity. In order to decide whether a
processor has sent out its message, the total number of arbitrary
faults must be less than half of cÿ Pd (after removing the influence
of dormant faults), namely c > 2Pa � Pd. Based on these two

constraints, namely CF1 and CF2, the maximum number of
detectable/locatable faulty processors by FDAMIX is Pa � Pd.

3 CONCEPT AND APPROACHES

To solve the fault diagnosis agreement (FDA) problem, the
proposed protocol, called FDAMIX, first collects the received

messages in the BA protocol GPBA [27], designed for mixed fault
model, as evidence, and examines this evidence to detect/locate
faulty processors. Hence, the GPBA protocol will be described first
and then the approaches used by FDAMIX will be presented in the
following subsection.

3.1 The GPBA Protocol

The GPBA protocol can solve the BA problem when the constraints

on failures, namely n > 3Pa � Pd and c > 2Pa � Pd, hold. In the BA

problem, let processor T be the transmitter and vt be the initial
value of T to be broadcast to all other processors. vt belongs to a
finite set, V , of possible values. After execution of GPBA, the
common value of the fault-free processors shall be the value

defined in the following conditions:

Agreement: All fault-free processors agree on the same common

value v.

Validity: If the transmitter is fault-free, then the common value v

should be the initial value vt of the source, i.e., v � vt.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 981

TABLE 1
The Different Assumptions among the Previous Work and the Proposal Protocol on the Fault Diagnosis Problem

*: asynchronous network is considered.

Fig. 1. A network with eight processors and five connectivity.

GPBA uses b�nÿ 1�=3c � 1 message exchange rounds to collect
the messages for computing the common value. Fig. 2 illustrates
the messages which have accumulated in GPBA, stored in an
Information Gathering tree (IG-tree) [3], [27], of level b�nÿ 1�=3c � 1,
of a fault-free processor, say H, in the network shown in Fig. 1. The
messages which have accumulated in the other fault-free proces-
sors are similar. The IG-tree shown in Fig. 2 is constructed and
labeled as follows: After the first message exchange round,
processor H stores the message ª0º received from transmitter T ,
denoted as val�T � � 0, at the root T of its IG-tree. In the second
round, each processor broadcasts the root's value of its IG-tree to
all the processors. If processor B sends a message val�T �
(val�T � � 1) to processor H, then H will store the message received
from B, denoted as val�TB� � 1, at vertex TB of its IG-tree. Vertex
TB is said to correspond to processor B. The processes of the third
round are similar to the second round. Note that each level of an
IG-tree contains a round of received messages and each vertex is
labeled by a nonrepeating sequence of processor identifiers.
Because the label of an IG-tree is nonrepeating, the root (labeled
by the transmitter) has nÿ 1 children and a vertex at the tth level
has nÿ t leaves, as shown in Fig. 2.

In Fig. 2, suppose that the dormant faulty processors C and F
do not send any messages during the entire execution of GPBA. To
remove the influence of processors C and F , the absent rule uses
the values A and RA1 to replace the messages received, directly or
indirectly, from C and F as shown in Fig. 2. With the messages
which have accumulated in GPBA, FDAMIX can be derived and is
proposed in the next subsection.

3.2 Concept and Approaches of FDAMIX

FDAMIX examines the messages which have accumulated from
GPBA for detecting/locating faulty processors. In each round of
GPBA, a processor should broadcast its received messages.
Therefore, a processor can be detected/located as faulty by using
the following evidence: 1) It did not send out its messages; 2) it sent
an illegal message to the other processors; or 3) it sent different
messages to different processors. Using this evidence, we propose
two rules, namely the local fault detection/location rule LR and the
global fault detection/location rule GR, to identify the faulty
processors. We distinguish between local detection/location, which
describes the detection of a single processor by examining the
locally collected messages, and global detection/location, in which all
the fault-free processors have detected/located a common set of
faulty processors. With these two rules, FDAMIX consists of

1. the Message-collection,

2. Agreed-on,
3. Fault-diagnose, and
4. Reconfiguration steps,

used to detect/locate the faulty processors. The main functions of

these steps are shown in Fig. 3.
FDAMIX is illustrated by means of an example, executed on

processor H in the network shown in Fig. 1, that uses the messages

which have accumulated in GPBA, as shown in Fig. 2. The same

procedure is executed by each processor. When FDAMIX is

finished, all the fault-free processors agree on a common set of

faulty processors fT;C; Fg and do not falsely detect any fault-free

processors as faulty, i.e., the conditions of Consensus and Fairness of

the FDA problem are both satisfied. Hence, FDAMIX does solve

the FDA problem.

3.2.1 Step 1: The Message-Collection Step

. Collect the messages which have accumulated in GPBA as
evidence

The goal of the Message-collection step is to collect the

messages which have accumulated in GPBA and to use the

collected messages as evidence for detecting/locating

faulty processors. Following the example of GPBA,

processor H collects the IG-tree, the messages which have

accumulated in GPBA, shown in Fig. 2, as evidence.
. Reach the set of local detected/located faults LDFH .

To influence the execution of GPBA, a faulty processor

may exhibit faulty behavior by sending unhealthy mes-

sages to other processors during the message exchange

phase of GPBA.2 Therefore, a fault-free processor can

detect/locate faulty processors by examining the messages

collected from GPBA (the evidence). Using the following

local fault detection/location rule LR, the fault-free processor

H can detect whether processor Q is faulty.

The Local Fault Detection/Location Rule LR. Let H be a fault-

free processor. H can identify the faulty processor Q if:

LR1: H receives the value A from Q (no message received from Q);

or

LR2: H receives a message m sent by Q and the number of received

copies of m (by FTVC) is not greater than �cÿNULL�=2, where

NULL is the number of copies of null message received by H;

or

LR3: H receives a message m sent by Q and m 62 V fRAig, where

1 � i < b�nÿ 1�=3c.
The conditions LR1, LR2, and LR3 identify that the faulty

processor Q has not sent out its message to H, sent inconsistent

messages from different paths to H, or sent an illegal message to

H, respectively. By LR1, processor H can detect/locate the faulty

processors C and F because the value A is stored in the vertices

TC and TF in the second level of the IG-tree of Fig. 2 (i.e., H does

not receive any messages from C and F). The processor identifiers

of C and F are added to the set of local detected/located faults LDFH
(the subscript is omitted when no confusion will arise), i.e.,

LFDH � LFDH [fC; Fg. The messages received from the pro-

cessors included in LDFH will be ignored in the subsequent steps

of FDAMIX. This means that the faulty processors C and F are

treated as absentees (no further influence on processor H). At the

end of the Message-collection step, an IG-tree, shown in Fig. 2, and

LFDH are passed to the Agreed-on step.

982 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

2. In GPBA, a fault-free processor uses FTVC to send c copies of its
messages through c disjoint paths to other processors [27].

Fig. 2. The messages which have accumulated in GPBA for processor H in Fig. 1.

3.2.2 Step 2: The Agreed-On Step

. Execute n copies of GPBA.

In order to make each fault-free processor obtain a

common set of detected faulty processors, each processor

should exchange the messages collected in the Messages-

collection step with every other processor. Thus, at the

Agreed-on step, each processor executes GPBA with its

IG-tree as the initial value (n copies of GPBA are executed

totally). To remove contamination due to detected faulty

processors (included in LFDH), the received messages

from processors C and F are ignored during execution of

the Agreed-on step. This means that H uses value A to

replace the messages received from C and F as shown in

the IG-treeC and IG-treeF of Fig. 4.
. Reach the common set of IG-trees IG.

After these GPBA protocols are executed, the set of IG-

trees IG � �IG-treeT ; IG-treeB; . . . ; IG-treeH �, as shown in

Fig. 4, can be obtained by the fault-free processor H, where

IG-treei corresponds to the IG-tree broadcast by

processor I. By the agreement and validity conditions of

the BA problem stated in Section 2, the set of IG-trees IG

obtained by the fault-free processors are common (each

fault-free processor has the same IG as shown in Fig. 4).

Then, IG and LFDH are passed to the Fault-diagnosis step.

3.2.3 Step 3: The Fault-Diagnosis Step

. Apply the global fault detection/location rules GR to IG.

The goal of this step is to make each fault-free processor

obtain a common set of faulty processors. The fault-free

processor H applies the global fault detection/location rule

GR to IG to globally detect/locate faulty processors. By

means of a top-down and level-by-level sequence, GR

examines the values stored in the same labeled vertices �

(� �Q, the vertices correspond to processor Q) of IG to

detect whether Q is faulty. Formally, GR can be defined as

follows:

The Global Fault Detection/Location Rule GR. Let H be a
fault-free processor. H can detect processor Q as faulty if:

GR1: the most common value stored in all � of IG is A; or

GR2: the number of the most common value stored in all � (� �Q)
of IG is not greater than nÿ �nA � b�nÿ nA ÿ 1�=3c�, where nA
is the number of value A stored in all �.

Semantically, condition GR1 identifies that processor Q has not
sent out its message to major number of fault-free processors,
while GR2 identifies that Q has sent sufficiently different messages
to different processors. According to the constraint on processors,
namely n > 3Pa � Pd, more than nÿ �nA � b�nÿ nA ÿ 1�=3c� fault-
free processors should receive the identical message sent by
processor Q if Q is fault-free (nA processors do not send out their
messages); otherwise, Q can be globally detected/located as faulty
by GR2 (Q does send sufficiently different messages to different
processors).

Examining this in a top-down and level-by-level se-
quence, GR first examines the values stored in vertices T

of IG as shown in Fig. 4. The value stored in vertices T

of IG-treeT is 1, that of IG-treeB is 1, that of IG-treeC is
A, . . . , and that of IG-treeH is 0, as shown in the first
level of the IG-trees of IG in Fig. 4. In other words, the
global values stored in vertices T of all the processors' IG-
trees examined by GR are �1; 1;A; 1; 1;A; 0; 0�. Using GR2,
therefore, processor T can be globally detected/located as
faulty because the number of the most common value ª1º
stored in vertices T is 4, which does not exceed 5
(� nÿ �nA � b�nÿ nA ÿ 1�=3c� � 8ÿ �2� b�8ÿ 2ÿ 1�=3c�, where
nA is 2). Next, GR examines the values stored in all the vertices
labeled TB at the second level of all the IG-trees shown in Fig. 4.
The corresponding e ight va lues s tored in TB are
�1; 1;A; 1; 1;A; 1; 1� and the number of the most common value
ª1º of TB is 6, so neither GR1 nor GR2 is satisfied. Hence, the fault-
free processor B will not be falsely detected as faulty by
processor H. Similarly, GR examines the values stored in
vertices TC, namely �A;A;A;A;A;A;A;A�. By GR1, processor H
can globally detect/locate that the processor C is in fault.3 This
procedure continually examines the values stored in all the vertices
of IG until all the vertices at the last level are examined by GR.
After this procedure is finished, the faulty processors T , C, and F

have been detected/located by processor H.

. Reach the common set of global detected/located fault
GFDH .

When the faulty processors T , C, and F are globally

detected/located by fault-free processor H, the identifiers

of these faulty processors are added to the set of global

detected faults GFDH (the subscript is omitted when no

confusion will arise), i.e., GFDH � GFDH [fT;C; Fg.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 983

3. The major goal is to detect/locate which processor is in fault and
where it is located. The fault type is irrelevant and processor C's fault type
can even be treated as dormant.

Fig. 3. The procedure of FDAMIX.

3.2.4 Step 4: The Reconfigured Step

After the processor H obtains the set of faulty processors fT;C; Fg,
the configuration of the network can be reconstructed by
eliminating the processors T , C, and F , and the links connected
to these faulty processors can also be eliminated, as shown in Fig. 5.

Finally, set LFDH � LFDH ÿGFDH and GFDH � fg. Since
Transmitter T is globally detected as faulty, a leader election protocol

[11], [26] should be executed by the fault-free processors to elect a

new Transmitter.

4 ANALYSIS AND EVALUATION

FDAMIX is an evidence-based fault diagnosis protocol which not

only detects faulty processors that can be subjected to mixed faults,
but also makes each fault-free processor obtain a common set of
faulty processors. The following primitives are used to construct

FDAMIX.

. COLLECT MESSAGE�m;Q�: Collect message m sent by
processor Q.

. CREATE�Q; v�: Create the vertex Q and set val�Q� � v.

. UNFOLD�m; r�: According to the structure of the rth level
of IG-tree, unfold the message m.

. LR���: Apply the local fault detection rules LR to the
vertex � of IC-tree.

. GR���: Apply the global fault detection rules GR to the
vertex � of the set of IC-trees.

. GPBA�T; vt�: The transmitter T starts the GPBA protocol
with the initial value vt.

. ELIMINATE�Q�: Eliminate processor Q and the links
connected to Q from the network.

Using the above primitives, the formal presentation of FDAMIX
can be stated as follows:

Protocol FDAMIX (for each processor P)

begin

984 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 4. The set of IG-trees IG obtained for processor H.

/* Step 1: Message-Collection Step */

COLLECT MESSAGE�m;T �;
CREATE�T;m�;
LR�T �;
for r � 2 to b�nÿ 1�=3c � 1 do

begin

for each Q 2 N do

begin

COLLECT MESSAGE�m;Q�;
UNFOLD�m; r�;
for each � 2 m do

begin

v � val���;
CREATE��Q; v�;
LR��Q�;

end

end;

/* Step 2: Agreed-On Step */

/* n copies of GPBA are executed in parallel */

for each Q 2 N do PARALLEL

GPBA�Q; IG-treeQ�;
/* The common set of IG-trees is obtained */

set IG � �IG-tree1; . . . ; IG-treeQ; . . . ; IG-treen�;

/* Step 3: Fault-Diagnose Step */

for each vertex � 2 IG-tree do

GR���;

/* Step 4: Reconfiguration Step */

for each Q 2 GFDp do

ELIMINATE�Q�;
set N � N ÿGFDp;

set LFDp � LFDp ÿGFDp;

set GFDp � fg;
end.

4.1 Correctness

The goal of FDAMIX is to solve the FDA problem; hence, FDAMIX

can be proven from the fact that the set of global detected/located

faulty processors satisfies the conditions of consensus and fairness

stated in Section 1. The basic concept for proving the correctness of

FDAMIX is as follows: Following GPBA, Lemma 1 shows that the

common set of IG-trees IG can be reached among each fault-free

processor. Using LR and GR, a fault-free processor does not treat

other fault-free processors as faulty; thus, FDAMIX satisfies the

fairness condition as stated in Lemma 2. Lemma 3 shows that each

fault-free processor can globally detect/locate a faulty processor R

by using FDAMIX if R has not sent out its messages, sent an illegal

message to all processors, and/or sent different messages to

different processors, i.e., the consensus condition is proven to be

satisfied. Both consensus and fairness conditions are satisfied;
thus, FDAMIX does solve the FDA problem as stated in Theorem 1.
For space considerations, we omit all detailed proofs.

Lemma 1. After the Agreed-on step, each fault-free processor obtains a
common set of IG-trees IG if n > 3Pa � Pd and c > 2Pa � Pd.

Lemma 2. FDAMIX satisfies the fairness condition if n > 3Pa � Pd and
c > 2Pa � Pd.

Lemma 3. FDAMIX satisfies the consensus condition if n > 3Pa � Pd
and c > 2Pa � Pd.

Theorem 1. FDAMIX does solve the FDA problem if n > 3Pa � Pd and
c > 2Pa � Pd.

The complexity of FDAMIX is defined in terms of 1) the number
of messages required and 2) the number of detectable faulty
processors. The following lemma and theorems state that FDAMIX
uses O�cn2 � tcn3� messages to solve the FDA problem and that
FDAMIX can detect/locate the maximum number of faulty
processors as stated in Theorem 2.

Lemma 4. FDAMIX solves the FDA problem by using O�cn2 � tcn3�
messages.

Theorem 2. The total number of detectable/locatable faulty processors by

FDAMIX, namely Pa � Pd, is maximum if n > 3Pa � Pd and
c > 2Pa � Pd.

5 CONCLUSIONS AND DISCUSSION

An evidence-based fault diagnosis protocol FDAMIX has been
proposed to solve the FDA problem with mixed fault model on
processors. FDAMIX collects the messages which have accumu-
lated in a BA protocol (GPBA) as evidence for detecting/locating
faulty processors. FDAMIX can make each fault-free processor
obtain a common set of faulty processors. It can detect/locate the
maximum number of tolerable faulty processors as stated in
Theorem 3.

Shin and Ramanathan [25] proved that no fault diagnosis
protocol for arbitrary faults is completeÐall arbitrary faults can be
detected. Following this property, FDAMIX is not complete. For
example, an arbitrary faulty processor Q always sends different
messages to different processors, but b�nÿ Pd ÿ 1�=3c copies of
these messages are identical. By LR and GR, Q cannot be globally
detected as faulty because insufficient evidence can be obtained to
accuse Q. However, FDAMIX still satisfies the consensus and
fairness conditions as stated in Theorem 1. Since the time of fault
occurrence is unpredictable, a faulty processor Q can exhibit faulty
behavior during the message exchanging of the Agreed-on step.
However, the faulty behaviors of Q in the Agreed-on step do not
effect the FDAMIX to solve the FDA problem. When Q is a
dormant fault, the messages received from Q are replaced by
value A and value A is ignored in the Fault-diagnosis step. Thus,
the contamination of Q can be removed and the common set of
faulty processors can be detected/located in the Fault-diagnosis
step. If Q has an arbitrary fault, it may send different IG-treeQ to
different processors in the Agreed-on step. However, Q cannot
influence the IG-trees sent by faulty-free processors and a fault-free
processor sends its IG-tree to all the processors. By the definition of
the Agreement condition of the BA problem, each fault-free
processor can obtain a common set of IG-trees IG after the
Agreed-on step is executed as stated in Lemma 1. Using GR, the
common set of faulty processors can be reached by each fault-free
processor in the Fault-diagnosis step as shown in Fig. 4.

Since FDAMIX is designed for processor failures only, link

failures [21], [24], [26], [34], [35] are treated as processor faults.

Because the link diagnosis is important in a distributed system

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 985

Fig. 5. After the Reconfiguration step.

[14], [21], [26], [34], [35], our future work will extend FDAMIX to

handle the case where both processors and links are subjected to

mixed faults.

REFERENCES

[1] J.C. Adams and K.V.S. Ramarao, ªDistributed Diagnosis of Byzantine
Processors and Links,º Proc. Symp. Distributed Computing Systems, pp. 562-
569, 1989.

[2] M. Barborak, M. Malek, and A. Dahbura, ªThe Consensus Problem in Fault-
Tolerant Computing,º ACM Computing Surveys, vol. 25, no. 2, pp. 171-220,
June 1993.

[3] A. Bar-Noy, D. Dolev, C. Dwork, and R. Strong, ªShifting Gears: Changing
Algorithms on the Fly to Expedite Byzantine Agreement,º Information and
Computation, vol. 97, pp. 205-233, 1992.

[4] R.W. Buskens and R.P. Bianchini, ªDistributed On-Line Diagnosis in the
Presence of Arbitrary Faults,º Proc. Symp. Fault-Tolerant Computing, pp. 470-
479, 1993.

[5] T. Chandra and S. Toueg, ªUnreliable Failure Detectors for Asynchronous
Systems,º Proc. 10th ACM Symp. Principles of Distributed Computing, pp. 325-
340, 1991.

[6] F. Cristian, ªUnderstanding Fault-Tolerant Distributed Systems,º Comm.
ACM, vol. 34, no. 2, pp. 57-78, Feb. 1991.

[7] N. Deo, GRAPH THEORY with Applications to Engineering and Computer
Science. Englewood Cliffs, N.J.: Prentice Hall, 1974.

[8] D. Dolev, ªThe Byzantine Generals Strike Again,º J. Algorithms, vol. 3, no. 1,
pp. 14-30, 1982.

[9] M. Fischer and N. Lynch, ªA Lower Bound for the Assure Interactive
Consistency,º Information Processing Letters, vol. 14, no. 4, pp. 183-186, June
1982.

[10] M. Fischer, M. Paterson, and N. Lynch, ªImpossibility of Distributed
Consensus with One Faulty Process,º J. ACM, vol. 32, no. 4, pp. 374-382,
Apr. 1985.

[11] H. Garcia-Molina, ªElection in a Distributed Computing System,º IEEE
Trans. Computers, vol. 31, no. 1, pp. 48-59, Jan. 1982.

[12] L. Lamport, R. Shostak, and M. Pease, ªThe Byzantine Generals Problem,º
ACM Trans. Programming Languages and Systems, vol. 4, no. 3, pp. 382-401,
July 1982.

[13] P. Lincoln and J. Rushby, ªA Formally Verified Algorithm for Interactive
Consistency under a Hybrid Fault Model,º Proc. Symp. Fault-Tolerant
Computing, pp. 402-411, 1993.

[14] J. Martin, Telecommunications and the Computer, third ed. Englewood Cliffs,
N.J.: Prentice Hall, 1990.

[15] S. Mallela and G.M. Masson, ªDiagnosable Systems for Intermittent
Faults,º IEEE Trans. Computers, vol. 27, no. 6, pp. 560-566, June 1978.

[16] S. Mallela and G.M. Masson, ªDiagnosis without Repair for Hybrid Fault
Situations,º IEEE Trans. Computers, vol 29, no. 6, pp. 461-470, June 1980.

[17] B.M. McMillin et al., ªByzantine Fault-Tolerance through Application
Oriented Specification,º Proc. Computer Software and Application Conf.,
pp. 347-353, 1987.

[18] F.J. Meyer and D.K. Pradhan, ªConsensus with Dual Failure Modes,º IEEE
Trans. Parallel and Distributed Systems, vol. 2, no. 2, pp. 214-222, 1991.

[19] H.G. Molina, F. Pittelli, and S. Davidson, ªApplications of Byzantine
Agreement in Database Systems,º ACM Trans. on Data Systems, vol. 11,
no. 1, pp. 27-47, Mar. 1986.

[20] M. Pease, R. Shostak, and L. Lamport, ªReaching Agreement in Presence of
Faults,º J. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980.

[21] A. Pelc, ªReliable Communication in Networks with Byzantine Link
Failures,º NETWORKS, vol. 22, no. 5, pp. 441-459, Aug. 1992.

[22] F. Preparata, G. Metze, and R. Chien, ªOn the Connection Assignment
Problem of Diagnosable Systems,º IEEE Trans. Computers, vol. 16, no. 6,
pp. 848-854, 1967.

[23] K.V.S. Ramarao and J.C. Adams, ªOn the Diagnosis of Byzantine Faults,º
Proc. Symp. Reliable Distributed Systems, pp. 144-153, 1988.

[24] V. Ramaswami and J.L. Wang, ªAnalysis of the Link Error Monitoring
Protocols in the Common Channel Signaling Network,º IEEE/ACM Trans.
Networking, vol. 1, no. 1, pp. 31-47, Feb. 1993.

[25] K. Shin and P. Ramanathan, ªDiagnosis of Processors with Byzantine Faults
in a Distributed Computing Systems,º Proc. Symp. Fault-Tolerant Computing,
pp. 55-60, 1987.

[26] G. Singh, ªLeader Election in the Presence of Link Failures,º IEEE Trans.
Parallel and Distributed Systems, vol. 7, no. 3, pp. 231-236, Mar. 1996.

[27] H.S. Siu, Y.H. Chin, and W.P. Yang, ªByzantine Agreement in the Presense
of Mixed Faults on Processors and Links,º IEEE Trans. Parallel and
Distributed Systems, vol. 9, no. 4, pp. 335-345, Apr. 1998.

[28] H.S. Siu, Y.H. Chin, and W.P. Yang, ªA Note on Consensus on Dual Failure
Modes,º IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 3, pp. 225-
230, Mar. 1996.

[29] M. Stahl, R. Buskens, and R. Bianchini, ªOn-Line Diagnosis in General
Topology Networks,º Proc. 1992 IEEE Workshop Fault-Tolerant Parallel and
Distributed Systems, pp. 114-121, 1992.

[30] N. Suri, M.M. Hugue, and C.J. Walter, ªSynchronization Issues in Real-
Time Systems,º Proc. IEEE, vol. 82, no. 1, pp. 41-53, Jan. 1994.

[31] P. Thambidurai and Y.-K. Park, ªInteractive Consistency with Multiple
Failure Modes,º Proc. Symp. Reliable Distributed Systems, pp. 93-100, Oct.
1988.

[32] N.H. Vaidya and D.K. Pradhan, ªSafe System Level Diagnosis,º IEEE Trans.
Computers, vol. 43, no. 3, pp. 367-370, Mar. 1994.

[33] S.C. Wang, Y.H. Chin, and K.Q. Yan, ªReaching a Fault Detection
Agreement,º Proc. Int'l Conf. Parallel Processing, pp. 251-258, 1990.

[34] K.Q. Yan, Y.H. Chin, and S.C. Wang, ªOptimal Agreement Protocol in
Byzantine Faulty Processors and Faulty Links,º IEEE Trans. Knowledge and
Data Eng., vol. 4, no. 3, pp. 266-280, June 1992.

[35] C.L. Yang and G.M. Masson, ªHybrid Fault Diagnosability with Unreliable
Communication Link,º IEEE Trans. Computers, vol. 37, no. 2, pp. 175-181,
Feb. 1988.

[36] C.L. Yang and G.M. Masson, ªA Distributed Algorithm for Fault Diagnosis
in Systems with Soft Failures,º IEEE Trans. Computers, vol. 37, no. 11,
pp. 1,476-1,480, Nov. 1988.

986 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

