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Abstract—This paper presents a hardware efficient design for
the discrete Fourier transform (DFT). The proposed design not
only applies the constant property, but also exploits the numerical
property of the transform coefficients. DFT is first formulated as
cyclic convolution form to make each DFT output sample com-
putations have the same computation kernels. Then, by exploring
the symmetries of DFT coefficients, the word-level hardware
sharing can be applied, in which two times the throughput is
obtained. Finally, bit-level common subexpression sharing can be
efficiently applied to implement the complex constant multipli-
cations by using only shift operations and additions. Though the
three techniques have been proposed separately for transform,
this paper integrates the above techniques and obtains additive
improvements. The I/O channels in our design are limited to
the two extreme ends of the architecture that results in low I/O
bandwidth. Compared with the previous memory-based design,
the presented approach can save 80% of gate area with two-times
faster throughput for length = 61. The presented approach
can also be applied to power-of-two length DFT. Similar efficient
designs can be obtained for other transforms like DCT by applying
the proposed approach.

Index Terms—Common subexpression sharing, cyclic convolu-
tion, DFT.

I. INTRODUCTION

T HE DISCRETE Fourier transform (DFT) is an important
function widely used in many image and signal processing

applications. Because of the computational complexity, the fast
algorithms which reduce the number of operations greatly or
the hardware solutions to accelerate the computation can be
adopted for many real-time applications. The fast Fourier trans-
form (FFT) algorithms are attractive for low latency and high
throughput, but its global communication complexity makes it
unsuitable for VLSI hardware design. Although the DFT sys-
tolic array [1]–[7] is VLSI oriented because of its modularity
and regularity; however, it is still severely limited by the area
consumption. In the existing DFT systolic arrays, multipliers are
the fundamental computing elements in PE’s. Since multipliers
consume a large silicon area, the limited chip size puts a severe
limitation to the allowable number of PE’s. To enable constant
multiplications, the memory-based designs [8] proposed cyclic
convolution-based architecture. The cyclic convolution-based
design has the features of simple I/O behavior and removing

Manuscript received June 1999; revised May 2000. This paper was recom-
mended by Associate Editory M. Bayoumi.

T.-S. Chang and C.-W. Jen are with the Department of Electronics Engi-
neering, National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.

J.-I. Guo is with the Department of Electronics Engineering, National
Lien-Ho College of Technology, Miao-Li, Taiwan, R.O.C.

Publisher Item Identifier S 1057-7130(00)07760-0.

data redundancy in the DFT coefficients. However, their designs
are still not efficient enough, since they only apply the constant
property of transform coefficients.

This paper is to develop a hardware-efficient DFT architec-
ture [9]. Since DFT coefficients are constant for fixed-point
transforms, we can expand constant multiplications with shift
operations and additions and sharing the common ones. This
technique is called common subexpression sharing [10]–[13].
Common subexpression sharing has been shown to be very
effective to reduce the hardware cost of multiple constant
multiplications, especially for filter-like operations. However,
direct application of common subexpression sharing to the
transforms is not efficient [12], since only limited bit-level
sharing is considered. The proposed approach improves the
sharing efficiency by first considering the whole word-level
coefficient sharing and then the bit-level subexpression sharing.
Such multi-level sharing not only reduces hardware cost
greatly, but also increases the throughput by two times.

To facilitate multi-level sharing, we reformulate the DFT co-
efficient matrix as cyclic convolution form. Since coefficients
in cyclic form are regularly propagated at the rows of the co-
efficient matrix, coefficient multiplication will have the max-
imum similarity between different output computations. So, we
can use constant coefficient multiplications instead of variable
multiplications to implement the DFT. After cyclic reformula-
tion, we can further use word-level sharing to explore the nu-
merical relationship of coefficients, e.g., the symmetrical prop-
erty of DFT coefficients that is often used in FFT derivations. In
this paper, we first use the even and odd symmetries of the co-
sine and the sine functions to combine multiplications with the
same value of the sine or cosine constant together. This reduces
the constant multiplication number by a factor of two. Then we
take advantage of the symmetries of the sine and cosine as func-
tions of frequency index. Thus, only half of the outputs need
to be calculated. So we calculate two output values at a time
and obtain two times the throughput. After applying word-level
sharing to DFT, we can apply bit-level sharing to explore sim-
ilarities of bit-level operations. Though the three design tech-
niques of cyclic convolution formulation [8], [14], word-level
sharing [15], and bit-level sharing [10]–[13] have been proposed
previously and applied separately to the transform design, they
achieve maximum hardware saving and throughput increasing
when they are applied together to the designs. The first tech-
niques reformulate the transform equations into cyclic convo-
lution form to make each DFT output have the same computa-
tion kernels instead of multiple ones. Then the second and third
techniques complement each other by exploring sharing both
in word level and bit level. Comparing the design only with
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Fig. 1. CSD-represented coefficients and common subexpression, whereN

denotes�1.

common subexpression sharing, the combined techniques can
save half of the hardware cost at the same throughput.

This paper is organized as follows. We first introduce the
technique of common subexpression sharing in Section II. Then,
we present the algorithm formulation of DFT in Section III.
Section IV illustrates the proposed architecture design based on
Section III. Section V lists the performance and the comparisons
of hardware cost with other designs. Finally, this paper is con-
cluded in Section VI.

II. REVIEW OF COMMON SUBEXPRESSIONSHARING

Common subexpression sharing shares the subexpression
among several multiplication-accumulation operations so that
the total operation count is reduced. For example, Fig. 1 shows
the FIR filter coefficients represented by the canonical signed
digit (CSD) form. The circled groups of digits have the same
subexpression, so they can share the same computation unit.
The filtering operation is

(1)

where denotes “ ” sample delay of and then “” digit
right shifts of the signal. If we define common subexpression

(2)

we can rewrite the filtering operation as

(3)

Thus, by sharing the common subexpression, the number of ad-
ditions is reduced from six to four. Fig. 2 shows the computa-
tion flow of the filter example. The common subexpression part
is first calculated, and then we shift or negate the subexpression
for other computations. The hardware to generate different con-
stant multiplications is called adder network in the paper. By
using subexpression sharing, much computation can be saved if
we can maximally find these common subexpressions.

The drawback of the existing subexpression sharing
approaches is that they only deal directly with filter type oper-
ations as shown in Fig. 1. When they are applied to transforms
such as DFT, they must be subsequently applied twice [12],
which is less effective than optimizations that consider the
entire solution space at once. Besides, unlike the filter input
having delay dependency, the intermediate result, such asin
the example, cannot be delayed and used by other summations
since each input of the transform does not have any delay
relationship. These problems severely limit the effectiveness

Fig. 2. Computation flow of the filter example.

of the existing subexpression sharing when it is applied to
transform designs.

A promising approach to solve above problems is to refor-
mulate transforms into filter type operations such that subex-
pression sharing methods can be applied. From the mathemat-
ical viewpoints, both transforms and filters use the inner prod-
ucts as their basic operations. On the other hand, from the view-
point of the signal flow graph, input data of filter operations has
the unit delay dependency, while input data of transforms does
not. To create such pseudo-dependency, the transforms can be
rewritten as filter operations. Therefore, this paper uses the algo-
rithm based on the data permutations introduced in [8] (that are
based on [14]) to reformulate transforms into filter operations
with cyclic convolution. By using cyclic convolution, input data
of the transforms are forced to have pseudo delay dependency
and to be filter-like operations.

III. A LGORITHM FORMULATION OF DFT

A. Cyclic Convolution Formulation for DFT

The 1-D DFT of the input sequence
can be generally expressed as

(4)

where is assumed to be . From the derivation
of our previous approaches [8] for prime length DFT, we can
formulate (4) as

(5a)

and

(5b)

where

(5c)

and “ ” denotes the result of “ modulo operation” for
short and “ ” is a primitive element. From (5c), we can find
that the sequence is the cyclic convolution of the sequence
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and the kernels
, and .

Let us take a 1-D five-point DFT as an example. The 1-D
five-point DFT of the input sequence
is expressed as

(6a)

where . By using the formulations (5a)–(5c)
and , a cyclic convolution form can be expressed as

(6b)

or in an alternative form as

(6c)

This equation shows a commutative representation of the cyclic
convolution in previous form. In (6c), each DFT output compu-
tation except shares the same kernel instead of multiple
kernels as in (6a). By using above formulation, (6c) can be im-
plemented by a constant coefficient filter-like architecture in-
stead of a multiplier-based design, which can save much area
cost.

B. Symmetry Exploration of the Cyclic DFT

Take the 1-D five-point DFT as an example. First we expand
the DFT coefficients and notice the even symmetries of cosine
function , , where

, and the odd symmetries of sine function, ,
, where

(7)

So, we can combine the multiplications with the same constant
cosine coefficient together. This reduces the constant multipli-
cations by a factor of two. Exploiting the symmetry properties of

cosine and since functions, the sequence
in (6c) can be expressed as

(8a)

(8b)

where , ,
is the real part, and is the imaginary part. Notice that

the even part matrix has the same upper and lower halves, and
the odd part matrix has the same absolute value of upper and
lower halves, just with different signs. So, constant multiplica-
tions [e.g., ] appear in both and ,

. So only the unique constant multiplica-
tions in need to be calculated.
The output can be obtained
simultaneously by negating the intermediate results of of

. Thus, compared with (6c),
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Fig. 3. (a) Proposed architecture design for the five-point DFT. (b) Separated calculation ofY i(0). (c) Permutation stage. (d) Cosine filter stage. (e) Sine filter
stage.

(8b) calculates two output values simultaneously but with sim-
ilar hardware costs as (6c). We obtain two times the throughput
at little overhead.

C. Formulation for Nonprime-Length DFT

For nonprime-length DFT, e.g., power-of-two, we can use
chirp- transform [15] to formulate -point DFT into cyclic
convolution form and then explore its symmetry properties.
Chirp- transform can formulate any-length DFT into cyclic
convolution but requires two extra multiplications, one for
preprocessing, and one for postprocessing. However, for
small, the extra multiplications can be reduced to hardwired
multiplications. While is large, the area portion of the two
extra multiplications will even be quite small compared to other
computing blocks.

IV. A RCHITECTUREDESIGN

Fig. 3(a) shows the proposed architecture for-point DFT.
This architecture implements the equation

(9)

In the figure, , ,
, and . For illustration purposes,

we take the five-point DFT as an example. The input data are
first reordered to form cyclic convolution input. So the overall
architecture is a transposed direct form for computing output

for th DFT computation. The output is gen-
erated by a separate accumulator shown in Fig. 3(b) since it is
not in the cyclic formulation. In Fig. 3(b), at the first cycle we se-
lect input and add it with and . Then its result

is accumulated with the sum of and to obtain .
The permutation stage shown in Fig. 3(c) is simply to reorder
the input into sequence order .
This function can be easily constructed by four banks of RAM
and address generators. The first two banks store the data used
in the current block of computation, and the second two banks
store the incoming data for the next block of computation. By
enabling different banks for consecutive DFT computations, we
can obtain the desired input without multiplexers.

After the permutation stage, the two input and
are first combined together to generateand , and then

feed into the filter stages that generate the different constant
multiplications. Fig. 3(d) and (e) shows the cosine filter stage
that performs the multiplications with the cosine coefficients
( and ), and the sine filter stage that performs the
multiplications with the sine coefficients ( and ),
respectively. The addition of only appears in the cosine
stage. To save more hardware cost, the real and imaginary part
of can be interleaved to enter one cosine filter stage, since the
two cosine filter stages in the even part are the same. Similar
method can be applied to the sine filter stage, too. The adder
network in the filter stage can be derived as introduced in the
previous section. The output of filter stage,, , , and
are added together as in (8a) to form the final output of the DFT.

Fig. 4 shows the function of the cosine filter stage in Fig. 3(d)
by using the data flow diagram. The data flow of the sine filter
stage is also similar, so we will not show it. In the first

cycles of th transform computation, the input is
multiplied with constant cosine coefficients and accumulated
with the results of previous input. Then the results are propa-
gated through the delay chains. The first output
of for each transform are routed back to the first tap to ac-
cumulate succeeding tap output. At the th cycle of
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Fig. 4. Data flow diagram in the Fig. 3(d), wherem, n, p, q, andr are the observing signals and the region.

TABLE I
HARDWARE COST COMPARISONS OFVARIOUS DESIGNS FORCOMPLEX INPUT

Note: The above cost comparisons are all in terms of words. For comparison purpose, the cost of the

adder network is estimated using the number of adders based on the results of [11].

each block of transform, since a new input sample of the next
block of transform will come in, the intermediate results are par-
allel saved into parallel-in serial-output (PISO), as depicted in
Fig. 3(d) and (e). Then the data in PISO are serially shifted out
and accumulated with . Thus, we can get the DFT output
by combining the output of filter stages. As shown in Fig. 4,
there is no extra time between the adjacent data bundle for con-
secutive calculations. The hardware overhead paid for this is one
extra addition, and registers and multiplexers in PISO that are
linearly increased with the DFT length. Though DFT is being
formulated as a cyclic convolution form, the block input, instead
of the continuous input of DFT, results in a nonoverlapped com-
putation and efficiency loss. To prevent such loss, the PISO is
added to the filter stages for overlapped computation of adjacent
blocks. Extension of the proposed design to DHT is straightfor-
ward, since both DFT and DHT share the similar kernels. By
adding the real and imaginary DFT outputs of Fig. 3(a), we can
obtain the DHT output. Similar designs can also be applied to
other prime length DFT, DCT and DST by using different net-
work designs.

V. PERFORMANCEANALYSIS AND COMPARISONS

By carefully examining the architecture shown in Fig. 3, we
can summarize their hardware cost in Table I for various length

(excluding the address generator). For real input, the hard-
ware cost is half of that in Table I. For comparison, we also sum-
marize the hardware cost of the memory-based design [8] in the
Table I, since memory-based design also uses cyclic convolution
approach and is similar to our design. As shown in the table, the
proposed design has lower hardware cost. The hardware savings
are due to the combination of cyclic formulation, subexpression
sharing and symmetry exploration. Also, the I/O channels are
limited to the extreme ends of the architectures as that in [8].

Fig. 5. Gate-area ratio of proposed design versus the memory-based design [8]
for different word length and transform length. The word length of coefficient
and input is the same for each curve.

The number of cycles to complete one DFT is , half
of that in [8]. The cycle time is limited by the

. depends
on the subexpression sharing results of coefficients. Usually, no
more than stages of are required, where
is the wordlength of the coefficients. This cycle time is smaller
than that in [8]. Besides, the throughput of the proposed design
is two times that in [8], since two output values are calculated
at a time.

To illustrate the advantages of the proposed design, we weight
these hardware items with their equivalent gate counts [17].
Fig. 5 shows the gate-area ratio plot of the proposed design
versus the memory-based design [8]. In the figure, the adder
numbers used in the adder network are derived for each trans-
form length and word length. Those numbers are very close
to the estimated value in Table I. For gate-count estimation of
ROM and RAM, we use one gate count area345.6 m . The
costs of adder, multiplexer (MUX), and flip-flop (DFF) are
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TABLE II
COMPARISONS OFSEVERAL DFT DESIGNS. ALL ARE FOR REAL NUMBER COMPUTATIONS

seven gates, three gates, three gates, and eight gates, respec-
tively. As shown in the figure, the hardware saving of the pro-
posed design gradually increases as the DFT length increases.
For example, in the case of a 16-bit coefficient for 61, the
proposed design can save up to 80% of gate area. If we compare
the two designs at the same throughput, the proposed design can
save up to 90% of gate area due to two times the throughput. The
gate count of the proposed design for , and 16-bit coef-
ficient case is estimated to be 99 760, including the RAM cost.
The interconnection area does not have strong impact in modern
IC process with five or more interconnection layers. The speed
of the above case is estimated to be 5.12 ns, which is smaller
than the designs in [8] (8.5 ns), and a multiplier (21.31
ns), in other multiplier-additions based designs.

Other -point DFT systolic array architectures often
require N or more processors. Each processor requires one
complex multiplication–addition (CMAC), which turns out to
be additions ( is the word length of the
input). These CMAC-based designs have higher hardware
cost than our proposed design due to variable complex
CMAC instead of the adder-only design in our approach.
The complex multiplications result in very high hardware
cost and long cycle time. The design in [5] requires
CMAC processors and each processor requires one external
coefficient input that results in high I/O bandwidth. Designs
in [6]–[7] keep I/O channels in the terminals but also
require CMAC processors. The design in [4] explores
the symmetry of DFT but still requires complex multi-
pliers and complex adders, which is still higher than the
proposed design. The drawback of the above designs is that
they propagate the constant DFT coefficients. Table II lists
a comparison of these designs. In this table, we include the
adder network cost (16-bit case) in the adder cost for the
proposed design. We only list the adder and register cost
since they occupy most of the area. From the table, we can
easily find that CMAC-based designs require larger area
cost than ours. The design in [17] uses cyclic convolution
and bit-level implementation, but no sharing is exploited in
their designs. So, it also requires more area cost.

To summarize, the proposed architecture has several
distinctive features. First, due to cyclic formulation and
filter-based design, the I/O channels of the architecture

are in the extreme ends of the architecture that results
low I/O bandwidth. Second, since word-level sharing ex-
ploits the symmetries of DFT coefficients, two times the
throughput can be obtained with little overhead. Third, all
the constant multiplications are efficiently realized by only
shift operations and additions, which are minimized by the
subexpression sharing technique. Thus, we can save up to
80% of area cost and attain low hardware costs. Our method
results in faster speed and better power efficiency due to
a saving of redundant computations and sharing common
computation.

VI. CONCLUSION

In this paper, we propose a hardware-efficient architecture
for the DFT designs. The proposed architecture combines
the advantages of cyclic convolution, word-level sharing,
and bit-level subexpression sharing. The transform equation
is reformulated with cyclic convolution, such that subex-
pression sharing can be efficiently applied to save hardware
costs. Symmetry properties of DFT coefficients are explored
to enhance the throughput by a factor of two. Comparing
to the previous memory-based design [8], the presented
approach can save up to 80% of gate count with two times
the throughput for length 61. This design method can
be readily applied to other prime-length DFT, DCT, and
DHT designs. A restriction of the proposed DFT design is
that it only deals with prime-length DFTs. This restriction
should not put a severe limitation on the DFT because we
can append zeros to a nonprime-length input sequence to
attain a prime length. This operation affects the energy of
the output but has no effect on its shape. Another approach
for nonprime-length DFT is to use the cyclic formulation by
the Chirp- transform method [15]. It can be used together
with the proposed approach for an efficient implementation.
However, the Chirp- transform method will introduce ad-
ditional pre-and post-multiplications. Other nonprime length
DCTs, such as 1-D eight-point DCTs, can also use this
approach in implementation by reformulating it into cyclic
convolution [18].
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