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Abstract: We consider a class of partitioning problems where the partitioned set is a finite set of
real numbers and the objective function of a partition is a function of the vector whose coordinates
are the sums of the elements in each part of the given partition (the number of such parts is assumed
given). We obtain an explicit solution of such partitioning problem with polynomial complexity
bounds. c© 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 531–540, 2000

1. INTRODUCTION—PROBLEM FORMULATION
AND REVIEW OF MAIN RESULTS

Throughout, we let n be a positive integer andN ≡ {1, . . . , n}. These parameters will be fixed
throughout this paper.

A partition is an ordered collection of sets π = (π1, . . . , πp), where π1, . . . , πp are pairwise
disjoint, nonempty subsets of N whose union is N . Given such a partition π, we refer to p as
its size and to the sets π1, . . . , πp as its parts. Also, if the number of elements in the parts of a
partition π = (π1, . . . , πp) are n1, . . . , np, respectively, we refer to (n1, . . . , np) as the shape of
π; of course, in this case

∑p
j=1 nj = |N | = n. Partitions of size p are called p-partitions and

partitions of shape (n1, . . . , np) are called (n1, . . . , np)-partitions.
Let A be an n-vector. For a p-partition π = (π1, . . . , πp) we define the π-summation-vector of

A, denoted Aπ , by

Aπ ≡
∑
t∈π1

At, . . . ,
∑
t∈πp

At

T ∈ Rp. (1)

Our main goal is to study partitioning problems defined as follows:
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Partitioning problem over a 1-dimensional parameter space: Maximize a real-valued function
F (·) over a set of p-partitions Π, where the function F (·) is defined on Π through an n-vector A
and a function C(·) on Rp (or a subset thereof) by F (π) = C(Aπ) for each π ∈ Π. A partition
that maximizes F (·) over Π is then called optimal over Π. Special cases of interest are convex and
linear partitioning problems corresponding to cases, where C(·) is convex or linear, respectively.
In particular, if C(·) is linear, it is represented by a vector C ∈ Rp such that C(X) = CTX for
each X ∈ Rp.

Partitioning problems where the partitioned elements are vectors, rather than real numbers,
are considered in the literature; see [5, 6]. These, more general problems, are referred to as the
partitioning problem over multidimensional parameter spaces.

Sets of partitions of particular interest are those whose shape is constrained to be in a prescribed
set. Specifically, if Γ is a set of positive integer p-vectors with coordinate-sum n (that is, Γ is a
set of potential shapes of p-partitions), we refer to the set of all p-partitions whose shape is in Γ
as the set of Γ-shape partitions; for convenience, we suppress the explicit dependence on Γ and
refer generically to constrained-shape partition-sets. If L and U are positive integer p-vectors
satisfyingL ≤ U and

∑p
j=1 Lj ≤ n ≤

∑p
j=1 Uj , the (nonempty) set of positive integer p-vectors

(n1, . . . , np) with coordinate-sum n that satisfy Lj ≤ nj ≤ Uj for each j = 1, . . . , p is denoted
Γ(L,U); the corresponding set of partitions is denoted Π(L,U) and, with the dependence on L and
U suppressed, referred to as a bounded-shape partition set. The set consisting of a single vector
(n1, . . . , np) is denoted Γ(n1,...,np); the corresponding set of partitions is denoted Π(n1,...,np) and,
with the dependence on (n1, . . . , np) suppressed, referred to as a single-shape partition set.

The above partitioning problems constitute combinatorial optimization problems with appli-
cations in diverse fields that include clustering, statistics, scheduling, reliability and system as-
sembly; see [5, 6] and references therein. In particular, it is shown in [5] that, with p = n,C(·)
convex and Π as the set of partitions with a single prescribed shape, our 1-dimensional partitioning
problem captures the Traveling Salesperson Problem which is known to be NP-complete; thus,
these partitioning problems are computationally prohibitive. Still, with p fixed, a polynomial algo-
rithm in the number of partitioned vectors n for solving the convex constrained-shape partitioning
problem was developed in [5]; the polynomial bound on computational complexity concerns the
number of arithmetic operations, oracle evaluations of C(·) and oracle tests on whether or not an
integer vector (n1, . . . , np) is in the given set of shapes. In this paper we develop a polynomial
algorithm for linear bounded-shape partitioning problems with p considered as a variable part of
the input.

Our algorithmic results can be summarized in Table 1, which specifies the number of arithmetic
operations (and evaluations of C in the case it is an arbitrary convex function).

Table 1. Complexity bounds.

C(·) Single-Shape Bounded-Shape

Linear O[np+ p(log p)] O[np2 + n(logn)]
Convex O[npp!] O[n2p2p!]

or or
O[np! +n(logn)] O[n2pp! +n(logn)]
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2. SOLUTION METHODS

We consider several specializations of the partitioning problem. For each we give a structural
theorem which characterizes optimal solutions, followed by an algorithmic solution. We start with
single-shape problems.

THEOREM 1: Let A ∈ Rn, C ∈ Rp, n1, . . . , np, be positive integers with
∑p
j=1 nj = n,

and F : Π(n1,...,np) → R with F (π) = CTAπ for each π ∈ Π(n1,...,np). Further, assume that

A1 ≥ A2 ≥ · · · ≥ An, (2)

C1 ≥ C2 ≥ · · · ≥ Cp. (3)

Then the p-partition π∗ with π∗j = {∑j−1
u=1 nu + 1, . . . ,

∑j
u=1 nu} for j = 1, . . . , p maximizes

F (·) over Π(n1,...,np); further, if the inequalities of (2) and (3) hold strictly, then π∗ is the only
maximizer.

PROOF: For each partition π ∈ Π(n1,...,np) and j = 1, . . . , p,
∑j
u=1 |π∗u| =

∑j
u=1 nu =∑j

u=1 |πu|; consequently, (2) implies that

j∑
u=1

(Aπ
∗
)u ≥

j∑
u=1

(Aπ)u. (4)

Also, with arbitrary selection of Cp+1, we have that, for each π

F (π) = CTAπ =
p∑
j=1

Cj(Aπ)j =
p∑
j=1

Cj

[
j∑

u=1

(Aπ)u −
j−1∑
u=1

(Aπ)u

]

=
p∑
j=0

(Cj − Cj+1)

[
j∑

u=1

(Aπ)u

]
+ Cp+1

[
n∑
i=1

Ai

]
, (5)

where we use the fact that
∑p
u=1(Aπ)u =

∑n
i=1Ai. Let Cp+1 be selected so that Cp > Cp+1,

in which case the inequalities (Cj − Cj+1) ≥ 0 extend from j = 1, . . . , p − 1 to j = p. The
application of (5) to an arbitrary π in Π(n1,...,np) and to π = π∗ combines with (4) and the
nonnegativity of the (Cj − Cj+1)’s to show that

F (π∗)− F (π) =
p∑
j=1

(Cj − Cj+1)

[
j∑

u=1

(Aπ
∗
)u −

j∑
u=1

(Aπ)u

]
≥ 0. (6)

Finally, suppose the inequalities of (2) and (3) are strict. Then, for each partition π 6= π∗, a strict
inequality holds in (4) for at least one j and the (Cj − Cj+1)’s are positive, it then follows from
(5) (applied to π and π∗) that (6) holds as a strict inequality.

COROLLARY 2 (Solution of Linear Single-Shape Partitioning Problems): Single-shape lin-
ear partitioning problems can be solved in time O[np + p(log p)], in particular, for fixed p it is
solvable in linear time O(n).
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PROOF: Let A,C, n1, . . . , np, and F be as in Theorem 1. One can achieve condition (2)
and (3) by sorting the coordinates of A and C, respectively, and renumbering indices; as A has
n coordinates and C has p coordinates, these tasks can be accomplished in time O[n(log n)]
and O[p(log p)], respectively. Once the indices are renumbered, Theorem 1 provides an explicit
solution of the partitioning problem. The total effort is O[n(log n)]. Of course, the renumbering
of the indices of C requires the rearrangement of n1, . . . , np.

We next explain how computation can actually be accelerated. Indeed, suppose a sorting of the
coordinates ofC is first executed, requiring timeO[p(log p)], and an index-enumeration j1, . . . , jp
satisfying Cj1 ≥ Cj2 ≥ · · · ≥ Cjp is obtained. It is then not necessary to fully sort A1, . . . , An
in order to determine the optimal partition; all that is needed is to determine the set of nj1-largest
coordinates of A, the next nj2-largest coordinates, and so on. This block-sorting can be executed
with O(pn) comparisons (e.g., Knuth [7]), yielding an improved complexity bound of O(pn).
If the data is given with (2) in force, Theorem 1 provides an explicit solution of the partitioning
problem requiring only the sorting of the coordinates ofC; so, in this case the problem is solvable
in time O[p(log p)].

The above method with nj = 1 for j = 1, . . . , p is well known (e.g., [4]). Also, an explicit
representation of the convex hull of the Aπ’s with prescribed shape was derived by Theorem 1
in [3].

Suppose (2) is in force. A p-partition π is then called consecutive if its parts consist of consec-
utive integers, that is, if there is an enumeration of the parts of π, say πj1 , . . . , πjp , such that if

(n1, . . . , np) is the shape of π we have πjs = {∑s−1
u=1 nju + 1, . . . ,

∑s
u=1 nju} for s = 1, . . . , p.

When the At’s are distinct, consecutiveness is equivalent to the assertion that the convex hulls
of elements corresponding to distinct parts are disjoint. Theorem 1 yields a new proof for the
following known result asserting the optimality of consecutive partitions {cf. [1, Theorem 2] and
[3, Theorem 1] (the former reference provides a multidimensional generalization)}.

THEOREM 3: Let A ∈ Rn satisfy (2), C: Rp → R be a convex function, n1, . . . , np be
positive integers with

∑p
j=1 nj = n, and F : Π(n1,...,np) → R with F (π) = C(Aπ) for each

π ∈ Π(n1,...,np). Then there exists a consecutive partition which maximizesF (·) over Π(n1,...,np).

PROOF: Let Π ≡ Π(n1,...,np). If C(·) is linear, the conclusion of the corollary is immedi-
ate from the algorithm resulting from Theorem 1. From standard results each vertex of PΠ

A =
conv{Aπ: π ∈ Π}, say v, has a representation v = Aπ for some π ∈ Π, and such a vertex is the
unique maximizer of some linear functional over PΠ

A , say Fv(·). We conclude that each vertex
v of PΠ

A has a representation v = Aπ with π as a consecutive partition. The conclusion of the
corollary now follows from a standard result that assures that a maximum of a convex function
over a polytope is attained at one of the polytope’s extreme points.

The proof of Theorem 3 demonstrates that, with Π as the set of all partitions with a prescribed
shape, the vertices of the polytope conv{Aπ: π ∈ Π} correspond to consecutive partitions. A
multidimensional generalization of this result is given in [1] while a (one-dimensional) inverse
result is established in [3].

COROLLARY 4 (Solution of Convex Single-Shape Partitioning Problems): Convex single-
shape partitioning problems can be solved in O[npp!] arithmetic operations and p! evaluations of
the underlying convex functionC; an alternative bound isO[np!+n(log n)] arithmetic operations
and p! evaluations of C.
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PROOF: Let A,C, n1, . . . , np, and F be as in Theorem 3. The goal is to maximize F (·) over
Π(n1,...,np). If (2) is satisfied, Theorem 3 implies the existence of a consecutive partition which is
optimal. Each consecutive (n1, . . . , np)-partition is determined by a permutation of the integers
1, . . . , p; hence there exists exactly p! such partitions. For each such partition π,Aπ is computable
by n additions and F (π) is available by a function evaluation of C. Finding the maximizer of the
resulting p! values of F (π) will requireO(p!) comparisons (e.g., [7]). So, an optimal partition can
be determined by np! additions, p! evaluations of C andO(p!) comparisons. If (2) is not satisfied
a priori, one can preprocess the data and sort the elements A1, . . . , An requiring additional time
O[n(log n)], or block-sort A1, . . . , An with respect to each of the permutation of {1, . . . , p}
requiring additional time p!O(np).

We say that a vectorB is nonnegative, writtenB ≥ 0, if all ofB’s coordinates are nonnegative,
and we say thatB is nonpositive, writtenB ≤ 0, if−B ≥ 0. We will extend the analysis of linear
(1-dimensional) partitioning problems from single-shape to bounded-shape. The first step is to
consider the cases where A is either nonnegative or nonpositive.

We need some further definitions. Let L and U be positive integer p-vectors satisfying L ≤ U
and

∑p
j=1 Lj ≤ n ≤ ∑p

j=1 Uj and let Π ≡ Π(L,U). Consider first the case where
∑p
j=1 Lj <

n <
∑p
j=1 Uj . As

∑p
u=1 Lu < n and

∑p
u=1 Lu +

∑p
u=1(Uu − Lu) =

∑p
u=1 Uu > n, there

exists an index j ∈ {1, . . . , p} with
∑p
u=1 Lu +

∑j
u=1(Uu − Lu) ≥ n; let j+ be the first such

index, let µ+ ≡ n −∑j+−1
u=1 Uu −

∑p
u=j++1 Lu and let (n+

1 , . . . , n
+
p ) ≡ (U1, . . . , Uj+−1, µ+,

Lj++1, . . . , Lp). The selection of j+ assures Lj+ < µ+ ≤ Uj+ and therefore (n+
1 , . . . , n

+
p ) ∈

Γ(L,U). Similarly, let j− be the first index i = 1, . . . , p with
∑p
u=1 Uu −

∑j
u=1(Uu − Lu) ≤

n and let µ− ≡ n −∑j−−1
u=1 Uu −

∑p
u=j−+1 Lu and (n−1 , . . . , n

−
p ) ≡ (L1, . . . , Lj−−1, µ−,

Uj−+1, . . . , Up). Then Lj− ≤ µ− < Uj− and (n−1 , . . . , n
−
p ) ∈ Γ(L,U). Finally, if

∑p
j=1 Lj = n,

then the shape of all partitions in Π is (L1, . . . , Lp) and in this case we set j+ = 1, j− = p, µ+ =
L1, and µ− = Lp; and if

∑p
j=1 Uj = n, then the shape of all partitions in Π is (U1, . . . , Up) and

we set j+ = 1, j− = p, µ+ = U1, and µ− = Up.

THEOREM 5: Let A ∈ Rn satisfy (2), C ∈ Rp satisfy (3), L and U be positive integer
p-vectors satisfying L ≤ U and

∑p
j=1 Lj ≤ n ≤ ∑p

j=1 Uj , and F : Π(L,U) → R with F (π) =
CTAπ for each π ∈ Π(L,U). Then:

(i) If A ≥ 0, then the p-partition π+ with π+
j = {∑j−1

u=1 n
+
u + 1, . . . ,

∑j
u=1 n

+
u }

for j = 1, . . . , p maximizes F (·) over Π(L,U).
(ii) If A ≤ 0, then the p-partition π− with π−j = {∑j−1

u=1 n
−
u + 1, . . . ,

∑j
u=1 n

−
u }

for s = 1, . . . , p maximizes F (·) over Π(L,U).

Further, if the inequalities of (2) hold strictly and the coordinates of C are distinct, then π+ and
π− are, respectively, the only optimal partitions.

PROOF: We establish only the (weak and strict) inequalities corresponding to case (i) as those
corresponding to (ii) follow from similar arguments. The definition of π+ assures that

j∑
u=1

|π+
u | =

j∑
u=1

n+
u ≥

j∑
u=1

|πu| for each partition π ∈ Π(L,U) and j = 1, . . . , p; (7)
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hence, the nonnegativity of the Ai’s and (2) imply that

j∑
u=1

(Aπ
+

)u ≥
j∑

u=1

(Aπ)u for j = 1, . . . , p. (8)

Also, with arbitrary selection of Cp+1, we have that for each partition π

F (π) = 〈C,Aπ〉 =
p∑
j=1

Cj(Aπ)j =
p∑
j=1

Cj

[
j∑

u=1

(Aπ)u −
j−1∑
u=1

(Aπ)u

]

=
p∑
j=0

(Cj − Cj+1)

[
j∑

u=1

(Aπ)u

]
+ Cp+1

[
n∑
i=1

Ai

]
, (9)

where we use the fact that
∑p
u=1(Aπ)u =

∑n
i=1Ai. Let Cp+1 be selected so that Cp+1 < Cp,

in which case the inequalities (Cj − Cj+1) ≥ 0 extend from j = 1, . . . , p − 1 to j = p. Now,
with π as an arbitrary partition in Π(L,U), the application of (9) to π and π+ combines with (8)
and the nonnegativity of the (Cj − Cj+1)’s to show that

F (π+)− F (π) =
p∑
j=1

(Cj − Cj+1)

[
j∑

u=1

(Aπ
+

)u −
j∑

u=1

(Aπ)u

]
≥ 0. (10)

Finally, suppose that the inequalities of (2) are strict and the coordinates of C are distinct. Then
for each partition π 6= π+, a strict inequality holds in (8) for at least one j; as the (Cj −Cj+1)’s
are positive, it follows from (9) (applied to π and π+) that (10) holds as a strict inequality.

COROLLARY 6 (Solution of Nonnegative/Nonpositive Linear Bounded-Shape Partitioning
Problems): Linear bounded-shape partitioning problems with A nonnegative or nonpositive can
be solved in time O[pn+ p(log p)], in particular, for fixed p it is solvable in linear time O(n).

PROOF: We consider only the nonnegative case. Let A,C,L, U , and F be as in Theorem
5 with A ≥ 0. As for the single-shape case, conditions (2) and (3) can be achieved by sorting
the coordinates of A and C and renumbering indices, tasks that can be accomplished in time
O[n(log n)] andO[p(log p)], respectively. Once the indices are renumbered, Theorem 5 provides
an optimal solution of the partitioning problem that can be computed in time O(p) [needed to
determine the partial sums of the Lj’s and of the (Uj − Lj)’s and the corresponding index j+].
The total effort requires time O[n(log n) + p(log p)]. Acceleration is possible by determining
the shape ( ) (after sorting the Lj’s and Uj’s) and then block-sorting of the Ai’s with O(pn)
arithmetic operations; this will lead to an improved complexity bound ofO[pn+ p(log p)]. If the
data is given with (2) in force, the effort reduces to O[p(log p)].

We are ready to consider general linear bounded shape partitioning problems. The idea is to
determine potential shapes of optimal partitions; these are identified by using Theorem 5 for the
index sets corresponding to the nonnegative and to the negative Ai’s, respectively.

THEOREM 7: Let A ∈ Rn satisfy (2), C ∈ Rp satisfy (3), L and U be positive integer
p-vectors satisfying L ≤ U and

∑p
j=1 Lj ≤ n ≤ ∑p

j=1 Uj , and F : Π(L,U) → R with F (π) =
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CTAπ for each π ∈ Π(L,U). Also, let N+ ≡ {i : Ai ≥ 0} 6= ∅ and let N− ≡ N\N+ 6= ∅. Then
there exists a partition π that maximizes F (·) over Π(L,U) such that for some positive integers j+

and j− satisfying j+ ≤ j−,∑j+−1
u=1 Uu < |N+| and

∑p
u=j−+1 Uu < |N−|, we have that

|πj | =
 Uu for u = 1, . . . , j+ − 1,
Lu for u = j+ + 1, . . . , j− − 1,
Uu for u = j− + 1, . . . , p.

(11)

Further, if the inequalities of (2) and (3) hold strictly, then the shape of every optimal partition
has the above structure.

PROOF: We start by assuming that the inequalities of (2) and (3) hold strictly. Let π be an
optimal partition. By considering the single-shape partitioning problem with prescribed shape
(n1, . . . , np) = (|π1|, . . . , |πp|), the strict version of Theorem 1 implies that each of the sets
π1, π2, . . . , πp consists of consecutive integers, in order; in particular, with i∗ ≡ |N+| and j∗ as

the index with i∗ ∈ πj∗ , we have that ∪j∗−1
u=1 πu = N+\πj∗ and ∪pu=j∗+1πu = N−\πj∗ . We

consider four separate cases.
Case I—πj∗ ∩N− = ∅: In this case πj∗ is contained in N+ and π1, . . . , πj∗ partition N+;

thus, the optimality of π implies that this partition is optimal for the problem of partitioning N+

into j∗ parts with L1, . . . , Lj∗ and U1, . . . , Uj∗ as lower and upper bounds on the part sizes,
respectively, and with the original Ai’s. It now follows from the strict version of Theorem 5 that
for some 1 ≤ j+ ≤ j∗:

(i) |πs| = Us for s = 1, . . . , j+ − 1,
(ii) |πs| = Ls for s = j+ + 1, . . . , j∗.

Examining the corresponding partitioning problem ofN−, we get from similar arguments (using
the results of Theorem 5 about nonpositive A) that for some j∗ + 1 ≤ j− ≤ p:

(iii) |πs| = Us for s = j− + 1, . . . , p,
(iv) |πs| = Ls for s = j∗ + 1, . . . , j− − 1.

In particular, π satisfies (11).
Case II—πj∗∩N− 6= ∅, |πj∗ | = Lj∗ and 1< j∗ < p: Asπ1, π2, . . . , πj∗−1 partitionN+\πj∗ ,

the optimality of π implies that this partition is optimal for the problem of partitioning N+\πj∗
into j∗ − 1 parts with L1, . . . , Lj∗−1 and U1, . . . , Uj∗−1 as lower and upper bounds on the part
sizes, respectively, and with the original Ai’s. The arguments of Case I establish the existence of
an index j+ ≥ 1 satisfying conditions (i)–(ii), except that we have j+ < j∗. The arguments of
Case I also establish the existence of an index j− satisfying (iii)–(iv), where as in Case I we have
j− > j∗. So, again, π satisfies (11).

Case III—πj∗ ∩N− 6= ∅, |πj∗ | = Lj∗ , and j∗ = 1 and/or j∗ = p: The arguments of Case II
apply, except that j+ = 1 in the case where j∗ = 1 < p and j− = p in the case where j∗ = p > 1.
If j∗ = 1 = p, π satisfies (11) trivially with j− = j+ = 1.

Case IV—πj∗ ∩N− 6= ∅ and |πj∗ | > Lj∗ : As π1, π2, . . . , πj∗−1, πj∗ ∩ N+ partition N+,
the optimality of π implies that this partition is optimal for the problem of partitioning N+

into j∗ parts with L1, . . . , Lj∗−1, |πj∗ ∩N+| − 1 and U1, . . . , Uj∗−1, |πj∗ ∩N+| as lower and
upper bounds on the part sizes, respectively, and with the original Ai’s. In the optimal partition
π1, π2, . . . , πj∗−1, πj∗ ∩ N+, the size of the last set is strictly greater than its lower bound;
consequently, the strict version of Theorem 5 implies that |πs| = Us for s = 1, . . . , j∗ − 1.
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Considering a corresponding partitioning problem of N−, we get from similar arguments that
|πs| = Us for s = j∗ + 1, . . . , p. So, π satisfies (11) with j− = j+.

Finally, if either of the inequalities of (2) or (3) does not hold strictly, then the coordinates of
A and C may be perturbed so that all of the inequalities of (2) and (3) hold strictly. Specifically,
for each positive ε, let Aε ∈ Rn and Cε ∈ Rp be defined by (Aε)i = Ai + εi for i = 1, . . . , n
and (Cε)j = Cj + εj for j = 1, . . . , p, and let πε be (any selection of) a corresponding optimal
partition; in particular, our earlier arguments show that each πε satisfies (11) with corresponding
integers (j+)ε and (j−)ε. As the number of partitions is finite, there exists a sequence of positive
numbers ε1, ε2, · · · with limk→∞ εk = 0, where πεk is independent of k. Let π be a common
optimal partitions corresponding to the elements of such a sequence and let j+ and j− be cor-
responding integers. It then follows from continuity arguments that π is optimal for the original
partitioning problem with unperturbed data; further, π satisfies (11).

The shape structure and the arguments of the proof of Theorem 7 resemble the notion of
quasiconsecutiveness of [2] and the arguments used therein.

The following example demonstrates no uniqueness result for optimal partitions is available
for the general linear one-dimensional bounded-shape partitioning problems, even when the in-
equalities of (2) and (3) are strict.

EXAMPLE 1: Let n = 4, p = 3, L = (1, 1, 1), U = (2, 1, 2), A = (4, 1,−2,−3), and
C = (4, 2, 1) and consider the corresponding linear bounded-shape partitioning problem. By the
strict version of Theorem 1 all optimal partitions are consecutive, namely, it suffices to consider
π1 ≡ ({1, 2}, {3}, {4}) and π2 ≡ ({1}, {2}, {3, 4}). As C(π1) = C(π2) = 13, the optimal
partitions are precisely π1 and π2, both of which have the structure of (11).

COROLLARY 8 (Solution of Linear Bounded-Shape Partitioning Problems): Linear
bounded-shape partitioning problems can be solved in time O[n(log n) + p2n].

PROOF: Let A,C,L, U , and F be as in Theorem 8. We will assume that
∑p
j=1 Lj < n <∑p

j=1 Uj [the cases where
∑p
j=1 Lj = n or

∑p
j=1 Uj = n are ignored as they imply that Γ(L,U)

contains a single vector, namely, (L1, . . . , Lp) or (U1, . . . , Up), respectively, and the solution of
single-shape problems has already been provided]. Our approach is to identify a set of shapes that
includes one of an optimal partition; such a set facilitates the solution of the partitioning problem
as a partition with the highest objective among those that share a prescribed shape is available
from Theorem 1. Again, conditions (2) and (3) can be achieved by sorting the coordinates ofA and
C and renumbering indices, tasks that can be accomplished in time O[n(log n)] and O[p(log p)],
respectively.

A shape of an optimal partition is available from (11) and the specification of the four param-
eters, namely, j+, j−, |πj+ | and |πj− |; in fact, as the sum of the sizes of the parts of a partition
must be n, we have that j+ and |πj+ | uniquely determine the potential shape through (11) with

j− as the first index t with
∑j+−1
u=1 Uu + |πj+ |+

∑p
u=j++1 Lu +

∑t
u=j++1(Uu −Lu) ≥ n (we

note that though the shape is uniquely determined, j− need not be uniquely determined, e.g., it
could be the last index t satisfying the above inequality).

Let N+ ≡ {i : Ai ≥ 0} and N− ≡ N\N+. Let x ∈ {1, . . . , p} satisfy
∑x−1
u=1 Uu <

|N+| and
∑x−1
u=1 Uu +

∑p
u=x Lu ≤ |N | and v ∈ {Lw, Lw + 1, . . . , Uw} satisfy

∑x−1
u=1 Uu +

v +
∑p
u=x+1 Lu ≤ n and

∑x−1
u=1 Uu + v +

∑p
u=x+1 Uu ≥ n. The argument of the above

paragraph (withx replacing j+ and v replacing |πj+ |) show that there exists a unique integer vector
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(n1, . . . , np) in Γ(L,U) having structure as in (11) and with nx = v. For each such pair (x, v),
we let π(x, v) be the partition with π(x, v)j = {∑j−1

u=1 nu + 1, . . . ,
∑j
u=1 nu} for j = 1, . . . , p

and we evaluate C[π(x, v)]. Theorems 7 and 1 assure that there is an optimal partition among
those generated by the above scheme; hence the generated partition with the maximal C(·)-value
is optimal. [We observe that, in view of Theorem 7, some further pairs (x, v) can be discarded,
for example, those for which there exists an index z > x with

∑z−1
u=1 nu < |N+| and nz > Lz .]

The evaluation of the shape associated with a pair (x, v) requires effortO(p) (see the paragraph
preceding Theorem 5). However, if for a given x, shape vectors corresponding to multiple v’s are
to be determined, the evaluations following the first one require only a single shift and can each
be done by effort requiring time O(1) with total effort of O(p+ Ux − Lx). Also, the evaluation
of the objective of a partition corresponding to a particular shape is O(n), but the effort needed
for updates corresponding to a unit increase of v isO(p). So, using n as a bound on Ux−Lx, the
total effort for determining an optimal partition is O(p2n).

Block sorting can be incorporated into the above algorithm, but partitions corresponding to
numerous shapes have to be evaluated, each requiring a separate block-sorting. Consequently,
the use of block sorting does not improve complexity bounds; further, its usefulness for practical
computation seems to be of limited interest.

COROLLARY 9 (Solution of Convex Bounded-Shape Partitioning Problems): Convex
bounded-shape partitioning problems can be solved in time O[n2p2p!] arithmetic operations and
O[npp!] evaluation of the underlying convex function C; an alternative bound is O[n2pp! +
n(log n)] arithmetic operations and O[npp!] evaluation of C.

PROOF: As in the proofs of Theorem 3 and Corollary 4, a set of partitions that is known
to contain an optimal solution for linear problems contains solutions to convex problems. In the
proof of Corollary 8 we constructed such a set for linear bounded-shape partitioning problems.
For each potential permutation of theCj’s, we get a set of at most np partitions determined by the
corresponding parameters j+ and |πj+ |, totaling npp! partitions. For each partition, Aπ can be
evaluated with n additions and F (π) can be determined with an evaluation of C. The analysis of
the proof of Corollary 4 shows that when theAi’s are fully sorted (withO[n(log n)] comparisons),
we get a complexity bound ofO[n2pp!+n(log n)] arithmetic operations andO[npp!] evaluations
ofC; when the full sorting of theAi’s is avoided and block sorting is used for evaluating each of the
correspondingO[npp!] partitions, we get a complexity bound ofO[n2p2p!] arithmetic operations
and O[npp!] evaluation of C.
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