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Double-loop networks have been widely studied as
architecture for local area networks. The L-shape is
an important tool for studying the distance proper-
ties of double-loop networks. Two L-shapes are equiv-
alent if the numbers of nodes k steps away from
the origin are the same for every k. Hwang and Xu
first studied equivalent L-shapes through a geomet-
ric operation called 3-rectangle transformation. Fiol et
al. proposed three equivalent transformations. Réd-
seth gave an algebraic operation, which was found
by Huang et al. to correspond to 3-rectangle trans-
formations. In this paper, we show that all equiva-
lent nondegenerate L-shapes are determined by four
basic geometric operations. We also discuss the al-
gebraic operations corresponding to these geometric
operations. © 2000 John Wiley & Sons, Inc.

Keywords: double-loop network; L-shape; diameter; Eu-
clidean algorithm

1. INTRODUCTION

A double-loop network DL(N;a,b) has N nodes
0,1,...,N — 1 and 2N links of two types:

a-links:i - i+a(mod N),i = 0,1,...,N — 1,
b-links:i — i+ b(mod N),i = 0,1,...,N — 1.

Double-loop networks have been widely studied (see [7]
for literature) as architecture for local area networks.
The minimum-distance diagram of a double-loop net-
work DL(N;a,b) gives a shortest path from node u to
node v for any u, v. Since a double-loop network is node-
symmetric, it suffices to give a shortest path from node
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0 to any other node. Let 0 occupy cell (0, 0). Then, v
occupies cell (i, j) if and only if ia + jb = v (mod N)
and i + j is the minimum among all (i, j') satisfying
the congruence, where = means congruent modulo N,
namely, a shortest path from O to v is through taking i
a-links and j b-links (in any order). Note that in a cell
(i, j),i is the column index and j is the row index. A
minimum-distance diagram includes every node exactly
once (in case of two shortest paths, the convention is
to choose the cell with the smaller row index, i.e., the
smaller j). Wong and Coppersmith [9] proved that the
diagram is always an L-shape (a rectangle is considered
a degeneration). See Figure 1 for two examples.

Let d(k) denote the number of cells (i, j) in an L-
shape such that i + j = k. Hwang and Xu [6] de-
fined two double-loop networks, or two L-shapes, to
be equivalent if they have the same d(k) for every k.
Note that two equivalent double-loop networks have the
same diameter and average distance. Two double-loop
networks DL(N; a, b) and DL(N;a', b’) are called strongly
isomorphic [5] if there exists a z prime to N such that
a' = az,b’ = bz (mod N). It can be easily seen that two
strongly isomorphic double-loop networks are equiva-
lent, but the reverse is not true.

Hwang and Xu [6] proved that DL(N;1,s) and
DL(N;1,N + 1 — s) are equivalent by showing that
they correspond to different ways of piling up three
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FIG. 1. Two examples of L-shapes.
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FIG. 2. The 3-rectangle transformations.

rectangles. We call this the 3-rectangle transformation.
Fiol et al. [3] proposed three equivalent transforma-
tions, which are called 7, B, and FV in this paper (see
Section 4). Rodseth [8] considered the multiloop net-
works ML(N; S), where S = {s1,s2,...,5;} and the type-
j links are i — i+ s; (mod N), j = 1,2,...,[. Let
S = S U {0}. He proved that ML(N;S) and ML(N;S’)
are equivalent if S’ = {s; — s|s; € S,s; = s} for
some s € S. In particular, DL(N;a,b) is equivalent to
DL(N;N — a,b — a) and DL(N;a — b,N — b). Since
—1 is prime to N,DL\N;(—1)(N — a),(—1)(b — a)) =
DL(N;a,a— b) is equivalent to DL(N; a, b). The Hwang—
Xu result then corresponds to the special case a = 1.
Similarly, DL(N; b—a, b) is also equivalent to DL(N; a, b).
Huang et al. [4] proved that Rodseth’s theorem yields
only the 3-rectangle transformations [the original one
and a dual-type corresponding to DL(N;b — a,b); see
Fig. 2].

In this paper, we determine the spectrum of all equiv-
alent transformations for nondegenerate L-shapes and
prove that they can all be derived from four transforma-
tions. In particular, the 3-rectangle transformations can
be obtained by a composition of two such transforma-
tions. We also discuss how the transformations affect the
parameters (a,b). We give an algorithm to compute the
new (a,b), but we are unable to obtain a Rodseth-like
theorem for these transformations.

2. SOME PRELIMINARY REMARKS

Since there is only one nondegenerate L-shape with
three cells, from now on we will only talk about nonde-
generate L-shapes with at least four cells.

Let the segments on the boundary of an L-shape be
labeled as shown in Figure 3. Since / and / can be deter-
mined from the other four parameters, an L-shape can
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FIG. 3. An L-shape with parameters.

also be denoted by L(m,n, p, q) using its geometric pa-
rameters. Note that N = [h — pn.

Fiol et al. [3] showed that an L-shape always tessel-
lates the plane. By considering their relative positions
of lattice points occupied by node 0, they derived the
following congruences:

la—nb =0 (modN)
—pa+hb =0 (mod N). (1)

They also stated that the solution (a, b) of (1) is unique
up to strong isomorphism.

For a given L-shape L(m,n, p,q), we call the set of
cells of distance d from the origin the d-diagonal. A d-
diagonal is complete if it contains d + 1 cells. Note that
if L has a complete d-diagonal then it has a complete d'-
diagonal for 0 = d’ < d. The set of complete diagonals
form a staircase S(L) whose order ||S(L)|| is defined to be
max{d : the d-diagonal is complete}. It is easily verified
that ||S(L)|| = min{n + g,m + g,m + p} — 1. A staircase
of order d is called a d-staircase.

A (k,d),k = d, jigsaw piece is a (d — 1)-staircase
missing the lines of lengths 1,2,...,k—1. A (k, d) jigsaw
piece with k = 1 will be treated as a staircase, while a
(k,d) jigsaw piece with k > 1 will be called wide. The
length-set of a (k,d) jigsaw piece J is I(J) = {k,k +
1,...,d}. For example, consider the L-shape in Figure
4(a): |IS(L)|| = 3,S(L) is a 3-staircase, J,(L) is a (1, 2)
jigsaw piece (a staircase), J,(L) is a (2, 3) jigsaw piece
(a wide piece), I(J,(L)) = {1,2}, and I(J,(L)) = {2, 3}.

It is easily verified that L\S(L) consists of either one
or two jigsaw pieces. If L\S(L) consists of two jigsaw
pieces, then the two jigsaw pieces are either separated
[Fig. 4(a)], including touching at one point [Fig. 4(b)]
or one piggybacking on another [Fig. 4(c) and (d)]; J(L)
and J,(L) will denote the top and bottom jigsaw pieces,
respectively. If L\S(L) consists of only one jigsaw piece
J, then we set J,(L) = @ and J,(L) = J [Fig. 4(e)]. For
sets A = {ay,ay,...,an} and B = {by,b>,...,b,},A * B
denotes the multiset {a;, as, ..., am, b1,ba, ..., b,}.

Lemma 1. L and L' are equivalent if and only if S(L) =
S(L') and U(J (L)) * I(Jp(L)) = 1(J,(L")) * I(Jp(L")).

Proof. Suppose that S(L) = S(L'), say, ||S(L)|| = d >
[IS(L")]|. Then, the number of cells of distance d from the
origin is d + 1 in L but less than d + 1 in L’. Hence, L
and L' are not equivalent.
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FIG. 4. Decomposing L-shapes into staircases and jigsaw pieces.

When a jigsaw piece is fitted into the ladder, it occu-
pies the cells as close to the origin as possible. There-
fore, if we line up the two jigsaw pieces such that
the zigzag lines are on the same side (see Fig. 5),
then the number of cells in the ith column represents
the number of cells in the L-shape distance-(d + i)
from the origin. Let {|C;(J,(L) U J,(L))|} denote the set
of column sizes. It is easily verified that if I(J,(L)) *
1Up(L)) # 1T (L") * 1T p(L")) then {|C;(J(L)UTH(L))|} +#
{IC:{(J (L") U Jp(L"))|}. Consequently, L and L' are not
equivalent.

On the other hand, similar arguments also show that if
equalities hold for S and / then L and L' are equivalent. =

The following lemma is easily verified; therefore, we
omit the proof.

Lemma 2. [I(J/(L))|+[I(J(L))| = [IS)|| -1 or [|S(L)]|
or [|S(L)|| + 1.

Since I(J) is a set of consecutive integers, there are
three cases:

) IJ, L) NIJpL) = O and I(J,(L)) = I(J,(L)) is not
consecutive.
(i) I(JL)) N IUJp(L)) = O and I(J (L)) * I(JH(L)) is con-
secutive.
(iii) {(J(L)) N ITR(L)) + 0.

Lemma 3. No DL(N;a,b) exists which yields an L-
shape for case (i).

Proof. Suppose that I(J,(L)) = {k,k + 1,...,d} and
IJp(L)) =K',k +1,...,d}, where k' = d + 2. We set
IS(L)|| = s for easy writing. Consider two subcases (see
Fig. 6):

column: 1 2 3
Ji (L)

Jp(L)

4 31

number of cells:

FIG. 5.
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(a) J,(L) appears in column 1 of the L-shape. Then, since
kK>d+1,

h=s+1+k<s+1+k+k —(d+1)
=s+1+k—-d-k+1)=1—m=p.

(b) J,(L) does not appear in column 1. Then, since k' >
d+1,

h=s+1<s+1+k—-d+1)=1—-m=p.

It was proved in [1] that &~ = p is a necessary condi-
tion for the existence of DL(N;a, b). Hence, the lemma
follows. =

For case (ii), consider the following subcases:

@ |[IJALD] + [ITL)] = S]] -1 [see Fig. 7(a)l.

(b) [1ULNI+11UL)] = ISL)]| [see Fig. 7(b) and (b')].
Let I(J,(L) * I(J,(L)) = {k,k+1,....k+|IS(L)|| - 1}.
If k = 2, then we will have & < p and this violates
the fact that 4 = p is a necessary condition for an
L-shape [1]. Hence, k = 1 and it is easily verified
that the L-shape in Figure 7(b’) is equivalent to that in
Figure 7(b), which is a degenerate L-shape (a square).

© D)) + [1Tp@)] = IS + 1 [see Fig. 7(c)].
Then, there exists a fitting which yields a degenerate
L-shape (a rectangle).

Therefore, it suffices to consider subcase (a) of case
(ii) and case (iii) for the equivalence of nondegenerate
L-shapes.

3. EQUIVALENT L-SHAPES

Let F denote the flipping operation, that is, F' trans-
forms L(m,n, p,q) to L(g, p,n,m). It is easily seen that
flipping preserves equivalence, and if L is the L-shape of
DL(N;a, b), then F(L) is the L-shape of DL(N;b,a). We
determine how many equivalent L-shapes can be formed.

Lemma 4. Suppose that subcase (a) of case (ii) occurs
and flipping is not considered. Then, there is only one
equivalent L-shape.

Proof. 1t is easily verified that I(J,(L)) * I(J,(L)) =
{1,2,...,|IS(L)|| — 1} and the only way to fit the jigsaw
pieces with S(L) is to combine the two jigsaw pieces
into one staircase [see Fig. 7(a)]. Thus, only two equiv-
alent L-shapes, mutually obtainable by flipping, can be
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FIG. 7. Three subcases for case (ii).

formed. When flipping is not considered, there is only
one equivalent L-shape, that is, L itself. =

Now consider case (iii). Since flipping an L-shape
clearly preserves equivalence, we will only discuss the
nonflipping types. First, we determine how many equiv-
alent L-shapes can be formed with fixed J,(L) and J,(L).

Lemma 5. Suppose that case (iii) occurs [i.e., I(J,(L)) N
IJp(L)) = O1,J (L) and J (L) are fixed, and flipping is not
considered.:

If [IUAD)] + [IUL)] = (IS — 1, then at most
one equivalent L-shape can be formed.

IfF 1AL+ [1UTp(L))] = [[S(D)||, then at most two (3)
equivalent L-shapes can be formed if (J,(L),J,(L)) con-
sists of one staircase and one wide piece (two staircases).

If 11T, (L) ]+ 1T (L)| = |ISW)|| + 1, then at most four
(3, 3) L-shapes can be formed if (J,(L),J,(L)) consists of
one staircase and one wide piece (two staircases, two
wide pieces).

Proof. Suppose that |{(J,(L))| +|{(Jp(L))| = ||ISWL)||—
1. Then, it is easily verified that (J;(L), J»(L)) consists of
two staircases and at most one equivalent L-shape can
be formed (see Fig. 8).

Suppose that [I(J,(L))| + [I(Jp(L))] = [IS(L)]|. Then,
it is impossible that (J,(L),J,(L)) consists of two wide

— i
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FIG. 8.

pieces, since, otherwise, we will have [|I(J,(L))| +
[IJ,(L)] = |ISWL)|| + 1. If (J,(L),J,(L)) consists of one
staircase and one wide piece, then at most two equiva-
lent L-shapes can be formed (see Fig. 9). If (J,(L), J»(L))
consists of two staircases, then at most three equivalent
L-shapes can be formed (see Fig. 10).

Suppose that |I(J,(L))| + [I(Jp(L)] = [ISW + 1.
If (J,(L),J,(L)) consists of one staircase and one wide
piece; then, at most four equivalent L-shapes can be
formed [see Fig. 4(a)-(d)]. If (J(L),J»(L)) consists of
two staircases, then at most three equivalent L-shapes
can be formed (see Fig. 11). If (J,(L), J»(L)) consists of
two wide pieces, then at most three equivalent L-shapes
can be formed (see Fig. 12). -

Finally, we replace the condition that J,(L) and J,(L)
are fixed by the condition that I(J,(L)) * [(J,(L)) is fixed.
As before, we will only discuss the nonflipping types.
More specifically, we assume that if the parameters of
J:(L) and J,(L) are (k,d) and (k’,d’), respectively, then
d=d.

Lemma 6. Suppose that case (iii) occurs [i.e., I(J,(L)) N
1(Jp(L)) = O] and flipping is not considered:

If WAL + [1Up@)] = IS = 1, then at most
one equivalent L-shape can be formed.

L L
C L

FIG. 9.
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IF LT D)+ | 1Tp(L))] = [[S(D)|, then at most four (3)
equivalent L-shapes can be formed if (J,(L),J,(L)) con-
sists of one staircase and one wide piece (two staircases).

If |IJ, (L) + | ITp(L))| = |IS(L)]] + 1, then at most six
(3, 6) L-shapes can be formed if (J.(L),J,(L)) consists
of one staircase and one wide piece (two staircases, two
wide pieces).

Proof. Suppose that I(J,(L)) = {k,k + 1,...,d} and
IJp(L) = {k',k'+1,...,d"}. Then, I(J,(L)) * I(J,(L)) can
be decomposed into three parts:

(i) The set M| = {min{k, k'}, min{k, k' }+1, ..., max{k, k'}—
1}.

(i1) The multiset M, = {max{k, k'}, max{k, k'}, max{k, k'}+
1, max{k,k'} +1,...,d,d} in which every number ap-
pears twice.

(iii) The set M3 ={d + 1,d +2,...,d'}.

Note that M, is always nonempty, M is empty if k = &/,
and M3 is empty if d = d'.

In splitting I(J,(L)) * I(J»(L)) into two length sets
[(J:(L")) and I(J5(L")), M, must be split into two identical
sets, say, M5 and M2 By convention, M3 goes to J,(L').
There are two conditions of L' depending on whether
M goes to J,(L') or Jp(L'). Hence, there are at most
two ways of splitting I(J,(L)) * I(J,(L)). Moreover, if
(J,(L), Jp(L)) consists of two staircases, then k = k' = 1
and M, = (; thus, there is only one way of splitting
I(J(L)) * 1(J(L)).

Suppose that |I(J,(L))|+|1(J5(L))| = |IS(L)]|—1. Then,
(J,(L), Jp(L)) consists of two staircases. Hence, there is
only one way of splitting I(J,(L)) * I(J,(L)); by Lemma
5, at most one equivalent L-shape can be formed.

Suppose that [I(J,(L))| + [I(Jp(L))| = ||S(L)]|. As was
mentioned in the proof of Lemma 5, it is impossible that
(J/(L), (L)) consists of two wide pieces. If (J,(L), J,(L))
consists of one staircase and one wide piece, then there
are two ways of splitting I(J,(L)) * I(J,(L)); by Lemma
5, at most four equivalent L-shapes can be formed [see
Fig. 13(a)~(d)]. If (J;(L), J(L)) consists of two staircases,
then there is only one way of splitting I(J,(L)) * I(J5(L));
by Lemma 5, at most three equivalent L-shapes can be
formed.

Suppose that [I(J,(L)| + [I(Jx(L)] = [ISW)| + 1.
If (J,(L),J,(L)) consists of one staircase and one wide
piece, then there are two ways of splitting I(J,(L)) *
1(Jp(L)); by Lemma 5, at most eight equivalent L-shapes
can be formed. But a type [Fig. 4(c)] with the split
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(M1,M%) and (M;,M3) overlaps a type with the split
(M1,M%, M3) and (M;), and a type [Fig. 4(d)] with the
split (M, M3) and (M;,M3) also overlaps a type with
the split (M, M3, M3) and (M;) (see Fig. 14). There-
fore, at most six equivalent L-shapes can be formed.
If (J,(L),Jp(L)) consists of two staircases, then there is
only one way of splitting I(J,(L)) * I(J,(L)); by Lemma
5, at most three equivalent L-shapes can be formed. If
(J+(L),Jp(L)) consists of two wide pieces, then there are
two ways of splitting I(J,(L)) * I(J,(L)); by Lemma 5, at
most six equivalent L-shapes can be formed. =

Theorem 7. There are at most six equivalent L-shapes
(not considering flipping).

Proof. This theorem follows from Lemma 4 and
Lemma 6. -

We give an example of six equivalent L-shapes in
Figure 15. In this example, (J,(L), J»(L)) consists of one
staircase and one wide piece.

4. GEOMETRICAL INTERPRETATION
AND ALGEBRAIC RELATIONS OF EQUIVALENT
L-SHAPES

From Theorem 7, there are at most six equivalent L-
shapes when flipping is not considered. In Figure 15,
we illustrate three geometric operations 7, B,V and their
relation to the six equivalent L-shapes. T'(L) can be seen
to be obtained from L by turning the top rectangle 90 deg
around [see Fig. 16(a)] and B(L) is obtained from L by
turning the bottom rectangle [see Fig. 16(b)]. V(L) is
obtained from L by interchanging the horizontal side and
the vertical side, namely, from L(m, n, p,q) to L(n + g —
p,n, p,m + p —n) [see Fig. 16(c)]. The other two L-
shapes can each be obtained from three different ways
as marked.

By definition, the following is easily seen:

L, L
oo s e

FIG. 12.
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V(L)

TV (L) = BT(L) = VB(L)

VT(L) = TB(L) = BV(L)

FIG. 15. The six equivalent L-shapes.

Lemma8. F !=F T '=T,B'=BV!I=V.

Thus, all equivalent L-shapes can be obtained through
the four transformations F, T, B, and V. In particular, the
3-rectangle transformations H and H can also be ex-
pressed in terms of F,T,B, and V.

Theorem 9. FH = TV(= BT = VB). FH = VT(=

TB = BV).
Proof.
v T
Lim,n,p,q) -~ Ln+q— p,n,p,m+p—n) —
Ln,n+qg—p,qm+ p—n).

L(m,n, p,q) L Ln,m,m+ p —n,q) Z
Ln+qg—p,mm+ p—n,p).

We show the changes in parameters for H and A in
Figure 17(a) and (b), respectively. Theorem 9 follows
immediately. =

Rodseth proved thatif L' = H(L) thena’ = N—a,b’ =
b—a (mod N); if L' = H(L), then @’ = a — b (mod N),
b’ = N — b. It is also easily seen that if L' = F(L)
then @’ = b and b’ = a. In this section, we study the
same relation between L and FV(L). Note that once this
relation is determined then the relation between L and
V(L) is known from the equation V = F~'FV and the
relations between L and 7T(L) and between L and B(L)
are known from the equation FH = TV = BT = VB.

Esqué et al. [2] proposed a method of computing a
and b such that DL(N;a,b) realizes L(m,n, p,q). They
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considered the integral matrix

(! -p
=5 7)
and computed the Smith normal form of 4, % (M) =

diag(1,N). Then, L (M) = FLMPR, where £ and %

are two nonsingular unimodular integral matrices. They
proved that if
a f
v = ( Y 6 )

then a = y (mod N) and b = § (mod N) in DL(N;a, b).
If MR = (M), then BTMTLT = [L(M)]T =
diag(1,N) = F(MT), where T indicates the transpose of
a matrix. Let DL(N;a’,b’') be the double-loop network
whose L-shape is FV(L(m, n, p, q)). Then, /(" is the ma-
trix of FV(L) in Esqué et al.’s computation [2]. Therefore,

if o
T_[% 7
7=(5 %)
then @ = B (mod N) and b’ = § (mod N) in
DL(N;a’,b'). These observations lead to the following

algorithm of computing @’ and b’ without the need of
computing the Smith normal form () first.
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Theorem 10. Suppose that 1 = a,b = N — 1. Let x and
y be integers such that bx — ay = 1. Then, DL(N;d’,b')
with a' = px — hy (mod N) and b' = Ix — ny (mod N)
realizes FV(L).

Proof. Suppose that 1 = a,b = N — 1. If ged(a, b) =
d, take a* = a/d and b* = b/d. Since gcd(N,a,b) = 1
implies that gcd(d, N) = 1,DL(N;a,b) is strongly iso-
morphic to DL(N;a",b*). Therefore, we may assume
that d = 1, since, otherwise, we could work with (a*,b%).
Let x and y be integers such that bx —ay = 1 and let

hb—pa —la+nb
N N
px—hy Ix—ny )’

I —n X a
‘%=<—p h)’ and%:(yb>'

By (1), (hb — pa)/N and (—la +nb)/N are integers. M is
the corresponding matrix of FV(L). It is easily verified
that both % and £ are nonsingular unimodular integral
matrices and LM = diag(1, N), the Smith normal form
S (M) of M. By the argument in [2], DL(N;a’,b’) with

Z



a' = px—hy (mod N) and b’ = Ix — ny (mod N) realizes
FV(L). =

Note that (x, y) in bx—ay = 1 can be solved by the Eu-
clidean algorithm which takes O(log N) time. However,
we are unable to obtain a Rodseth-like theorem for FV.
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