COMPUTER
NETWORKS

ELSEVIER Computer Networks 34 (2000) 467-480

www.elsevier.com/locate/comnet

A new multi-search engine for querying data through an
Internet search service on CORBA

Yue-Shan Chang **, Shyan-Ming Yuan *, Winston Lo °

& Department of Computer and Information Science, National Chiao Tung University, 1001 TA Hsueh Road, Hsin-Chu 30050,
Taiwan, ROC
® Department of Computer and Information Science, Tung Hai University, Taichung, Taiwan, ROC

Received 14 February 2000; received in revised form 5 May 2000; accepted 19 May 2000

Abstract

Search engines are important but generally far from ideal tools of the World Wide Web (WWW). Many researchers
therefore prefer to use meta-brokers to construct multi-search engines (MSE). However, these have no uniform pro-
gramming interfaces, which makes tying them with other search engines difficult. Moreover, for an application that
needs a search service capability, querying them is difficult.

To reduce that difficulty, we propose in this paper an Internet search service (ISS) based on common object request
broker architecture (CORBA) that follows the style of common object service specification (COSS). We design a multi-
search engine based on ISS, which we term Octopus. For a system developer, because of its uniformity of interface,
Octopus easily ties with any search engine. Equally, for an application programmer, the ISS offers a clear interface for
application programs to search for information or mine data from the Internet. We demonstrate our approach to
designing multi-search engines through ISS by tying two search engine agents, Yahoo and AltaVista, with Octopus and
show how CORBA clients query them. Programmers may use this interface to construct their search engine agents or
query a search engine agent in their applications. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Internet; Multi-search service; Search engine; World Wide Web; CORBA

1. Introduction importance as tools, and their number increases
accordingly.

Standard search engines, for example, Yahoo,
AltaVista, 2 Lycos, 3 InfoSeek, * Galaxy, > and

WebCrawler, ® may help users find what they

Recent advances in the computer network and !

the Internet, have given the Web increasing pop-
ularity, but the growth in Web sites has made
searching the Internet a more involved task, with
the result that search engines now claim more

! http://www.yahoo.com.

2 http://www.altavista.digital.com.
3 http://www.lycos.com.

*Corresponding author. Tel.: +886-3-557-2930; fax: +886-3-
559-1402.
E-mail address: ysc@mhit.edu.tw (Y.-S. Chang).

4 http:/fwww.infoseek.com.
5 http://galaxy.einet.net/galaxy.html.
¢ http://webcrawler.com.

1389-1286/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PI:S1389-1286(00)00131-6

468 Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

want, but they have their limitations. For example,
none of them individually is sufficient and most of
them return too many irrelevant, outdated, or
unavailable references [1]. In general, users have to
query many engines before obtaining the most
relevant matches. In addition, each search engine
has its own interface. A novice is confused by this
variety of search engines. Designing from scratch a
comprehensive search engine with a search capa-
bility equal to other search engines combined is
not easy. Many researchers thus construct MSEs
that use meta-brokers, such as MetaCrawler [1],
Customizable Multi-Engine Search Tool [2], Sav-
vySearch [3,4], Softbot [5], Amathaea [6], and the
solution proposed by Overmeer [7,8]. These tools
tie a number of search engines together in a system
and act as a dispatcher. When a user initiates a
search, a MSE dispatches the request to various
search engines and collects the results.

1.1. Motivations and objectives

Even with MSEs, however, there are problems,
especially with the scalability and flexibility of a
system. Even if an MSE is capable of tying with
any existing search engine, it may be necessary in
the future to integrate it with new and more
powerful search engines. Most MSEs lack exten-
sibility, because they have no uniform interface for
standard search engine agents. Generally, there are
problems with tying an MSE to a new search
engine.

Although Internet users may find MSEs useful,
this is less true for programmers, who need to have
a search component included in their applications.
When an application needs to conduct a search,
the programmer must either design a search com-
ponent in their applications or query existing
search engines. Regardless of which approach is
used, the programmer will always need to extract
what is wanted from the complicated HTML file
that is returned. For example, a programmer de-
veloping an application that has a search capa-
bility must explore and analyze the interface of the
search engine. Then, the query string must be en-
capsulated into URL format in terms of the query
interface of the search engine and be sent to the
search engine in HTTP protocol. When the results

are returned, the program must also extract the
information from the complicated HTML file.
Each operation needs to handle the network con-
nection. These are tedious tasks. An MSE is thus
difficult to use when a specific application must
search.

Among programming techniques, object orien-
tation [9] offers greater portability and reusability
and has been widely applied to software design
and development. Many new applications are de-
signed in object-oriented language, such as C++ or
Java. In recent years, a range of distributed object
middle-ware has become available, for example,
the Object Management Group’s CORBA [10],
Microsoft’s DCOM [11] and Sun’s JAVA RMIL
CORBA is an industrial standard and has more
than 1000 members worldwide. Moreover, it has
been ported to many operating environments, such
as Microsoft’s Windows, UNIX and MVS.

Here, we propose an ISS on CORBA, which is
an industrial standard of a distributed object-ori-
ented platform [10], and design a multi-search
engine based on ISS. The design of the ISS inter-
face follows the style of COSS [12].

Several reasons motivated this work. First,
every search service on the Internet has its own
interface, which is confusing to novices. We
therefore propose a uniform interface that can
accommodate most of the interfaces found in
search engines. Second, if an application requires
to conduct a search, then incorporating search
services must be made easy. By means of ISS,
programmers can use this interface to construct
search components or to query the search engines
in their applications. Based on the CORBA stan-
dard, applications can be developed in other en-
vironments, such as CORBA, COM, and Java, as
shown in Fig 1, but those so developed must be
mediated through IIOP bridges [10,13]. Third,
since the interface is uniform, designing a multi-
search engine based on ISS is simple. Fourth, we
hope to establish a standard for Internet Search
Service on the OMG’s COSS. Finally, we believe
that ISS can be easily applied to other types of
search engines, such as knowledge-discovery sys-
tems, real-estate systems, and digital libraries, and
to heterogeneous search engine agents. Thus, for
most search or query services, whether or not on

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480 469

Search Engine
Layer(remote)

ISS Layer

{ search service 1 } { search service 2 }

{ search service N }

(Agent)

CORBA client

Fig. 1. Internet search service architecture.

the Internet, this approach can be extended to
multi-search engines, the design for which can in-
herit the advantages described above.

The major objective of this paper is to propose
a uniform interface for Internet search services,
which will offer a programming interface for lo-
cating of what it wishes to retrieve. Since the ar-
chitecture of ISS is of a 3-tier client/server model
and its interface is uniform, any specific applica-
tion that needs to search for information or to
mine data from the Internet need only initiate the
search operation of an agent via ISS. Programmers
do not need either to explore the interfaces of
various search engines, or to construct search
components in their applications. In Section 2, an
ISS interface and a programming example of ISS
are described. In Section 3, we build our experi-
mental multi-search engine, which we term Octo-
pus, and demonstrate the proposed approach to
designing a multi-search engine using ISS.

We begin by exploring the interfaces and attri-
butes of existing search engines and then combine
these interfaces into a uniform interface to form an
ISS. Then, using the ISS interface, we construct
two representative search engine agents — one for
Yahoo and the other for AltaVista. As the ISS is
based on CORBA, and the agents are built as
Internet search components, programmers can use

the interface to search Web sites in their applica-
tions. In addition, we tie the agents together and
build Octopus. It is built as a multi-threaded and a
multi-agent version to serve incoming requests,
then to collate and filter results before returning
them to users. Although the agents were con-
structed as CORBA objects, and the interface was
uniform, other search engines could be easily tied
to Octopus.

1.2. Search engine overview

Search engines are powerful tools for assisting
users to navigate the rapidly expending World
Wide Web. Most large-scale search engines can be
divided into two categories: directory scheme, such
as Yahoo and Yam,” and active search scheme,
such as AltaVista and InfoSeek, etc. With direc-
tory scheme, the Web manager must register the
Web’s address, description, and other identifying
information, while active search schemes search
Internet Web sites periodically and index related
items of information in the database.

In directory schemes, registered Web sites are
categorized manually. Querying this kind of search

7 http://taiwan.iis.sinica.edu.tw/b5/yam.

470 Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

engine may produce more relevant results. Since
directory schemes can only accommodate regis-
tered sites, and many sites are unregistered, results
from them may be fewer than those obtained from
active search schemes. In comparison, active
search schemes search most Web sites periodically
and so return more results. Nevertheless, they do
not guarantee relevance, even if the results have a
higher index. However, combining the advantages
of both search schemes could improve search
performance and results.

Most search engines have their own interfaces,
which may not be alike. We investigate those in-
terfaces to define our ISS interface. Two repre-
sentatives search engines are explored — Yahoo
and AltaVista — and the results are shown in
Table 1. A full description of the interfaces of both
engines can be found on their home page.

There are two types of interfaces: common and
specialized. Common interfaces contain many at-
tributes that are included in most search engines;
specialized interfaces do not. These two types are
shown in Table 1, and we believe that they include
most existing search engine interfaces. Neverthe-
less, we have not covered all search engines so far,
but we shall add to these interfaces, and try to
include as many engines as possible. The design of
our ISS is described in Section 2.

The paper is organized as follows. Section 2
presents the design of our ISS based on CORBA
and a sample program to demonstrate how to use
it. Section 3 describes an experimental multi-
search engine based on our architecture, which we
term Octopus. Section 4 presents a discussion.
Finally, Section 5 gives conclusions.

2. Designing an Internet search service

In devising a multi-search engine, we first define
an ISS and describe its design in detail before
presenting an example to demonstrate its use.

2.1. Architecture of 1SS
We define an ISS interface by following the

style of COSS. One of major objective of our ISS is
to provide a uniform interface for search engines.

Table 1
Interface comparison for Yahoo and AltaVista
Yahoo AltaVista
Common interfaces
Include + +
Exclude - -
Wildcard * *
OR Space Space
Exact Phrase “r “
Title t: Title:
URL u: url:
Specialized interfaces
Anchor Anchor:
Applet Applet:
Domain Domain:
Host Host:
Image Image:
Link Link:
Text Text:
Near ~
Date restriction 1 day ago dd/mmm/yy
3 days ago
1 week ago

1 month ago
3 months ago
6 months ago
3 years ago
Display matches 10
Per page 20
50
100
Search area Yahoo
Categories
Web site
Yahoo! Usenet
Usenet

Search database

Programmers can use this interface to construct
search engine agents or to query search service in
their applications based on our object implemen-
tation. We design the ISS based on the description
of the interface comparison given in Section 1.2.
The design consists of three components: Search-
Factory, Search, and ResultCollection. The Search
is at the core of executing a search in ISS. The
SearchFactory component creates Search. The
ResultCollection component collects results. Fig. 2
shows the relationship of these components. An
arrow with a vertical bar is used to show that the
target object supports the interface named next to
the arrow and that clients holding an object ref-
erence of this type can perform operations defined

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480 471

Internet Search

Search
Factory

Client

Search
Object

Fig. 2. Structure of interface search service.

by the interface. Our design includes as many
search interfaces as possible. Next, we describe the
ISS interface and its processing scenario.

2.2. The ISS interface

The SearchFactory creates a Search object. Be-
fore a client program obtains a Search object, it
must bind to the SearchFactory to obtain its object
reference. This interface is shown in Table 2.

After the client program obtains the reference
of the SearchFactory object, it then invokes New-
Search() operation to obtain the Search object,
which is the component to invokes which search
engine agents. In ISS, the Search interface have
five methods, which are AddKeyword(), Remove-
Keyword(), GetKeyword(), ExecuteSearch(),
and AbortSearch(). These operate as follows.

Table 2
The SearchFactory interface

interface SearchFactory

{

/Isearch factory interface

Search NewSearch();
b

When a client program obtains the reference of
the Search object, it then may perform AddKey-
word() operation to put query string into the
Search object. The query string is removed by the
RemoveKeyword() operation. These two methods
have an input keyword parameter in respect of the
added or the removed string. Each keyword con-
sists of a query string and an attribute. The at-
tribute denotes whether the string is included or
not.

In addition, a client may look for the query
string by the GetKeyword() operation, with an
input parameter that is the needed key word index.
Before invoking a search engine agent, a client
must put one or more attributes related to the
query into the Search object. Then, the client
program initiates the ExecuteSearch() operation
to perform the search. To discontinue a search, the
client program can perform the AbortSearch()
operation. These methods are shown in Table 3.

To accommodate all search engine interfaces,
we refer to Table 1 and define a few attributes in
the Search interface. These attributes are Domain,
Tag, Date, Near, DispNum, Area, DataBase, and a
read-only No_Keyword. Most of them are bit-wise
representations. For instance, a Tag attribute can
represent the search target which may be in the
form of title, URL, anchor, applet, image, link, or
text. We declare a long integer to represent this
attribute. Each bit represents a tag, and the re-
mainder bits are reserved for future use. In
CORBA, attributes can be translated into two
operations by an IDL compiler. They are get_xxx
and set_xxx, respectively. Here, xxx is the attrib-
ute’s name. How to use these attributes is imple-
mentation-dependent.

The third ISS interface is the ResultCollection,
which is shown in Table 4. In this interface, the
retrieve_element_at() is the only method function.
When a client program performs the Execute-
Search() operation, the Search object issues a
query request to related search engines, creates
and returns the ResultCollection object reference to
the client program. The client program reads the
number of results from the read-only attribute
named No_Result, and then retrieves the returned
references that include a data structure consisting
of Title, URL, Description, Date, and Weight,

472 Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

Table 3
The Search interface

struct Keyword

{
char Inclu_Exclu;
string item;

1

interface Search

{
attribute string Domain;
attribute long Tag;
attribute string Date;
attribute long Near;
attribute unsigned long DispNum;
attribute char Area;
attribute boolean DataBase;
readonly attribute long No_Keyword;
boolean AddKeyword(in Keyword add);
boolean RemoveKeyword(in Keyword removed);
Keyword GetKeyword(in long index);
ResultCollection ExcuteSearch();
Boolean AbortSearch();

/lkeyword structure

/lsearch interface

//[domain and host
/ltitle, URL, anchor, applet, image, link, text

//how many words between two string
//how many references displayed in a page
/I Web site, Categories

//get the number of added keyword
/ladd keyword for future search
/lremove added keyword

/lget added keyword

/lexecute search

/labort this search

using retrieve_element_at() method. In the fol-
lowing two subsections, we explain the scenario of
ISS and present a programming example.

2.3. Normal scenario of ISS

Fig. 3 shows the normal scenario for ISS. For
the client program, it first binds to the Search-
Factory to get its object reference, and execute the
NewSearch() operation to construct a new Search

Table 4
The ResultCollection interface

struct Result /lresult structure

{
string Title;
string URL;
string Description;
string Date;
float weight;

1
s

interface ResultCollection
{

readonly attribute long
No_Result;

Result retrieve_ele-
ment_at(in long where);

I

/lresult collection interface

. Result
Client SearchFactory Search Collection
::Bind :
::NewSearc!
create
::AddKeywprd

::Execute§earch

J create

——— P
Send HTTP mgssage

\4

<
«
[

::Retrieve_elgment at

Fig. 3. Scenario of ISS architecture.

object. When the SearchFactory receives a New-
Search request, it creates a Search object and re-
turns object reference to the client. Once the client
has this, it can execute other operations, such as
AddKeyword, RemoveKeyword, and GetKeyword,
and set related attributes into the Search object.
Then, the client program uses the ExecuteSearch
method to issue a search request. Once the Search
object receives a request, it encapsulates related
keywords and attributes into the search engine
query string and sends it to corresponding search

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480 473

engines. When the Search object receives the
search result from the search engine, it de-encap-
sulates returned messages and puts them into Re-
sultCollection object. Then, the Search object
returns ResultCollection object reference to the
client program, which then extracts query results.

2.4. Programming example

In this subsection, first we demonstrate the
codes for a client program and show how to query
search engine agents. According to the described in
Section 2.2 interface, we first compile the interface
definition language (IDL) file and generate the
client stub and server skeleton. Then, we imple-
ment the search engine agent component and
compile it with the server skeleton. Finally, we
write a server program and register it into ORB.
The server program is shown in Table 5.

As described in Section 1, an application pro-
gram using this interface can easily search for in-
formation from the Internet. This functionality is
not supported by other MSEs. We now demon-
strate the implementation of a client program. The
code sequences shown in Table 6 are the same as
the scenario for ISS.

First, the client must bind with a search engine
agent and obtain a SearchFactory object reference.
If the system supports multiple agents, then the
client may also bind with other agents and set the
attributes of agent. Second, the NewSearch()
operation is invoked to obtain the Search object
reference. Third, the client puts the query string
into the Search object by invoking the AddKey-
word() operation. Fourth, all the attributes are

Table 5
The server program

int main(void)
{
InternetSearchService_SearchFactory_impl ISS_YAHOO;
try {
CORBA_Orbix.impl_is_ready(“ISS_YAHOO”);
} catch (CORBA_SystemException &SysEx) {

}

return 0;

}

Table 6
The client program

void main (int argc, char* argv[])

1 bind to Search Factory and get its object reference
SearchFactory_var =ISS_SearchFacto
ry::_bind(“:ISS_YAHOO?”, hostname);
/lInvoke NewSearch operation to get the object reference of
Search object
Yahoo_Search_var = SearchFactory_var->New
Search();
llput query string and invoke AddKeyword operation
for (i=1; 1 < argc; i++){//add query string
if (argv[i][0] = ="+" || argv[i][0] = = "-"){
if (argv[i[0]= ="+")
Keyword_element.Inclu_Exclu = 0x01;
else
Keyword_element.Inclu_Exclu = 0x02;
Keyword_element.item = CORBA_string_alloc(str-
len(argvli]-1)+1);
strncpy(Keyword_element.item, argv[i]+1,str-
len(argv[i]));
telse{
Keyword_element.Inclu_Exclu = 0x00;
Keyword_element.item = CORBA_string_alloc(str-
len(argv[i])+1);
strepy(Keyword_element.item,argv(i]);
}
if (! Yahoo_Search_var->AddKeyword(Keyword_ele-
ment)){

delete Keyword_element.item;
}
Ilset all of Attributes
Yahoo_Search_var->Tag(...);
Yahoo_Search_var->Date(...);
Yahoo_Search_var->Area(...);
Yahoo_Search_var->DataBase(...);
Yahoo_Search_var->DispNum(...);
linvoke Execute Search operation
Result_var = Yahoo_Search_var->ExecuteSearch();
ISS_Result* result_clement;
I get the result
CORBA_Long NoResult =Result_var->No_Result();
if(NoResult! = 0)

for (i=1; i <=Result_var->No_Result(); i++){

result_element = Result_var->retrieve_element_at(i);

}

-

set. Fifth, the search is executed by invoking the

ExecuteSearch() operation. Finally, the result is

obtained from the ResultCollection object.

474 Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

By this procedure, it is clear that an application
wanting to search the Internet neither needs to
have a complex search component nor to execute
many sophisticated network-accessing efforts. It
needs only to issue a few of invocations on the
agent.

3. Application of ISS

We build our experimental heterogeneous
search engine, i.e. Octopus, to demonstrate the
feasibility of ISS. Our system involves two search
engine agents, which are implemented as a COR-
BA object, but using a similar method could allow
us to add other search engine agents to the system
easily.

3.1. System architecture

Since Octopus utilizes ISS IDL definitions, it
provides a single and uniform interface for
searching Web documents. On receiving a query
from a WWW user, Octopus dispatches it to
multiple search engines in parallel, and collates the
returned references.

Fig. 4 shows the Octopus system architecture.
In this system, a Web user posts a query request
via common gateway interface (CGI). The CGI
then forks a mediator for each request. The re-
sponsibilities of the mediator are as follows: First,
it obtains agent information from the Service Re-
pository that stores agent information, such as the

WWW User
CGI Interface

WWW Interface
y 3
S
v

CORBA AltaVista Yahoo Other Engine
U Client JAS Wiapper b WEBPPEE. . f LI Wrapf 1
[corRBA ORB |
Search Service Interface ‘ ¢ H
AltaVista Yahoo | ... Other Engine
Agent Agent Agent

Fig. 4. Octopus system architecture.

number of agents and its name. Then it creates
multiple threads to perform this query. In our
design, each created thread is a wrapper. Second, it
collates the returned information from all of the
agents, before merging and filtering them. Finally,
it returns the query results to the Web user.

In addition, each wrapper is a CORBA client
program, which is responsible for setting the at-
tributes for each search engine agent and issuing
invocations for operations. Most search engines
have their own attributes, although they differ
from each other only slightly. Each agent has one
wrapper. The first task of a wrapper is to add
keywords into the related agent, and set its attri-
butes. Next, it performs the ExecuteSearch()
operation to invoke a search. Once a search engine
returns the results to the agent, the wrapper will
extract the returned information from the agent,
and return it to the mediator. A further clear ad-
vantage to our system is that programmers can
implement their own wrappers in their applica-
tions to perform Web search functions and thus
have a search service capability.

Another component in our system is the agent,
which is also a CORBA object. When the agent
receives the request from a wrapper, it will en-
capsulate query information into the HTTP for-
mat of the related search engine. Finally, it sends
the query information to the related agent and
obtains the results from the search engine agent.
Although we have a uniform interface- ISS, adding
other agents into our system is made easy.

Moreover, because these agents are imple-
mented as CORBA objects, a general CORBA
client can also use this interface to invoke search
engine agents in their application programs. Of
course, clients that are developed in other object
models, such as Microsoft’s COM/DCOM, can
also use these agents via CORBA’s Internet Inter-
ORB Protocol [10] in the same way.

3.2. System implementation

With Octopus, the mediator is an important
component. As mentioned above, Octopus serves
each query request by a dedicated thread of a
mediator. The mediator dispatches the request to
multiple search engine agents. Thus the mediator

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480 475

has to create multiple client threads. Each thread is
a client of agent. The codes for creating multiple
threads are shown in Table 7.

On the other hand, although no single search
service is sufficient in the WWW, and a heteroge-
neous multi-search service may include most ref-
erences, many search engines may return
duplicated references, and two search engine
agents may return the same references, which re-
sults in confusing users. In Octopus, duplication is
avoided by using a hashing function in the medi-
ator for filtering the references. Any returned ref-
erence with the same network address as a
previous one is discarded to guarantee its unique-
ness. In our experiment, the returned references
from Yahoo and AltaVista search engines are 2286
and 4000, respectively for 20 query items, while
Octopus has 5183. Clearly, the two search engines
duplicated 1103 references, which gives a duplica-
tion rate 21%. In addition, Octopus uses a dedi-
cated thread to guarantee the availability of the
filtered references.

Another important component of the architec-
ture shown in Fig. 4 is the wrapper. This acts as
the client of the search engine agent. The imple-
mentation is similar to the CORBA’s client de-
scribed in 2.4.

Another feature that is provided in many search
engines is the weight of responses. The weight
represents the relevance of the responses to the
query string. Each search engine has a proprietary
weighting algorithms. In most search engines,
query results are shown on the result pages in or-
der of weighting. However, Yahoo and AltaVista
responses do not show weights, and so in a MSE it
is hard to accurately evaluate the weight of each
item. If the search engines do not respond with the
weight in a result, the weighting algorithm in Oc-
topus simply gives each item a weight of 500. In
Octopus, the weight is implemented by normaliz-

Table 7
The code segment of a multi-threaded version

hAgentTread[0] = (HANDLE)_beginthreadex(NULL,0,
Yahoo_Client, &user_no,0,&AgentThreadID[0]);

hAgentTread[1]= (HANDLE)_beginthreadex(NULL,0,
AltaVista_Client, &user_no,0, &AgentThreadID[0]);

WaitForMultipleObjects(2,hAgentTread,true, INFINITE);

ing the scores returned by search engines to be-
tween 0 and 1000. Then the mediator calculates the
average for all the weights from the search engine
agents. We do not attempt to improve the inte-
gration beyond this ad hoc approach, because our
focus was on proposing modularized architecture
and interfaces. We ensure with Octopus that items
are shown in order of weighting. It is a simple
approach that can be easily changed in the future
in modularized architecture. We can also apply
other weighting algorithms to Octopus, such as
[14].

How to merge search results from search en-
gines is also an important issue in a multi-search
engine. Raw results from individual search engine
agents must be integrated for display to the user.
Results can be displayed with little additional
formatting and can be rank ordered or interleaved.
In Octopus, the number of items received on one
page is 100 from Yahoo and 200 from AltaVista.
This is in order to promote the system perfor-
mance. The maximum number of retrievable items
from the two search engines is 200. In Octopus, the
agent only fetches the first page (HTML file) that
covers the URL and the description of each item.
Therefore, the approach to merging all the search
results is to filter those that come from the agents
and weigh the filtered results. Similarly, the query
results are shown in order of weighting.

The mediator has a central role in Octopus.
Other valued-add services may also be integrated
into the mediator to enhance the system’s capa-
bility.

3.3. User interface

The underlying systems in Octopus are two
platforms (a SPARC and a Windows NT). The
ORB of this system is IONA’s Orbix 2.02 [15],
which fully complies with CORBA specification.
The conventional search engines here included in
Octopus are two typical search engines — Yahoo
and AltaVista search engine. Figs. 5 and 6 show
the user interface. When a user submits a query
using the query form (Fig. 5), the system will
perform the query process and obtain the results
from Octopus. The returned results are organized
and displayed in a unified form, as shown in Fig. 6.

476

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

File Edit ¥iew Go

Communcator Help

=

- o

Gy e oml b @ #

Back Forwardl Eeload Search Metscape Print Security Stopl]

g " Bookmarks i Location: |hﬂ13:."."dcsw3.cis.nctu.edu.tw."ch:npu.s."AdvmcedSearch_Q.hmﬂ j E,E:JJJ' What's Eelated

J%InstantMes&age E'Ij Tehhdail Elj Contact E'Ij People E'Ij Vellow Pages E'Ij Dovwnload _l"ChaJmels

Chuick Version

Keyword : |

¥ Detailed Result List

Area - & Web © Category

Tag - & All © Text © Title © TEL © Anchor © Applet © Image © Link
Database - ® Web © Tlanet

DomainHost - |

Text Near - I

Display Per Page - |10 [~

Date Restriction - |

(= ==

M = =l
[

Eyava

|Dl:|cumnt: Done

S T LA P L

Fig. 5. Octopus user interface.

The user may either issue a simple or a complex
search. For a complex search, all of attributes
shown in Fig. 5 are adjustable and for a simple
search they have a default value.

3.4. Performance evaluation

Performance is very important issue in the cli-
ent/server model. In Octopus, there is one media-
tor, multiple wrappers, one ORB, and multiple
agents working in parallel in maximize the service.
Performance is therefore seriously effected. To
improve performance in our system, the following
strategies are used: multi-threading and various
agents configured on various hosts.

Multi-threaded programming is a well-known
technology for improving server performance. In

Octopus, the mediator, wrappers and search en-
gine agents are all multi-threaded versions. When
a mediator thread is created, it immediately creates
multi-threaded wrapper. Each thread of wrapper is
associated with one agent that is also a multi-
threaded version created by ORB.

In addition, we assign each agent to a dedicated
host. This is easily done in the CORBA environ-
ment. Thus, the strategy can balance the overhead
of the system. We are also aware of object mi-
gration [16] techniques to balance the system load
for future consideration.

We perform the preliminary measurements
shown in Fig. 7 to assess the performance of
Octopus and compare it with the Yahoo and
AltaVista search engines. Though the overhead of
transmission in Internet in most situations is

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480 477

=

Back Forward[Beload Home

O A T

Hearch Metscape

b & 3
Print Security Stopl | N‘-

_§ "Bookmarks J; Location: [i-binfearch_b/Search_cache ceifquery=DCOM&from=1&det=1 =] (51" What's Related

-

S Instant Message | Webbail G| Contact 5 People E| Vellow Pages G Downlosd) Channels

. 6 Al
The Distributed Component Obiect Model (DCOM) is a protocol that enables software
components to commumnicate directly over a network in a reliable, . .

SE:

LI
Iailing List Archives of DCOM@DISCTSE MICEOSOFT. COM. Distributed
COM-Based Code. Join or leave the DOOM mailing list. Search the archives. JTanuary.
=E:

LI
Cetus Links: 17,430 Links on Objects and Components. .

[

Document: Done

= [=0=|

RN AN P

Fig. 6. Octopus returned results.

unpredictable, it is obvious from the figure that
Octopus is efficient. The average query time for
Octopus is slower than the two representative en-
gines. The reasons for overhead in Octopus are to
create multiple threads that execute search opera-
tions, to deliver message on ORB, and to filter
returned references. As Fig. 7 shows the resulting
performance is reasonable. We also measure the
total overhead, which as in Fig. 8 shown, is 6.5%.
We believe that the major overheads are filtering
the returned references and the networking over-
head of CORBA. But these operations are exe-
cuted in parallel, so the overhead does not increase
linearly, i.e., it does not rapidly increase with the
search engines increase.

Fig. 9 shows a comparison of averaged per-
formance between Octopus and two well-known

multi-search engines, MetaCrawler and Savvy-
Search, respectively. As the returned records of
each query request from the SavvySearch are
about 70 and each return has a constant num-
ber-15, the comparison is limited to a maximum
60. From the results shown in Fig. 9, it is ob-
vious that Octopus is efficient though it has
about 0.5 s network overhead that is measured
from the test-bed to two real systems. A possible
reason for this result is that Octopus is only a
prototype multi-search engine based on ISS. It
has no applied sophisticated algorithms and
many system access operations to handle the
information returned from the search engine
agents. In addition, evaluating network behavior,
such as the numbers of packet retransmission, is
difficult.

478 Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

Performace measurement

60

N

>

sec

. /
//

N

20 40 60 80 100 120 140 160
numbers of returned record / query

180 200

‘ —* Yahoo —#— Alta Vista —*— Octopus—*— Yahoo + AItaVista‘

Fig. 7. Performance measurement.

Overhead measurement

. /
30 /
o e g4
8 e
o A
10 / /
5 ‘/‘:_“///
L P e—— T

#20 #40 #60

numbers of returned records / query

#80 #100 #120 #140 #160 #180 #200

—*— AltaVista—&— A_Mediator®— A_Overhead®— Yahoo*— Y_Mediator

Y_Overhead

Fig. 8. System overhead measurement.

Performance Comparison

Sec

A
1: /’(/ //V

6 /
4 — .
2
0
15 20 30 40 45 60

Number of returned records/ query

—*— MetaCrawler —®— SavvySearch

—*— QOctopus

Fig. 9. Performance comparison.

4. Discussions and future works
4.1. Advantages

CORBA is an industrial standard, which sup-
ports more than a dozen services in the COSS.
There are many benefits to making a large client/
server middle-ware based on CORBA [20]. In de-
signing and implementing our ISS-based Octopus,
we can mention further advantages.

First, with the progress in search engine tech-
nology, more powerful search engines can also be
tied into the system in a similar way. The system
developer can easily tie new search engines into the
system simply by creating search engine agents. In
our experience, 80% of all codes found in agents
are the same, because the agents have the same
server stub that is generated by IDL compiler. To
create a new agent, only a small part of a program
needs rewriting. All the network operations are
hidden from the CORBA’s server stub. The de-
veloper needs only to handle the interface of the
search engine when constructing the new agent.
The remainder of the system can be retained.

Second, it is easy for programmers to build
applications that need a search ability. Application
programmers utilizing the interface to search for
information in their application can hide the
complexity from network programming and con-
centrate most effort on other significant value-
added services. After the search engine returns the
results, the program does not need to extract the
information from the complicated HTML file.
Since, they are all based on the same interface,
applications are undiscerning when querying
agents. In addition, through the CORBA stan-
dard, applications can also be developed in other
environments, such as COM and JAVA. But, ap-
plications so developed must be mediated through
ITOP bridges.

Third, CORBA is a distributed object-oriented
environment. In Octopus, agents can be easily
distributed at different locations. In this way,
balancing the load while the size of system is on
the increase is easy. The system manager can
dynamically add other agents into the system.
Thus, a system based on ISS naturally has sca-
lability.

Y.-S. Chang et al. | Computer Networks 34 (2000) 467480 479

Finally, because this is a modularized and
component-based approach, it will be easy in the
future to replace certain components with new and
useful algorithms, such as a weighting algorithm
and a natural language processing algorithm.
Similarly, a system based on ISS naturally has
flexibility.

4.2. Extension and future works

In addition, as described in Section 1, the ISS is
easily applied to other types of search engines. For
example, many libraries allow user to inquire the
book information on the WWW [17,18]. Such a
service provides a query on a Z39.50 server to be
made via a Z39.50 gateway [19] that translates the
query string into Z39.50 format. The scenario is
the same as for a general search engine. Thus, in-
tegrating such a service into the system can follow
a similar procedure.

Users generally query book information from
libraries via Subject, Title (book or journal), Au-
thorls, ISBN, ISSN, or Keywords from libraries.
These styles can be seen as a query attributes.
Therefore, the Tag attribute in the Search Inter-
face of ISS can merge all the attributes because it is
declared as Long type and the representation is bit-
wise. All ISS interfaces do not need modification.
Before constructing an agent we need only analyze
the query string that is sent to the server. The
implementation steps and approaches to the agent
are same as for the general search engine agent in
Octopus. Obviously, this approach can be ex-
tended to merge heterogeneous search services.

Octopus is only a prototype multi-search engine
that ties with two agents. To increase its usability,
we shall construct more search engine agents in the
future. We shall also add a few value-added ser-
vices, such as personalized function that is a pop-
ular feature in most search engines.

5. Conclusions

In this paper, we have proposed an Internet
search service (ISS) based on the CORBA, which is
an industrial standard of a distributed object-ori-
ented platform and has been announced by OMG.

We have followed the style of COSS to define the
interface of the ISS. In addition, according to ISS
interface, we have constructed two representatives
of search engine agents — Yahoo agent and Alta-
Vista agent. Since, the ISS is based on the CORBA
and was implemented as an Internet search com-
ponent, programmers can use the interface to
search Web site on the Internet in their applications
via these two agents. We have integrated these two
agents and built a multi-search engine prototype —
Octopus. As these agents are implemented as a
CORBA object, and the interface is uniform, other
search engines are readily tied into Octopus.

The major contributions of our work have been
as follows: First, we proposed a uniform interface
that accommodates most search engine interfaces.
The function of ISS is useful in the general appli-
cations that need a search service capability. Pro-
grammers can use this interface to construct search
engine agents or to query search engines on the
Internet in their applications. Second, because the
interface is uniform, we can easily build a multi-
search engine. In addition, we can easily tie a new
search engine into the multi-search engine. Existing
multi-search engines do not have this capability.

In our experience, using ISS to implement either
search engine agents or multi-search engines is
easy. We also believe that ISS can be easily ex-
tended to other types of search engine agents, such
as knowledge- or data-discovery, real-estate sys-
tems and digital libraries.

Acknowledgements

The authors thank the referees for their valu-
able comments. This work was partially supported
by National Science Council of Taiwan ROC un-
der grant NSC88-2213-E-009-087 and by Institute
of Information Industrial of Taiwan ROC under
grant No. C87-144.

References

[1] E. Selberg, O. Etzioni, Multi-engines search and compar-
ison using the metacrawler, in: Proceedings of the Fourth
World Wide Web Conference’95, Boston, MA, 1995.

480 Y.-S. Chang et al. | Computer Networks 34 (2000) 467480

[2] Chia-Hui Chang, Ching-Chi Hsu, Customizable multi-
engine search tool with clustering, in: Proceedings of the
Sixth International World Wide Web Conference’97, Santa
Clara, CA, April 1997, pp. 257-264.

[3] D. Dreilinger, Integrating heterogencous WWW search
engines, May 1995. ftp://132.239.54.5/savvy/report.ps.gz.

[4] D. Dreilinger, A.E. Howe, Experience with selecting search
engines using metasearch, ACM Trans. Information Sys-
tems 15 (3) (1997) 195-222.

[5] O. Etzioni, D. Weld, A softbot-based interface to the
Internet, Comm. ACM 37 (7) (1994) 72-76.

[6] A. Moukas, P. Maes, Amalthaea: an evolving multi-agent
information filtering and discovery system for the WWW,
Autonomous Agents and Multi-Agent System 1 (1998)
59-88.

[7] M.A.C.J. Overmeer, A search interface for my questions,
Comput. Networks 31 (21) (1999) 2263-2270.

[8] M.A.C.J. Overmeer, My personal search engine, Comput.
Networks 31 (21) (1999) 2271-2279.

[9] G. Booch, Object-oriented Design with Applications,
Benjamin Cummings, Menlo Park, CA, 1991.

[10] Object Management Group, The Common Object Request
Broker (CORBA): Architecture and Specification, vol. 2.2,
February, 1998.

[11] K. Brockschmidt, Inside OLE, 2nd ed., Microsoft Press,
Redmond, WA, 1995.

[12] Object Management Group, CORBA services: Common
Object Services Specification, OMG Document Number
95-3-31, 31 March 1995.

[13] Sun Microsystems, Enterprise JavaBeans to CORBA
Mapping, v. 1.0, 23 March 1998.

[14] L. Gravano, H.Garcia-Molina, Merging ranks from het-
erogeneous Internet sources, Technical Report: AR_300,
Stanford University, Stanford, CA.

[15] Orbix Programming’s Guide, IONA Technologies, Nov-
ermber 1994.

[16] M. Nuttall, A brief survey of systems providing process or
object migration facilities, ACM Operating System Re-
views 28 (4) (1994) 64-80.

[17] National Library, http://readopac.ncl.edu.tw/z3950/.

[18] National Taiwan University Library, http:/tulips.ntu.
edu.tw:211/screens/z39menu_chi.html.

[19] Y.-H. Tseng, Z39.50 server based on WWW(I), http:/
www.lius.fju.edu.tw/~tseng/papers/lacz39.50-2/lacz3950-
2.htm.

[20] R. Orfali, D. Harkey, Client/Server Programming with
JAVA and CORBA, Wiley, New York, 1997.

Chang Yue-Shan was born on August
4, 1965 in Tainan, Taiwan, Republic of
China. He received the B.S. degree in
Electronic Technology from National
Taiwan Institute of Technology in
1990 and the M.S. degree in Electrical
Engineering from the National Cheng
Kung University in 1992. Currently, he
is a candidate of Ph.D. in Computer
and Information Science at National
Chiao Tung University. His research
interests are in Distributed Systems,
Object Oriented Programming, Fault
Tolerant, and Internet Technologies.

Shyan-Ming Yuan was born on July
11, 1959 in Mauli, Taiwan, Republic
of China. He received the B.S.E.E de-
gree from National Taiwan University
in 1981, the M.S. degree in Computer
Science from University of Maryland,
Baltimore County in 1985, and the
Ph.D. degree in Computer Science
from University of Maryland, College
Park in 1989. Dr. Yuan joined the
Electronics Research and Service Or-
ganization, Industrial Technology Re-
search Institute as a Research Member
in October 1989. Since September
1990, he had been an Associate Professor at the Department of
Computer and Information Science, National Chiao Tung
University, Hsinchu, Taiwan. He became a Professor in June,
1995. His current research interests include Distributed Objects,
Internet Technologies, and Software System Integration. Dr.
Yuan is a member of ACM and IEEE.

Win-tsung Lo received the BS and MS
degrees in applied mathematics from
National Tsing Hua University, Tai-
wan, Republic of China, and MS and
Ph.D. degree in computer science from
the University of Maryland. He is now
an associate professor of computer
science and the director of Computer
Center at Tung Hai University, Tai-
wan, Republic of China. His research
interests include architecture of dis-
tributed systems, data exchange in
heterogeneous environments, and
multicast routing in computer net-
works.

s

