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Abstract

The e!ect of electron}optical phonon interaction on the hydrogenic impurity binding energy in a cylindrical quantum
wire is studied. By using Landau and Pekar variational method, the Hamiltonian is separated into two parts which
contain phonon variable and electron variable, respectively. A perturbative-variational technique is then employed to
construct the trial wave function for the electron part. The e!ect of con"ned electron}optical phonon interaction on the
binding energies of the ground state and an excited state are calculated as a function of wire radius. Both the
electron-bulk optical phonon and electron-surface optical phonon coupling are considered. It is found that the energy
corrections of the polaron e!ects on the impurity binding energies increase rapidly as the wire radius is shrunk, and the
bulk-type optical phonon plays the dominant role for the polaron e!ects. ( 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

During the past decades the development of the
epitaxial crystal growth techniques such as mole-
cular-beam epitaxy and metal}organic chemical
vapor deposition has made the growth of the quasi-
two-dimensional (quantum well) or quasi-one-di-
mensional (quantum wire) [1}4] systems possible
with controllable well thickness or wire radius.
These quantum structures have been applied to

many semiconductor devices, such as high-elec-
tron-mobility transistors. Recent progresses in
growth and fabrication techniques have been able
to fabricate the quantum wires with radii less than
100As . Theoretically, the electronic properties of
a hydrogenic impurity in the quantum well [5}8]
and the quantum wire [9}16] have been studied by
many authors. The impurity binding energies of
a quantum wire with in"nite or "nite potential
barrier [9] and with di!erent shapes of the cross-
section [10}12] have been discussed. The e!ect of
location [10}12] of impurities with respect to the
wire axis was also studied previously. The emission
line for quantum wires was observed [17] to be two
to three times broader than that of quantum wells
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and with 6}10 meV higher binding energy. It is
expected that the same properties in quantum wells
were further improved by the reduction of dimen-
sionality to quasi-one-dimensional quantum wires.

The physics of impurity states in quantum wire is
very interesting because speci"c properties can be
easily achieved by varying the wire radius. An elec-
tron bound to an impurity on the axis of the quan-
tum wire behaves like a bounded three-dimensional
electron when the boundary is far away. However,
as the wire radius is reduced, the electron con"ne-
ment due to the potential barrier becomes very
important. Especially in the quantum wire with
in"nitely high potential wall, the total energy of the
electron may change from negative to positive at
a certain radius and "nally diverges to in"nity as
the radius approaches zero. Furthermore, it is well
known that the reduction of dimensionality in-
creases the e!ective strength of the Coulomb inter-
action. The binding energy E

"
of the ground state

of a hydrogenic impurity in N-dimension is given
by E

"
"[2/(N!1)]2RH

y
, where RH

y
"ke4/2e2+2 is

the e!ective Rydberg. Hence the dramatic change
in the binding energy may serve as a clear signal for
variation in the e!ective dimension of the quantum
wire.

It is known that an electron weakly bound to
a hydrogen impurity in a polar semiconductor will
interact with the phonons of the host semiconduc-
tor. In the past decade, many authors have studied
the polaron e!ect on the binding energy of impurity
or exciton in quantum well [18}26]. Recently, the
electron}phonon e!ect on the binding energy of the
donor impurity in a quantum wire with rectangular
cross-section was reported [27}29]. It was found
the polaron e!ect on the binding energy becomes
sizeable as the electron gets more deeply bound.
The polaron shifts in donor energy levels are found
to be of the order of 10% in a weakly polar system.
In studying the polaron e!ect on the impurity bind-
ing energy, most of the previous works considered
the interaction of the electron and bulk optical
(BO) phonon only. However, in ionic crystal, the
motion of an electron near the surface may be
a!ected very much by the surface longitudinal op-
tical (SO) phonon [30]. An electron may be trap-
ped at the surface by the electron}SO phonon
interaction. Besides, the electron}phonon interac-

tion Hamiltonian in the previous works was valid
only for the bulk. Therefore, we will choose the
Hamiltonian derived by Li and Chen [31], who
considered the con"ned phonon modes in the cylin-
drical quantum dot.

Most of the previous approaches concentrating
on the polaron e!ect on the ground state of an
impurity in a quasi-one-dimensional wire employ
the variational method or perturbation method.
Since the construction of variational trial wave
functions is entirely based on physical intuition, the
estimation of the accuracy of the result obtained
from variational approach is very di$cult. Further-
more, the perturbation method is only a good ac-
cess to those systems with very small perturbation
in most cases. Therefore, it would be most desirable
to have an alternative approach which is not only
simple but also e$cient to the quantum wire prob-
lem. In this work, we employ a simple approxima-
tion treatment which combines the spirit of both
variational principle and perturbational approach
to study the e!ect of electron}phonon interaction
on the ground-state binding energy of a hydrogenic
impurity located inside a quantum wire.

2. Theory

Consider now a hydrogenic impurity located on
the axis of a rigid wall cylindrical quantum wire
with a radius d. The Hamiltonian of the impurity
electron interacting with the phonon can be ex-
pressed as

H"H
%
#H

"
#H

%}"
#H

41
#H

%}41
, (1)

where H
%

is the electronic part of the Hamiltonian

H
%
"!

+2
2kA
R2
Rx2

#

R2
Ry2B!

+2
2k
R2
Rz2!

e2

er
#<(o). (2)

<(o) is the con"ning potential which is assumed as

<(o)"G
0 for o)d,

R for o'd
(3)

and e and k are the dielectric constants of the well
and the e!ective mass of the electron. Recently,
Li and Chen [31] have derived the con"ned longi-
tudinal-optical phonon and surface phonon modes
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of a free-standing cylindrical quantum dot of radius
d and height 2D. We will follow their Hamiltonian
and let D approach in"nity, such that the dot sys-
tem can become a quantum wire. Therefore, H

"
is

the bulk phonon Hamiltonian which can be ex-
pressed as

H
"
"+

n,l

+u
LO

as
nl
a
nl
, (4)

where +u
LO

is the dispersionless bulk optical (BO)
phonon energy, as

nl
(a

nl
) is the creation (annihilation)

operator for BO phonon. H
%}"

is the interaction
between the electron and BO phonon which can be
expressed as

H
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n
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with
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[(s
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where J
m

is the mth-order Bessel function, s
n

is the
nth-root of J

0
, and<"2pd2D(DPR) is the crys-

tal volume. H
41

is the surface optical phonon (SO)
phonon Hamiltonian which can be expressed as

H
41
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n

+u
41
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n
B
n
, (7)

where +u
41

is the surface optical (SO) phonon en-
ergy, Bs

n
(B

n
) is the creation (annihilation) operator

for SO phonon. H
%}41

is the interaction between
electron and SO phonon:
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where k
n
"np/2D, and S"pd2. I

m
and k

m
are,

respectively, the mth-order modi"ed Bessel func-
tion of the "rst and second kind.

Following Landau and Pekar's variational ap-
proach [32], the trial wave function can be written
as

DWT"U(r);
"
;

s
D0T, (12)

where U(r) depends only on the electron coordi-
nate, and D0T is the phonon vacuum state de"ned by
b
q
D0T"0, a

q
D0T"0, and ; is a unitary trans-

formation given by

;
"
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where f
nl

and g
n
are the variational function and the

unitary operators ;
"

and ;
4

transform the bulk
phonon and surface phonon operators as follows:
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The parameters f
nl
, f H

nl
, g

n
, gH

n
can be obtained by

minimizing the SDHDT with respect to the para-
meters f

nl
, f H

nl
, g

n
, gH

n
. Then, the expectation value
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SHT turns out to be

SHT"SU(r)DH
%
DU(r)T
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nl
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The axis of the wire is assumed to be along the
z direction. To solve the electronic part, one can
employ the perturbative-variational approach.
Two variational parameters a and b are introduced
by adding and subtracting two terms ae2/eo and
(b2+2/2k)z2 into the original Hamiltonian H

%
and

then regroup H
%

into three groups

H
%
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where
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In the above equations, H@(a,b) is treated as a per-
turbation, and a and b are treated as variational
parameters which can be determined by requiring
the perturbation term to be as small as possible.
Decomposing H

%
into two terms H

01
and H

02
is

equivalent to dividing the space into a two-dimen-
sional (in xy plane) and a one-dimensional (in
z-axis) subspace. The unperturbed part of the
Hamiltonian H

%
contains two terms, i.e. H

01
and

H
02

, where H
01

represents the one-dimensional
harmonic oscillator, and H

02
represents a two-di-

mensional hydrogen atom located inside a quan-
tum disk [16]. Both can be solved exactly. For
illustration, the ground-state energy and wave
function of the unperturbed part can be expressed
as

E(01)
'
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(b)#E(02)
'

(a), (24)
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'

(r, a,b)"u(01)
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'
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respectively, where u(01)
'

(z; b) is the ground-state
wave function of the 1D harmonic oscillator, and
u(02)
'

(x, y; a) is the ground-state wave function of the
2D hydrogen atom located at the center of an
in"nite circular well. The ground-state eigenvalue
and eigenfunction of the 1D harmonic oscillator
can be expressed as

E(01)
'

(b)"
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2k

, (26)
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'

(z;b)"A
b
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1@4
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The ground-state eigenvalue and eigenfunction of
the 2D hydrogenic impurity located at the center of
an in"nite circular well can be obtained as [16]
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) is the irregular Coulomb

wave function, and N
2

is the normalization con-
stant.

(3) The turning point for energy changing from
E'0 to E(0 in the quantum circle system may
be determined by setting

d~1@2J
0CA

8ke2

e+2 B
1@2

d1@2D"0 for m"0 (30)

and

d~1@2J
2CA

8ke2

e+2 B
1@2

d1@2DL0 for m"1. (31)

The requirement of the continuity of the wave func-
tions and its "rst derivative at boundary yields

(1) For E(0:

/(DmD#1
2
!j

1
, 2DmD#1, a, d)"0. (32)
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Fig. 1. The ground-state energy (solid line) and the binding
energy (dotted line) of a hydrogenic impurity located at the axis
of a cylindrical wire as a function of the radius of the wire. (RyH
and aH are the e!ective Rydberg and the e!ective Bohr radius.)

(2) For E'0:

U
m~1@2

(g
2
, a

2
d)"0. (33)

The eigenvalues are then given as
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ka2e4
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1
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2
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The "rst-order energy correction can thus be ob-
tained as
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The second term of the above equation can be
integrated analytically and the result is
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Then, the total energy up to the "rst-order per-
turbation correction can then be obtained as

E
'
(a, b)"E(01)

'
(b)#E(02)

'
(b)#*E(1)

'
(a, b). (36)

The variational parameters are then chosen by re-
quiring the total energy E

'
(a,b) to be minimized

with respect to the variation of a and b. This is
equivalent to requiring

RE
Ra"0, (37)

RE
Rb"0. (38)

For the excited states, the eigenvalues and eigen-
functions can be treated in the same way.

3. Results and discussions

We have calculated the e!ect of the con"ned
longitudinal-optical phonon and surface phonon

interactions on the hydrogenic impurity located in
a quantum wire. And the well potential is con-
sidered as in"nite. Fig. 1 shows the ground-state
energy as a function of the wire radius. The binding
energy E

"
of the hydrogenic impurity is de"ned as

the energy di!erence between the ground-state en-
ergy of the cylindrical wire system with and without
the impurity, i.e.

E
"
"E

0
!E

'
, (39)

where E
0

is the ground-state energy of the quan-
tum wire system without the impurity, while E

'
is

the ground-state energy of the quantum wire
system with the impurity located on the axis of
the cylindrical wire. One can see from Fig. 1 that
the energy of the 1s state becomes negative when
the wire radius is larger than 1.65aH. It means that
the con"ning energy is larger than the Coulomb
energy as the wire radius is smaller than 1.65aH.
And one can also note that as the radius of the
quantum wire is decreased, the ground-state energy
increases. As the wire radius d becomes smaller, the
electron is pushed toward the axis of the cylindrical
wire. This makes the electron get close to the nu-
cleus. As the electron gets close to the nucleus, both
the ground-state energy and the binding energy
increase rapidly. This is because the Coulomb
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Fig. 2. The binding energy of the 2s excited state as a function of
the wire radius. (RyH and aH are the e!ective Rydberg and the
e!ective Bohr radius.)

Fig. 3. The energies of the wire radius modi"ed by the con"ned
BO and SO phonon. The solid line stands for the BO phonon
e!ect, and the dashed line for the SO phonon e!ect. (RyH and
aH are the e!ective Rydberg and the e!ective Bohr radius.)

potential, which varies with &1/d (d is the wire
radius), becomes more negative, while the kinetic
energy of the electron, which varies with &1/d2 (by
the uncertainty relation), increases more rapidly. As
a result, the ground state energy is increased as the
electron gets close to the nucleus. The binding
energy de"ned in Eq. (39) is e!ectively the negative
sign of the Coulomb interaction energy between the
electron and the nucleus, i.e. &1/d, therefore, the
binding energy of the electron is also increased as
the electron gets near to the nucleus. Our results
show that for small wire radius, the binding ener-
gies are in good agreement with the previous results
[12,16]. As the radius becomes very large, our re-
sult approaches the correct limit 1RH while the
previous work [14] can only yield a value of
0.22RH. The large discrepancy of the previous work
may be due to the arti"cial dividing of the varia-
tional trial wave function into a one-dimensional
hydrogen atom and a two-dimensional hydrogen
atom and thus forces the creation of an additional
node of the wave function at z"0. In this work, the
trial wave function is adopted to be in the form of
1D harmonic oscillator wave function instead of
the one-dimensional hydrogen atom. This prevents
our wave function from introducing any additional
node at z"0. Fig. 2 presents the 2s excited state
binding energies as the functions of wire radius.
One can note from the "gure that as the wire radius
increases, the binding energy approaches 0.25RH
which gives correctly the limiting value of 3D hy-
drogen atom.

Fig. 3 presents the con"ned BO phonon and SO
phonon e!ects as functions of wire radius. With
increasing the wire radius, the magnitude of the
con"ned BO phonon e!ect decreases from large
value and then approaches to the bulk value. When
the wire radius is less than 1.5aH, the polaron e!ect
increases rapidly. One might think as the radius
becomes very small, the con"ned BO phonon e!ect
should approach zero, like the case in quantum well
[33]. In fact, similar results were obtained by
Oshiro in a spherical quantum dot [34]. They
found that the polaron energy shift is enhanced as
the dot radius becomes small. This is due to the fact
that the electron becomes completely localized (E

"
approaches in"nity) in small wire (or dot) radius
while the binding energy approaches 4RH in small

well width. In the case of quantum well, the con-
"ned SO phonon e!ect plays the dominant role for
small well width [33]. But in quantum wire, the
con"ned SO phonon is less important, just like that
in quantum dot system [34]. This is because the
surface area of a quantum wire (or quantum dot)
decreases with the radius. Thus, the number of
vibration modes of con"ned SO phonon becomes
fewer.

In Fig. 4, three curves are presented. The dotted
curve represents the binding energy of the impurity
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Fig. 4. The binding energy with/without phonon e!ect. The
dotted line stands for the binding energy without the phonon
e!ect. The dashed line stands for that only BO phonon e!ect on
the binding energy, and the solid line for both the BO and SO
phonons e!ects on the binding energy. (RyH and aH are the
e!ective Rydberg and the e!ective Bohr radius.)

without considering the interactions between the
electron and phonon. The dashed curve represents
the binding energy of the impurity with only the
con"ned BO phonon e!ect being taken into ac-
count. While the solid curve is the binding energy of
the impurity including both con"ned BO phonon
and SO phonon e!ects in the calculation. Com-
pared with the impurity binding energy, the con-
"ned SO phonon is negligible in quantum wire. We
then conclude that because of the similarity in
geometry, the behavior of the polaron e!ect on the
quantum wire system is like that on the quantum
dot system.

4. Conclusion

In this work, analytical solutions for the e!ects
of the electron}phonon interaction on the
binding energies of an impurity located inside
a quantum wire are obtained by a simple but
e$cient perturbation-variation method. As the
radius becomes very large, the correct limiting
value can be obtained. We have also discussed both
the con"ned BO and SO phonon e!ects. We found
that the con"ned BO phonon e!ect is prominently
for a quantum wire with a small radius. We have
also found that the energy corrections of the polar-

on e!ects on the impurity binding energies increase
rapidly when the wire radius is less than 1.5aH.
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