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Fabrication of Very High Resistivity Si with Low
Loss and Cross Talk

Y. H. Wu, Albert Chin, Senior Member, IEEE, K. H. Shih, C. C. Wu, C. P. Liao, S. C. Pai, and C. C. Chi

Abstract—We have used proton and As+ implantation to in-
crease the resistivity of conventional Si (10
-cm) and Si-on-quartz
substrates, respectively. High resistivity of 1.6 M
-cm is measured
that is close to intrinsic Si and semi-insulating GaAs. Very low loss
and cross coupling of 6.3 dB/cm and 79 dB/cm (10 m gap) at 20
GHz are measured on these samples, respectively. The very high
resistivity and improved rf performance are due to the extremely
fast 1 ps carrier lifetime stable even after a 400 C annealing for
1 h. Little negative effect on gate oxide integrity is also observed as
evidenced by the comparable stress-induced leakage current and
charge-to-breakdown for 30�A oxides.

Index Terms—Cross talk, high resistivity Si, RF loss.

I. INTRODUCTION

I N spite of the rapid tec hnology evolution for Si rf transis-
tors [1]–[5], the most important issue to realize high per-

formance MMIC is the passive transmission line loss due to
much lower substrate resistivity compared to semi-insulating
GaAs [6]–[9]. The low resistivity (10 -cm) results in substan-
tial energy loss and dielectric attenuation that impose a severe
limitation on transmission lines and inductors at rf frequency.
Although high resistivity Si (1–10 k-cm) [10]–[14] has been
studied, the loss is still relatively high due to limited resistivity
as compared with GaAs. Further, few papers have mentioned
the low resistivity related cross coupling that is important for
low-noise and power device integration and mixed signal IC. In
this work, we have studied both transmission line loss and cross
coupling on our developed extremely high resistivity Si of 10
K-1 M -cm fabricated by ion implantation. We have used As
implantation on Si-on-quartz (SOQ) and high-energy proton im-
plants to penetrate the entire Si [15] to overcome the problem
of limited implant depth in our previous study [16]. The proton
implantation has little effect on oxide integrity that can be inte-
grated into VLSI back-end process.

II. EXPERIMENTAL

Conventional 10 -cm Si substrates and SOQ wafers with a
2000 top Si on 350 m thick quartz are used in this study.
Proton and As implantation are performed on standard Si
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TABLE I
MEASURED RESISTIVITY AFTER As OR

PROTON IMPLANTS ON DIFFERENTSUBSTRATES

and SOQ with doses of 10 to 10 cm , respectively. To
meet the requirement of penetrating the entire Si, a proton
energy of 10 MeV is required that gives an implanted depth
of 698 m. To study the thermal stability of implanted Si,
As and proton implanted wafers were annealed at 400 and
600 C in nitrogen ambient for 1 h. Coplanar transmission
lines with 200–1000 m length and coupled transmission lines
with 1000 m length and 10–60m spacing are fabricated on
various processed substrates using 1m thick Al with 30 m
width. Conventional Si substrate with 1.5m thermal oxide
was also used as references. Two-port-parameters up to 20
GHz were measured using HP8510B network analyzer with
ground-signal-ground probes. RF loss and cross coupling are
extracted from the measured s-parameters after de-embedding
from a dummy pad. Pump-probe measurement generated by
femto-second laser pulse is used to obtain the carrier lifetime
from reflectance response [16], [17]. Stress-induced leakage
current (SILC) and charge-to-breakdown are measured
for 30 oxides to study the influence of gate oxide integrity
by ion implantation.

III. RESULTS AND DISCUSSION

We have first measured the resistivity from current–voltage
(I–V) characteristics and summarized in Table I. The high re-
sistivity after ion implantation may be due to implantation cre-
ated high defect densities that effectively trap free carriers and
increase resistivity. The higher resistivity obtained by Asim-
plantation than proton, at the same dose of 10cm , is due
to the heavier mass of Asand resultant higher damage and
traps in Si. The measured 1.6 M-cm resistivity after proton
implantation is close to GaAs and intrinsic Si. The high resis-
tivity stable after 400C annealing for 1 hr can be considered to
integrate into VLSI back-end process.

We have further evaluated transmission line loss. As shown in
Fig. 1, the loss decreases monotonically as increasing resistivity,
and proton implanted Si owns the very low loss of 6.3 dB/cm.
The small difference between SOQ with and without implant
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Fig. 1. Transmission line loss for various substrates with different resistivity.
The transmission lines length, width, spacing, and Al metal thickness are 1000
�m, 30�m, 10�m, and 1�m, respectively.

Fig. 2. Cross coupling for various substrates with different resistivity.

is due to the thin top Si that has a large depletion region by Al
contact and thus improves the loss. The measured loss in this
work is very competitive with published data in literature that
proves implantation is a prominent process technology to reduce
loss even we use a thinner Al line compared to other studies.

We have studied the implantation effect on cross coupling.
As shown in Fig. 2, the coupling effect becomes worse as de-
creasing spacing from 60m to 10 m for conventional Si (10

-cm) with 1.5 m oxide. The strong coupling suggests that the
1.5 m oxide is still insufficient to obstruct the E-M field pene-
tration. The cross coupling can be greatly reduced by the using
As implanted SOQ or proton implanted Si. The proton-im-
planted wafer shows the best coupling resistance of79 dB/cm
that is due to the extremely high resistivity shown in Table I.
The close value between SOQ with and without implant may be
due to the depletion effect by Al line.

To study trap recombination rate, we have measured the
carrier lifetime from reflectance spectra. As in Fig. 3, carrier
lifetimes of 1.1 and 1.3 ps are measured for as-implanted
and 400 C annealed Si, respectively, which suggests that high
resistivity can be maintained as long as frequency is less than
1 THz. The high defect density and fast recombination rate
can trap free carriers that give high resistivity and improved rf
performance. The reason why no signal can be measured after
600 C annealing is due to the recrystallization produced long
lifetime beyond measurement range.

Fig. 3. Reflectance spectra of proton-implanted and different temperature
annealed samples.

Fig. 4. Stress-induced leakage current and charge-to-breakdown distribution
for control MOS devices and devices nearby implantation region. The oxide
thickness is 30�A.

We have further studied the proton implantation on gate oxide
integrity [18], [19] that is very important for process integra-
tion. Fig. 4 shows theJ–V characteristics of 30 oxides be-
fore and after stress and the cumulated distribution. As
shown in Fig. 4, proton implantation has little effect on SILC
for oxides nearby implantation region under a metal mask even
after a 4.0 V stress for 1000 s with a total charge injection of
2 C/cm . In contrast, the MOS capacitors with direct implanta-
tion show high resistivity behavior that is due to the damaged Si
substrate. The little side effect by proton implantation is also evi-
denced by the comparable of devices nearby implantation
region with control MOS capacitors, which is also consistent
with little SILC influence by implantation. The slightly lower

of nearby MOS devices may be due to proton scattering
into the metal mask with proximity contact on Si and damaging
the underneath MOS capacitors. Further process development is
required for thick metal pattern directly on backend dielectrics.

IV. CONCLUSIONS

We have achieved high resistivity and extremely low loss
and cross coupling, which is due to1 ps lifetime stable
after 400 C annealing. This process is compatible with current
VLSI back-end process with little side effect on gate oxide
integrity.
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