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Abstract—Explicit code constructions for multiple-input mul-
tiple-output (MIMO) multiple-access channels (MAC) with
users are presented in this paper. The first construction is dedi-
cated to the case of symmetric MIMO-MAC where all the users
have the same number of transmit antennas and transmit at
the same level of per-user multiplexing gain . Furthermore, we
assume that the users transmit in an independent fashion and do
not cooperate. The construction is systematic for any values of

, and . It is proved that this newly proposed construction
achieves the optimal MIMO-MAC diversity-multiplexing gain
tradeoff (DMT) provided by Tse et al. at high-SNR regime.

In the second part of the paper we take a further step to inves-
tigate the MAC-DMT of a general MIMO-MAC where the users
are allowed to have different numbers of transmit antennas and
can transmit at different levels of multiplexing gain. The exact op-
timal MAC-DMT of such channel is explicitly characterized in this
paper. Interestingly, in the general MAC-DMT, some users might
not be able to achieve their single-user DMT performance as in the
symmetric case, even when the multiplexing gains of the other users
are close to 0. Detailed explanations of such unexpected result are
provided in this paper. Finally, by generalizing the code construc-
tion for the symmetric MIMO-MAC, explicit code constructions
are provided for the general MIMO-MAC and are proved to be
optimal in terms of the general MAC-DMT.

Index Terms—Cyclic division algebras (CDAs), diversity-mul-
tiplexing gain tradeoff (DMT), multiple access channel (MAC),
multiple-input multiple-output (MIMO) channel, space-time
block codes (STBCs).

I. INTRODUCTION

D URING the last decade extensive research has been car-
ried out in the design of point-to-point space-time (ST)

codes [1], [2] for multiple-input multiple-output (MIMO) com-
munication systems. ST codes based on cyclic division algebras
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(CDAs) [3]–[7] that can also be regarded as a kind of algebraic
lattice codes and/or as a kind of linear dispersion ST codes [8]
have been shown to perform extremely well. The error perfor-
mance of these codes have been shown to be very close to the
outage bound not only for practical numbers of antennas but also
at moderate SNR values.

For high-SNR regime, the same point-to-point CDA-based
ST codes have been shown [4] to be optimal in terms of the
diversity-multiplexing tradeoff (DMT) proposed by Zheng and
Tse [9]. Specifically, let and be respectively the numbers
of transmit and receive antennas at transmitter and receiver ends.
Let , , denote the multiplexing gain such
that the actual transmission rate equals

SNR (1)

Assuming a MIMO Rayleigh block fading channel, it was
shown [4] that at multiplexing gain , the CDA-based ST codes
achieve the optimal codeword error probability

SNR (2)

at high-SNR regime, where by we mean the exponential
equality defined in [9]. That is, we write SNR SNR if

SNR
SNR

The notations of and are similarly defined. The exponent
is commonly known as the DMT [9] and is given by a

piecewise linear function connecting the points
for . Furthermore, rep-

resents the largest diversity gain that can be achieved by any
point-to-point ST codes under Rayleigh block fading channel
whenever the channel remains static for at least a block of
channel uses [4] and varies independently from one block to
another.

For other types of fading statistics, the CDA-based ST codes
are also known [4] to be capable of achieving the optimal error
performance in such channels that include Rician, Weibull
and Nakagami as special cases. ST codes that are optimal in
all fading statistics are coined approximately universal codes
[4], [10].

If coding across independent fading blocks is allowed, the
multiblock CDA code [6] has been shown to be approximately
universal as well. In particular, it achieves codeword error
probability

SNR (3)
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at multiplexing gain , where is the number of independent
fading blocks occupied by the code. The exponent
is known as the multi-block DMT [6], [9] when coding is applied
over independent fading blocks. Therefore, the multiblock
CDA-based ST code is optimal in terms of the multiblock DMT
at high-SNR regime. More important, (3) indicates that the code
has error probability decreasing to zero as approaches in-
finity whenever . Hence, the multiblock ST code
could potentially achieve the MIMO ergodic channel capacity
at high-SNR regime and simultaneously be optimal in terms of
the multiblock DMT at every discrete value .

Motivated by the promising outcome in the point-to-point
scenario, the aim of this paper is to investigate the code con-
struction for the multiple-access channel (MAC) scenario. We
will concentrate on the uplink transmission from multiple mo-
bile users to a common base station (or access point). Both the
mobile users and the base station may be equipped with mul-
tiple antennas.

Consider a MIMO-MAC with mobile users. For simplicity,
we first focus on the case of symmetric MIMO-MAC [11], where
each user is equipped with transmit antennas and communi-
cates independently to the base station that has receive an-
tennas. Furthermore, we assume that all the users transmit at the
same level of multiplexing gain. With a slight abuse of notation,
hereafter we will denote by the per-user multiplexing gain in
the symmetric MIMO-MAC. Let , be respectively
the ST codes used by the th user, . Each
code , , consists of matrices and
satisfies the following power constraint:

SNR (4)

where by we mean the Frobenius norm of matrix .
Furthermore, we require SNR for all such that
every user transmits at the same multiplexing gain . Let be
the channel matrix of the th user. We assume is
fixed for a block of channel uses. is known completely
to the receiver at base station but unknown to all the users.
Entries of are modeled as i.i.d. complex Gaussian
random variables to model the MIMO Rayleigh block fading
channel. Let be the signal matrix transmitted by the

th user; then the signal matrix received at base station is given
by

(5)

where is the noise matrix with i.i.d. en-
tries. When each user’s information is encoded independently,
Tse et al. [11] proved that the tradeoff between the diversity gain

and multiplexing gain in a symmetric MIMO-MAC is gov-
erned by the following theorem.

Theorem 1 (Symmetric MAC-DMT [11]): In a symmetric
MIMO-MAC with users, each having transmit antennas

Fig. 1. The MAC DMT for � � � users with � � � and � � �.

and transmitting independently at multiplexing gain , the max-
imal possible diversity gain is given by

(6)

where is the point-to-point DMT for transmit
antennas, receive antennas and multiplexing gain defined
as before (or see [9], [11]). Equation (6) is termed optimal sym-
metric MAC-DMT. The multiplexing gain for nonnegative di-
versity gain is bounded between

(7)

Compared with the point-to-point scenario, the decrease of
maximal multiplexing gain by a factor of (see in
of (7)) is due to the sharing of receive antennas among
users and the fact that . Equation (6)
also shows that when the level of multiplexing gain is low
such that , each user is able to retain

his single-user performance, i.e., , as
if there were no other users in the channel. On the other
hand, when the level of multiplexing gain is high and

, the MIMO-MAC
system would operate in the antenna pooling region [11],
and single-user performance can no longer be maintained.
As a consequence, a much lower diversity gain
dominates the error performance in this region.

In Fig. 1 we demonstrate the above facts of the symmetric
MAC-DMT for the case of users, and . It
can be clearly seen that the turning point between the single-user
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and antenna pooling regions is at and

the cut-off point of is at .
The construction of MAC-DMT optimal codes calls for a

coding scheme that independently encodes, but simultaneously
transmits, each mobile user’s information over the MIMO
channel such that at receiver end, the decoding of all users’
signals achieves the best possible error performance dictated by
the MAC-DMT. Thus, a coding scheme is called MAC-DMT
optimal if it achieves the following error performance under
joint decoding

SNR

A. Prior Work

Several works have been reported in this area. Nam et al.
[12] presented the first MAC-DMT optimal scheme using a class
of structured multiple-access random lattice ST codes. For the
constructions of deterministic codes, below we briefly review
some relevant earlier papers. Almost all deal exclusively with
the two-user symmetric MIMO-MAC case, i.e., .

1) [13] extended the pairwise-error-probability-based design
criteria of point-to-point ST codes to the MAC case for

users and , . An explicit (4 4) two-
user MIMO code,1 i.e., a (2 4) code for each user, based
on independent Alamouti blocks [2] is also introduced in
[13]. Yet, we remark that such code does not achieve the
optimal symmetric MAC-DMT (6).

2) In [14] Badr and Belfiore proposed an explicit algebraic
code for and . The idea can be extended
to bigger values of . The determinant of the code matrix
is nonzero thanks to a ”twisting element.” However, the
determinant is vanishing. The decay of determinants of this
two-user MIMO-MAC code was carefully studied in [15].
It was shown that the code is MAC-DMT optimal, when

. Whether this code achieves the optimal MAC-DMT
also when remains an open question. In [15] it was
shown, however, that the code fails to satisfy the criteria
for achieving optimal MAC-DMT set forth in [16], when

. This alone does not mean that their code could
not be optimal, as the criteria in [16] is sufficient, but not
necessary (see [17] for justification of this claim).

3) Some explicit, algebraic code constructions for and
were introduced by Hong and Viterbo in [18]. A

design criterion based on an approximation of truncated
union bound was proposed. With such criterion they con-
structed a code that outperforms in error performance the
aforementioned (4 4) two-user code [13].

4) Badr and Belfiore [19] proposed another (4 4) two-user
MIMO-MAC code which is obtained by adding a twist ma-
trix to the (2 2) Golden ST code [20], [21] such that the

1In this paper, by an ����� code we mean a code consisting of ����� code
matrices, where� is the number of transmit antennas required for transmission,
and � is the number of channel uses. The number� can be either � or�� ,
depending on the discussion. When � � � , the code is for each user’s use.
When � � �� , we mean the vertical concatenation of all users’ codes as
an overall code. Notation � � � without parenthesis is used for the channel
dimensions.

overall code matrix is nonsingular whenever all the subma-
trices associated with each user are nonzero. However, be-
cause of this additional matrix, the overall code matrix,
though nonsingular, could be ill-conditioned at high-SNR
regime, thereby resulting in a vanishing determinant, simi-
larly as did their earlier one-antenna code [14] already dis-
cussed above.

5) [22] addressed the problem of whether there exists a two-
user MIMO-MAC code satisfying the nonvanishing deter-
minant (NVD) property. This problem concerns whether
the twisted Golden MIMO-MAC code [19] can be further
improved to avoid the disadvantage of having a vanishing
determinant. The answer is negative. [22] shows that if
all the overall code matrices are nonsingular whenever the
submatrices from each user are nonzero, then some of them
must have determinant arbitrarily close to zero, i.e., have
vanishing determinants.

6) By removing the matrix, [22] reported another code con-
struction and proved its MAC-DMT optimality for
and for any values of and . Computer simulations
showed that this code outperforms the (4 4) code of [19]
at all SNR values. Another important contribution reported
in [22] was that, for the two-user MAC case, one does not
need the whole code matrix to be nonsingular, and hence
introducing the additional rotation matrix is not neces-
sary from the MAC-DMT point of view.

7) In [16], Coronel et al. studied the optimal DMT perfor-
mance of a selective fading MIMO-MAC and provided
a sufficient criterion for designing MAC-DMT optimal
codes for any and . Noting that the Rayleigh block
fading channel is a flat fading channel, a simplification of
their criterion requires the product concatenation of codes
from any subsets of users to satisfy the NVD property
such that the error probabilities associated with these sub-
codes do not exceed the corresponding outage probability.
However, as already pointed out in [22], such codes do
not exist for the case of . A further investigation of
their criterion can be found in [17].

B. Principal Results

A complete solution to the problem of constructing
MIMO-MAC codes for users that are MAC-DMT op-
timal in Rayleigh MIMO-MAC is presented in this paper.

The paper consists of two parts. The first part provides the
constructions of MAC-DMT optimal codes for the symmetric
MIMO-MAC. The second part is on the code construction for
the general MIMO-MAC where the users are allowed to have
different numbers of transmit antennas and can transmit at dif-
ferent levels of multiplexing gain.

C. Outline

A general result on the nonexistence of NVD MIMO-MAC
codes is presented in Section II. This result suggests that the
design criterion proposed by Coronel et al. [16] might be too
strict to yield any MAC-DMT optimal codes. A relaxed design
criterion is then provided in this section.
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In Section III, we present a new code construction for the
symmetric MIMO-MAC for any , and . Several nice
properties of the proposed code are presented in this section. We
prove that this newly proposed construction is MAC-DMT op-
timal and meets the relaxed design criterion given in Section II.
For ease of reading, the proof of MAC-DMT optimality is rele-
gated to Section V.

In Section IV we investigate the MAC-DMT in a general
MIMO-MAC where the users are allowed to have different num-
bers of transmit antennas and transmit at different levels of mul-
tiplexing gain. The exact general MAC-DMT in such channel
will be given in Section IV-B, and it will be seen that unlike
the symmetric case, some users in the general MIMO-MAC are
no longer able to achieve their single-user performance even
if the multiplexing gains of other users are extremely close to
zero. The reasons for such unexpected result will be carefully
explained therein. Finally, in Section IV-D the newly proposed
code construction for symmetric channels will be extended to
cater to the general MIMO-MAC. The MAC-DMT optimality
of the generalized construction will be presented in Section VI.

II. RELAXED DESIGN CRITERION OF MAC-DMT
OPTIMAL CODES

In this section, we first present a rigorous, yet negative, re-
sult on the nonexistence of a MIMO-MAC lattice code that has
the NVD property. This result suggests that the design criteria
proposed by Coronel et al. [16] might be too strict to yield any
MAC-DMT optimal codes. Following this, a relaxed design cri-
terion will be presented and will be met by all subsequent con-
structions of MIMO-MAC codes in this paper.

Consider a symmetric MIMO-MAC with users, each
having transmit antennas and communicating independently
to the base station at the same level of multiplexing gain . Let

, be respectively the space-time codes
used by the th user, , all satisfying the
power constraint (4). If independent Gaussian random code-
books were used, i.e., the entries of code matrices are
i.i.d. SNR random variables for all , Tse et al. [11]
showed that the event of users in error has probability
upper bounded by

SNR (8)

where is the event of users in outage. Note that the overall
error event . The union bound on
gives

(9)

Since the right-hand-side of (9) has a negative SNR-exponent
equal to defined in (6), (9) proved the achievability
of MAC-DMT claimed by Theorem 1 based on the argument of
Gaussian random codebooks.

We next turn our attention to the deterministic ST codes.
From the point-to-point perspective, it is known [4] that ST

codes satisfying the NVD property have the same error prob-
ability as the outage events. Thus, for any MIMO-MAC code

, set

where

SNR

To see how is chosen, we offer the following insight. For each
, the code has size SNR so that it is of

multiplexing gain . An explicit construction of was given in
[4] where the code is seen as a real algebraic ST lattice code with
dimension . Hence there are SNR PAM
signals selected from each dimension and SNR for
all . Thus, the constant is chosen such that the code

satisfies the power constraint (4).
From [4], it is easy to prove the following theorem which in

turn gives a sufficient criterion for designing MAC-DMT op-
timal codes. We remark that this theorem is an alternative state-
ment of the result given in [16] under certain restrictions, and
we refer the interested readers to [17] for the connections.

Theorem 2 ([16]): Let be given as above. For
any , let be
the product concatenation of , defined by

...

If for all pairs of distinct code matrices ,
, the difference matrix

... (10)

satisfies , where by we mean the Her-
mitian transpose of matrix , then the codes are
jointly MAC-DMT optimal.

Proof: Note that the imposed condition implies that the
code satisfies the NVD property for any . Along sim-
ilar lines as in [4], it can be shown that the error event
associated with code , i.e., the error event of users in in
error, has probability upper bounded by

SNR

where is the event of users in in outage. Now taking
union bound over all possible as in (9) completes the proof.

Remark 1: The condition of for all
is called the full NVD criterion and is actually equivalent

to the criterion given by Coronel et al. in [16] with certain re-
strictions, see [17] for details. It should be noted that this full
NVD condition is only sufficient, not necessary. However, the
following result suggests that this condition might be too strong
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and precludes the existence of codes meeting the criterion. We

call the stronger condition the exactly
full NVD criterion.

Theorem 3: For any and for any , there do not
exist any linear MIMO-MAC codes2 that satisfy the exactly full
NVD criterion.

Proof: For ease of reading, the proof is relegated to
Appendix A.

Roughly speaking, the proof of Theorem 3 shows that while
it is possible to construct DMT-optimal codes for
each user, as the existing CDA-based ST codes [4] would do, it
is impossible for the product code to have an
exactly full NVD. Any such product code would have difference

matrices such that is extremely close
to zero at high-SNR regime. In terms of conventional rank and
coding gain design criteria of ST codes, this means that even
if the code achieves full diversity gain, it necessarily loses sig-
nificantly in coding gain. Therefore, it becomes meaningless to
say that the code achieves full rank and full diversity. We may
conclude that the exactly full NVD condition is in practice too
strict to yield MAC-DMT optimal codes.

Another implication from the proof of Theorem 3 is that the
exactly full NVD condition can be met only if the users coop-
erate in their transmission. Without cooperation, the exactly full
NVD condition can never be met and the determinant must be
vanishing.

On the other hand, we may relax the exactly full NVD con-
dition without adversely affecting the DMT performance. To do
so, we will partition the error events in a different manner. Given
the set of users , let , , denote the error
event when the users in are in error and the corresponding
error matrix (cf. (10)) has rank exactly . Clearly event

defined in the proof of Theorem 2 is a disjoint union of
. Now the codes are jointly

MAC-DMT optimal if the following holds.

Theorem 4 (Relaxed Design Criterion): Let be
defined as above. Then they are jointly MAC-DMT optimal if
the error events have probabilities upper bounded by

SNR (11)

for all and for all
. Furthermore, as for design of MAC-DMT optimal codes we

require at least that

SNR (12)

for all and for all .
While (12) might be the most relaxed condition for designing

MAC-DMT optimal codes, in this paper we will focus on con-
dition (11).

2Here by linear codes we mean codes having linear dispersion forms [8] or
having a lattice structure. Almost all existing ST codes are linear, for example,
the Alamouti codes [2], the CDA-based ST codes [3]–[7], [13], [18]–[21], [23],
etc.

The rationale behind the above theorem is the observation that
the error probabilities SNR with are
not dominant in the overall DMT performance. Hence we could
relax the conditions such that the event

has probability larger than the corresponding outage probability,
but no larger than the dominant error probability. That is, we
could allow

SNR (13)

but would still require

SNR

Relaxation (13) would not affect the overall DMT performance.
Compared with the exactly full NVD condition required by The-
orems 2, Theorem 4 relaxes greatly the code design criterion in
the following ways.

1) We do not require the difference matrix to be non-
singular and to satisfy the NVD property when all the com-
ponent matrices are nonzero, which has been
shown to be impossible by Theorem 3.

2) Should the difference matrix happen to be singular,
(11) requires the resulting error performance must be no
worse than SNR for some , , in
order to maintain the MAC-DMT optimality.

3) In Theorem 2, events with were required
to have probability absolutely zero. This is too strict and
would preclude the existence of MAC-DMT optimal
codes.

III. MAC-DMT OPTIMAL CODE CONSTRUCTION FOR

SYMMETRIC MIMO-MAC CHANNELS

For the symmetric MIMO-MAC coded system with users,
each having transmit antennas and transmitting at multi-
plexing gain , in this section we will propose a systematic
code construction that is MAC-DMT optimal for any combi-
nations of , , , and . The construction does not assume
any cooperation among the users. Furthermore, compared
with the MAC-DMT optimal two-user code proposed in [22]
where a sign change is required in the code matrices, here in
the proposed method each user encodes his own information
using an identical encoder. This greatly simplifies the hardware
implementation of these encoders.

A. Proposed Construction

Given the number of users , let be the smallest odd
integer such that , i.e.,

if even,
if odd.

(14)

The construction calls for the following number fields. Let
be a number field that is a cyclic Galois extension of
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Fig. 2. Field extensions required by the proposed code constructions.

with degree , where . Let be an-
other cyclic Galois extension of with degree . Let and
be the generators of Galois groups and
with degrees and , respectively. The fields and are
chosen3 such that . Let be
the compositum of and . See Fig. 2 for the relation among
the required number fields. The readers are referred to [4], [22],
[24] for the constructions of such number fields.

Let be a cyclic division algebra with

(15)

where

(16)

(17)

for . The element is an indeterminate satisfying
, and is some suitable nonnorm element.

4 By we mean the complex conjugate of and is the
algebraic closure of in [26]–[28]. Notice that and
is unimodular. It has been shown [5] that with such unimodular

, is always a cyclic division algebra.

Remark 2: While in the above we have set to be of form
such that is unimodular, it might be possible that in

some CDAs, the nonnorm element is actually an th root of
unity for some integer and is already unimodular. See [29] for
such example construction. Should it be the case, we could set

, and the discussion below can be easily modified to show
that the MAC-DMT optimality of the proposed constructions
remains to hold. Therefore, for simplicity, here we will focus
only on the case of .

Remark 3: We note that by construction the Galois groups of
the numbers fields are

3A more general condition on and is that the automorphisms � and �

commute.
4A sufficient criterion for finding a suitable nonnorm element � is given in

[25, Theorem 1]. Also, we refer the interested readers to [4, Theorems 10 and
11] for two explicit constructions of � .

where in the last line denotes the direct product of
the groups generated by and , respectively. It should also be
noted that the automorphisms and commute, i.e.,

due to the direct product of two groups.
Given multiplexing gain , let SNR be the base alphabet

defined as

SNR SNR SNR

then the corresponding information set is

SNR SNR

(18)

where is an integral basis of . It should
be noted that for SNR
and that SNR . Let

be the left-regular map that maps elements in into
square matrices with entries in . Specifically, given
with

is given by

...
...

. . .
...

(19)

Note that the field is the center of the division algebra ,
meaning that for any and . Equiva-
lently we have

showing that the matrix-product commutes.

Proposition 5 ([4], [26]): Let and be defined as above.
Then

for all , where .
Having defined the above, the encoding of each user’s

data stream proceeds as follows. Given the multiplexing
gain , the th user first partitions his binary data steam into
blocks of SNR bits. Then using the integral basis

and set SNR defined above, each block
of binary bits is mapped in a one-one fashion to a symbol
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SNR . The encoding is performed indepen-
dently at each user’s end.

Given SNR , the th user actually sends out the
following signal matrix through his transmit
antenna array in channel uses

(20)

where and where is a normalizing constant such
that

SNR SNR

Hence we have

SNR (21)

Remark 4: The above construction of the MIMO-MAC codes
is reminiscent of the multiblock ST code presented in [6]. Some
key differences are highlighted below.

1) In the proposed construction we require the length of the
code to be where must be an odd integer.

2) The number fields and are required such that the
automorphisms and commute. This was not needed
in [6].

3) The element of the CDA must be unimodular, and we
have set .

We use the following example to illustrate the proposed con-
struction.

Example 1: We consider the case of and . By
construction is the smallest odd integer such that

. Then it can be shown that with and
the number fields and meet the required
conditions of , and .
Furthermore, we have . The generators

and for the Galois groups and are
given respectively by

The set is an integral basis for .
As the prime ideal of remains inert in and
, following from [4] this gives an appropriate nonnorm ele-

ment . Hence we have . With ,
is a CDA of index 2 which is also a central

simple -algebra [26]. Next let

for with SNR . The Galois conjugates of
are for example given by

where and
. With the above, the signal matrix of the first

user is given by , where
SNR and

By vertically concatenating the signal matrices from all users,
the overall MIMO-MAC code of the users is

...
. . .

...

SNR

(22)

For ease of code performance analysis that comes later we set
, i.e.,

...
. . .

...

SNR

(23)

Remark 5: Below we briefly compare the proposed construc-
tion of with another MAC-DMT optimal code constructed for

users in [22]. The latter MIMO-MAC code takes the fol-
lowing form

SNR

(24)

The construction of requires a number field
with and such that

, and
. Here by “1” of we mean the trivial au-

tomorphism. The field and the element are defined as be-
fore. The element is taken from the cyclic division algebra

for some indeterminate . SNR is the base-in-
formation set defined similarly as SNR in (18). Thus, com-
pared with the present proposed construction, we see that
requires an additional sign change at the second block matrix
of the second user’s code. This sign change is essential to en-
sure an NVD-like property. It also endows with another nice
property that the transmission of code matrices in takes only

channel uses, less than that required by . However, this
additional sign change might complicate system design as the
system must constantly check which user requires a sign change
and which user does not. Such disadvantage does not exist in the
proposed construction of . Everything works perfectly after
patching an extra block of transmission when is even. An-
other drawback of is the difficulty of generalization to the
cases of .

Let be the channel matrix of the th user. We
assume is fixed for a block of channel uses. Following
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(5), given the overall transmitted code matrix , the re-
ceived signal matrix at receiver end is

(25)

is the noise matrix whose entries are i.i.d. random
variables, and is the th block received signal matrix given
by

and

B. Properties of the Proposed Construction

To simplify the analysis of code performance, below we de-
fine the extended versions of and .

...
. . .

...

SNR
(26)

(27)

Given the overall signal matrix , let be any
signal matrix such that the upper submatrix of

equals . Then we can rewrite (25) as

(28)

where

if odd,
if even.

By we mean the all-zero matrix of proper size. Noting (25)
and (28) are equivalent, henceforth we will work only with the
extended codes and , rather than and . We next show
several nice properties possessed by and .

Property 1: For any , we have

(29)

Proof: We first claim

(30)

To see this, notice that

...
. . .

...

...
. . .

...

where the last equality follows from the fact that is even,
hence the claim (30) is proved. Next, we show

(31)

To this end, define

(32)

where is the indeterminate defined as in (15). Since from (17)
for all , it is clear that ,

where . Now we have

...
. . .

...

...
. . .

...

. . .

...
. . .

...
. . .

where we have used the fact that since
by construction. Thus, as is fixed by both and , we
see that .

Finally, from the definition of (19), the matrix

. . .

has entries in for all and
since

SNR

is the ring of algebraic integers in number field . It then
follows that

Summarizing the above results, we conclude that

and this completes the proof.
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Property 2: Let

...
...

. . .
... (33)

and

...
. . .

...

with , SNR , where by we mean the
transpose of vector . Let be the maximal number of rows in

that are linearly independent as a left -module; then

(34)

where the rank is measured in the complex number field .
Proof: To find out the rank of matrix , we use the el-

ementary row operations from Gaussian elimination method.
Note that the same row operations can be performed on whose
entries are in . Extra care must be taken because multiplica-
tion in is noncommutative. Further, we note that elementary
row operations on are equivalent to the block elementary row
operations on . By this we mean that, say is a
elementary matrix with entries in ; then it is clear

where is the natural extension of to the central
simple matrix algebra over [26], i.e.,

(35)

From hypothesis, assume is the maximal
subset of the rows of that are linearly independent over .
Then it follows that there are leading ones in the row-reduced
matrix of . Equivalently, the same block elementary opera-
tions would reduce matrix into a matrix whose main
diagonal consists of identity matrices, each of size ,
after permuting the columns if necessary. This completes the
proof.

Property 2 shows that the overall code matrix might
not always have full rank , and the rank of is always a
multiple of . This is not too much of a surprise as it is straight-
forward to see that in (26) if some ’s are identical, then the
overall code matrix cannot be nonsingular.

Compared with the constructions proposed in [18], [19], the
matrix of the present construction could be singular even
when the component matrices are all distinct and nonzero as
shown by Property 2. Nevertheless, we will prove in Section V
that in order to achieve the optimal MAC-DMT performance at
high-SNR regime, it is unnecessary to construct codes such that

is nonsingular whenever all the component matrices are
distinct and nonzero.

Before rigorously proving the above statement, a heuristic
way to see this is the following. Since the users communicate

independently to the base station, for any overall MIMO-MAC
code it is impossible for all the code matrices to be non-
singular as some component matrices of the th user could
be zero. Also, from the pairwise error probability point of view,
for any , can be singular at least when the
information symbols transmitted by some users are the same.
The rank of overall code matrices is at best a multiple of

. Therefore, intuitively speaking, perhaps it would not hurt to
make things a bit worse in the sense that the difference matrix

can be singular in other cases. By this we mean that if
there are distinct information symbols in the difference ma-
trix , the maximal possible rank of is . We
claim that it would not hurt in the DMT sense if the construc-
tion can provide only rank for some with .
The reason for this actually follows from Theorem 4 that the
error events of users in error but getting only rank
distance do not dominate the error performance in the final
DMT performance. Therefore, we strongly speculate that such
difference matrices do not have to achieve the same rank

as the Gaussian random code does. The rank can be less, as
long as the resulting error performance is not worse than those
of and .

Although we do not need the whole code to satisfy the full
NVD property as in the point-to-point scenario, an alternative
NVD-like property is preferred and is given as below.

Property 3: Let be defined as in (33) and assume that
is a subset of rows of that are linearly in-

dependent as a left -module. Define

... (36)

i.e., is the submatrix of consisting of the corresponding
linearly independent rows, where is the natural exten-
sion of . Then

(37)

where by we mean the hermitian transpose of matrix .
Proof: First, it follows from Property 2 that

since has full row rank and by assumption.

To show , we shall first verify that

is fixed under automorphisms and . For , it
can be seen from the proof of Property 1 that

and

...
. . .

...



LU et al.: DMT OPTIMAL CODES CONSTRUCTIONS FOR MULTIPLE-ACCESS MIMO CHANNEL 3603

...
. . .

...

for some column permutation matrix of size ,
where and ,

. Now it follows that

as , and we have proved is fixed by
.
For , again from the proof of Property 1 we see that

and

...
. . .

...

. . .
. . .

where

...
...

. . .
. . .

...

(38)

From (38) it is clear that since by con-
struction. Therefore, we see that

Taking into account that it follows

that . So far, we have proved that

is fixed by both and . This in turn implies that

. Finally, the proof is complete after
noting that has entries in .

In Property 2 we have shown that the overall code matrix
might not have full rank, and when that happens, its rank always
equals for some . The number indicates the number of
users whose transmitted signal vectors, when regarded as rows
of matrix in (33), are linearly independent over . Further,
Property 3 shows that even when is singular and fails to have

NVD, i.e., fails to satisfy , the submatrix
formed by the transmitted signal matrices of those users still

satisfies the NVD property. Such result can be further extended
to yield the following property on the nonzero eigenvalues of

.

Property 4: Let and be defined as above with
. Let be the

nonzero eigenvalues of . Then

(39)

Proof: Here we take an information theoretic ap-
proach to prove the first inequality. To this end, let

be a complex Gaussian random
vector of length with zero mean and covariance matrix

Without loss of generality we can assume that linearly inde-
pendent users are the first users and corresponds to the th
user, . Hence the covariance matrix of the
subvector equals

We have the following inequality for the differential entropies
of and

(40)

Notice that the covariance matrix of can be decomposed as

for some unitary matrix . is a diagonal
matrix whose nonzero entries are the ’s. Thus setting

we have

Now combining the above results proves the first inequality in
(39). The second inequality in (39) follows directly from Prop-
erty 3 and from .

Remark 6: The above property shows that despite can be

singular, the product of the nonzero eigenvalues of is al-
ways bounded from below by 1. This can be regarded as a re-
laxation of the conventional NVD property. In the design of ST
codes, satisfying the NVD criterion is a sufficient condition to
achieve the optimal point-to-point DMT performance. To guar-
antee NVD in the point-to-point MIMO, we require all the users
to cooperate fully as already seen in Theorem 3. However, it
is not allowed in MIMO-MAC where users transmit indepen-
dently their own information to the common receiver. Thus, in
MIMO-MAC we do not demand full NVD, and only partial
NVD is required as shown in (39).
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C. MAC-DMT Optimality of the Proposed Construction

Armed with the properties discussed in the previous section,
below we are able to show the proposed code is MAC-DMT
optimal.

Theorem 6: Given multiplexing gain , the proposed code
defined as in (22) achieves the following diversity gain

(41)

over Rayleigh block fading channel with channel coherence
time channel uses. Thus, is MAC-DMT optimal.

Proof: The proof is relegated to Section V for ease of
reading.

IV. MAC-DMT OPTIMAL CODES FOR GENERAL

MIMO-MAC SYSTEMS

In [11], Tse et al. focused on analyzing the DMT in a sym-
metric MIMO-MAC system. By symmetric we mean that every
mobile user in the system has the same number of transmit an-
tennas and transmits at the same level of multiplexing gain.
However, the symmetric MIMO-MAC might not be practical
enough. In the near future, the mobile communication is likely
to be at a transition stage, migrating from conventional SISO
(single-input single-output) to MIMO. In fact, such transition
already takes place in wireless local area networks where some
old laptops have single transmit antenna while the latest ones
could have more than two transmit antennas. In the mixture of
SISO and MIMO communication environment, one would ex-
pect the mobile users having different numbers of transmit an-
tennas. Furthermore, in practice it is often possible that mobile
users transmit at different rates because of the different plans
they purchase from the service provider. The different rate im-
plies a different level of multiplexing gain in the DMT sense.
It is then of fundamental importance that we must have a gen-
eral code construction that works for any MIMO-MAC systems
where the mobile users are allowed to have different numbers of
transmit antennas and can transmit at different levels of multi-
plexing gains. In the previous sections we have provided a sys-
tematic construction for the symmetric MIMO-MAC and have
proved that it achieves the optimal MAC-DMT. Below we will
extend these results to the general channel.

A. Decoding in General MIMO-MAC

There can be at least two decoding methods in the gen-
eral MIMO-MAC, depending on how much computational
complexity one can afford. The first decoder is the joint ML
decoder, by which we mean the following. Assuming there are

users, each transmitting using a codebook that consists
of ST code matrices, for . Let

be the signal matrix transmitted by the th user, and
let

be the received signal matrix; then the joint ML decoder seeks
the optimal joint ML estimate by

(42)

where . This joint ML decoder
was used in [11] for analyzing the MAC-DMT performance in
symmetric MIMO-MAC.

However, the above joint ML decoder might not be optimal
in terms of the error performance of each user. For the th user,
the truly optimal decoder, though having extremely high com-
putational complexity, is the individual ML decoder that seeks
optimal ML estimate by

(43)

where and
. The difference be-

tween the individual and joint ML decoders is analogous to that
between the BCJR and Viterbi decoders [30] for the decoding
of convolutional codes. It is easy to see that the individual ML
decoder always outperforms the joint ML decoder.

In the next two subsections we will examine the MAC-DMT
performances of these two decoders. Obviously we expect there
might exist certain performance loss in the joint ML decoder,
compared to the individual ML decoder.

B. MAC-DMT for General MIMO-MAC With Joint Decoding

Consider a general MIMO-MAC system with mobile
users. Let denote the number of transmit antennas of the
th user, , and let be the corresponding

multiplexing gain. Assuming receive antennas at the base
station, the first major result of this section is the following.

Theorem 7 (General Joint MAC-DMT): Let , , and
be defined as above. If joint decoding is performed at receiver
end, the optimal MAC-DMT of such system is given by

(44)
for i.i.d. Rayleigh block fading channel that is fixed for at least

The minimization in (44) is taken over all possible nonempty
subsets , and

(45)

is the total number of transmit antennas of users in . The notion
of is the conventional point-to-point DMT.
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Fig. 3. Joint MAC-DMT � �� � � � of general MIMO-MAC with two
users.

Fig. 4. Joint MAC-DMT � ��� � � of general MIMO-MAC with two
users.

Prior to proving Theorem 7, we shall give an example illus-
trating this theorem and in particular, show some unexpected
effects resulting from joint decoding.

Example 2: For simplicity, here we consider a general
MIMO-MAC system with two users. The first user has
transmit antenna and transmits at multiplexing gain ; the
second user has transmit antennas and transmits at
multiplexing gain . Assume there are receive an-
tennas at receiver end. Using (44) the resulting MAC-DMT is
shown in Fig. 3. First, it is interesting to note that unlike the
symmetric MIMO-MAC where all users have same number of
transmit antennas and transmit at same level of multiplexing
gain, here the second user cannot achieve his single-user DMT
performance even when . This effect is shown in Fig. 4.
While this is quite unexpected, such phenomenon can be easily
explained. Recall that the DMT is an asymptotic result. Strictly
speaking, the multiplexing gain is defined as

SNR SNR

and is the actual transmission rate. Therefore, when we say
it does not necessarily mean . It simply means

that the rate of the first user grows much slower than SNR.
For example, an ST code that is fixed and does not vary with

SNR has multiplexing gain 0 since the rate is a constant. But
the rate is bounded away from 0.

Having learned the above, in our example given the multi-
plexing gain for some positive very close to 0, the DMT
performance of joint decoder would be dominated by erroneous
decoding of the first user’s signals when is small. It is also
easy to confirm this observation from pairwise error probability
(PEP) analysis. Assume , but , i.e., the
codes are fixed and do not vary with SNR. Since the two users
do not cooperate, for any distinct pairs of overall code matrices,
the maximal possible rank is the minimum of and . Hence
the resulting maximal possible diversity gain equals

which equals 2 in this example. Therefore, the PEP analysis
confirms that the single-user DMT performance cannot
be achieved for small values of as shown in Fig. 4.

Before concluding this example we remark that the loss in
DMT for the second user can in fact be recovered if an individual
ML decoder is used. We will come back to this in Section IV-C.

The proof of Theorem 7 follows along similar lines of that of
symmetric MAC-DMT provided by Tse et al. in [11]. Specifi-
cally, let

SNR

denote the actual transmission rate of the th user. Given the
subset of users, let denote the following outage event

(46)
where

• is the overall channel matrix, is
the channel matrix of size of the th user,

• is the total number of transmit antennas defined by

• contains the transmitted signal vectors of users in and
is defined as

• is the received signal vector given by

where is the complex Gaussian random noise vector, and
• consists of transmitted signals of users not in .

Let denote the overall outage event. It is clear that
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Following similar arguments as in [11] it is straightfor-
ward to see that the error probability of joint decoding

is lower bounded by

SNR

(47)

To establish the converse, we take the random codebook ap-
proach similar to that used by Tseet al. in [11]. Let be the code-
book of the th mobile user, consisting of code matrices
that are randomly generated by some complex Gaussian random
generator. Further, satisfies the desired multiplexing gain,

SNR

Let denote the event that the signal matrices of users in
are erroneously decoded by the joint decoder. Then arguing

similarly as in [11], it can be shown that

SNR

whenever

Thus, using union bound we have

SNR

provided that

This proves Theorem 7.

C. MAC-DMT for General MIMO-MAC With Individual ML
Decoding

In the previous section we investigated the MAC-DMT for a
general MIMO-MAC with joint decoding at the receiver end.
We also observed in Example 2 that certain DMT performance
loss could result from the use of joint decoder. However, such
loss can be safely avoided by the use of individual ML decoder.

Recall that for the th user, the truly optimal decoder, though
having extremely high computational complexity, is the indi-
vidual ML decoder that seeks optimal ML estimate by

(48)

where and
. Clearly (48)

outperforms (42) in error performance, but at a cost of much
higher computational complexity.

Without loss of generality, below we focus on the error per-
formance of the individual ML decoding for the th user. To dis-
tinguish the DMT performances of decoders (42) and (48), we
shall call the DMT of the latter the individual MAC-DMT and
will denote it by .

To characterize the DMT performance of the individual ML
decoder, we only need to consider the outage events (cf.
(46)) in which the th user is a member of . Event with

is not counted as an outage for the th user for obvious
reasons. Thus, along similar lines as in the proof of Theorem 7
we can show the following.

Theorem 8 (General Individual MAC-DMT): Let , ,
and be defined as before. If individual ML decoding is per-
formed at receiver end for the th user, the optimal individual
MAC-DMT is given by

(49)

where the minimization is taken over all
under the condition and is defined in (45).

Proof: For brevity we only outline the proof. Let denote
the outage event of the th user; then following from the above
discussion it can be seen that

since if , the th user is not in outage. Now let
denote the error probability of the in-

dividual decoder for the th user; then it can be shown that

SNR

where the first inequality follows from [9, Lemma 5]. To show
the converse, let denote the error event that the signal ma-
trices of the users in are erroneously decoded under joint de-
coding. Then simply note that the error probability of an indi-
vidual ML decoder is upper bounded by that of a joint ML de-
coder, i.e.,

where the right-hand-side gives the probability of a joint ML
decoder when the signal of the th user is erroneously decoded.
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Fig. 5. Comparison between the joint MAC-DMT and the individual
MAC-DMT of the second user when � � �� � �.

Now using the union bound argument and along similar lines as
in the proof of Theorem 7 it can be shown that

SNR

SNR

This completes the proof.

With the above result, we now come back to Example 2 to
investigate the individual MAC-DMT of the second user.

Example 3 (Continued From Example 2): In Example 2 we
have considered the specific case of , , ,

and . Assuming the second user transmits at mul-
tiplexing gain , from Theorem 8 the individual MAC-DMT of
the second user is

Hence we see that the single-user performance of the second
user is recovered by the use of an individual ML decoder. To
illustrate further the difference in MAC-DMT between (42) and
(48), in Fig. 5 we compare the MAC-DMT performances of joint
and individual decoders at . It can be clearly
seen that the individual ML decoder outperforms significantly
the joint ML decoder at low-multiplexing-gain regime.

Another comparison between the DMT performances of both
decoders at is given in Fig. 6. It shows that the
joint ML decoder (given by ) is not optimal for
the second user. The truly optimal individual ML decoder for
the second user has DMT performance . Further-
more, the individual ML decoder for the second user achieves
the single-user DMT performance as long as .
On the other hand, for the first user who has lesser number of

Fig. 6. Comparison between the joint MAC-DMT and the individual
MAC-DMT when � � � � �.

transmit antennas, the DMT performances of the joint and in-
dividual decoders are the same and are actually equal to his
single-user performance .

Next we could apply Theorem 8 to the case of symmetric
MIMO-MAC to see how the error probabilities of joint and
individual ML decoders compare. The comparison is given
in the following corollary. It shows that in the symmetric
MIMO-MAC there is no difference in terms of MAC-DMT
performance between the joint and individual ML decoders.

Corollary 9: For symmetric MIMO-MAC with users, each
having transmit antennas and transmitting at multiplexing
gain , let denote the error probability of the joint
ML decoder and denote the error probability of the th
individual ML decoder. Then

and in terms of DMT we have

for all .
Proof: It suffices to show only the equality in DMT. First,

from Theorem 8 we have

and the proof is complete after noting that the right-hand-side of
the above is the same as the MAC-DMT given in Theorem 1.

Before concluding the subsection we have the following re-
marks. First, while the individual ML decoder could achieve a
much higher DMT performance as seen in Examples 2 and 3, the
computational complexity required by (48) is often extremely
high. Thus, the individual ML decoder has widely been consid-
ered as being impractical in multiuser detections. The reason for
including this receiver is only to clarify the unexpected DMT
performance loss of the joint ML decoder in Example 2.

As the individual ML decoder is rarely used, below we will
not consider this receiver anymore. We will regard the joint
MAC-DMT given in Theorem 7 as the optimal MAC-DMT in
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practice, although it is now clear that it is not the best one can
actually achieve.

D. General MAC-DMT Optimal Codes

So far we have provided the optimal MAC-DMT (44) for the
general MIMO-MAC system with users where the th user
has transmit antennas and transmits at multiplexing gain .
To have a deterministic code for the general MIMO-MAC, we
can extend the code construction given in Section III for sym-
metric MIMO-MAC to the present case.

Let , , , and be defined as before. For brevity we only
present the construction when is odd. Codes for even can
be constructed by simply patching an extra coded block to each
user’s code matrices, similar to that described in Section III.
Henceforth we will drop the subscript “ ” in , , , ,

, etc. for simplicity.
Given and , we first define

(50)

as the maximal number of transmit antennas among all users.
In general, the number can be either preknown to all the
users, or explicitly specified among any groups of users. Next,
let be the number field that is cyclic Galois over

with degree , and let be another cyclic
Galois extension of with degree . Let be the generator of
the Galois group , and similarly let be the generator
of . The fields and are required to satisfy

or are required such that and commute. Finally, we set
to be the compositum of fields and . Similar to

Section III, with some suitable unimodular , we have

(51)

as an appropriate central simple division -algebra with
for , where is an indeterminate satisfying

.
Given the multiplexing gain of the th user, we set the cor-

responding base alphabet and information set as follows:

SNR SNR SNR

(52)

and

SNR SNR

(53)

where is an integral basis of . Unlike
the construction for symmetrical MIMO-MAC, here the infor-
mation set can be different among users as each user has dif-
ferent level of multiplexing gain.

Let denote the left-regular map of elements in into ma-
trices of size whose entries are in (similar to

of (19)); then the ST code of the th user is given by

SNR
(54)

where

SNR (55)

such that the power constraint (4) is satisfied.
Given , , the overall code is obtained

by vertically concatenating the code matrices from each user,

... (56)

The overall code matrix is a square matrix of size
. Below we will present some nice

properties of which are essential to proving its MAC-DMT
optimality.

The first property extends Property 2 of the symmetric MAC
code in Section III-B.

Property 5: For any SNR , define

...
...

. . .
... (57)

and let

...
. . .

...

be the corresponding overall code matrix where .
Then SNR. Further, let be the maximal number of
rows of that are linearly independent as a left -module. Then

(58)

where the rank is measured in the complex number field .
Proof: The first claim can be easily verified from the set-

tings of and SNR , and is thus omitted for brevity. For
the second, to determine the rank of , it suffices to consider
the rank of the unscaled code matrix

...
. . .

... (59)

Notice that is a code matrix of the code defined in (27) for
the symmetric MIMO-MAC when we set and

Now the result follows from Property 2.
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The next property generalizes Property 3 in Section III-B
where we were interested in the Gram determinant of the
un-scaled code matrix. Here, for the purpose of analyzing the
general MAC-DMT performance of the proposed code, we will
seek directly the Gram determinant of the overall matrix .

Property 6: Let be defined as in (57) and assume that
is a subset of rows of that are linearly in-

dependent as a left -module. Let

...
. . .

... (60)

be the submatrix of consisting of the corresponding
rows. Then

SNR (61)

Proof: Arguing similarly to the proof of Property 5, set

...
. . .

... (62)

Then we have

. . .

and

by Property 3 since is a submatrix of the code matrix (cf.
(59)) of the code (cf. (27)) for the symmetric MIMO-MAC
when setting and . The result now
follows from

and from the definition of in (55).

The two properties above are exactly what we need to
prove the MAC-DMT optimality of the proposed general
MIMO-MAC code in (56). Hence, with these properties we
can prove the following theorem.

Theorem 10: Given and , with
odd, the proposed code defined in (56) achieves the general
joint MAC-DMT

(63)

over a Rayleigh block fading channel that remains static for at
least channel uses. is MAC-DMT optimal.

Proof: The proof is similar to that of Theorem 6 and is
relegated to Section VI for ease of reading.

The proof to Theorem 10 can in fact be further extended to
show that the proposed code (56) achieves the optimal indi-
vidual MAC-DMT(49), provided that an individual ML decoder
for each user is used at the receiver end. This result along with
the proof will be presented in Corollary 12 of Section VI.

V. PROOF OF THEOREM 6

Here we only prove the case of odd. The case of even
and can be proved using similar arguments, and
will therefore be briefly handled in a remark following the proof.

A. Proof Overview

In this subsection we provide an overview of the proof for the
case of odd, along with a few insights to the proof. Given the
overall channel matrix

(64)

we will provide an upper bound on the codeword error proba-
bility of the joint decoder at receiver end. Let

be a subset of users, and let denote the event that
1) the signal of the th user is erroneously decoded if and only

if , and further that
2) the rank distance between overall transmitted code matrix

and the erroneously decoded overall signal matrix is only
for some .

Specifically, let SNR denote the information symbol
transmitted by the th user, and let be the corresponding de-
coding output at receiver; then the event can be formu-
lated as follows:

(65)

where from the proposed construction (cf. (27)) we have

...
. . .

...

and

...
. . .

...

Note that the difference matrix has exactly
nonzero rows, and by Property 2 we see the rank distance

. Hence it makes sense
for the second requirement of error event that

for some .
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Thus, it can be seen from the union bound argument that the
codeword error probability is upper bounded by

(66)

The event is a further partition of the event considered
by Tse et al. in [11]. We discuss this in more detail in the fol-
lowing remark.

Remark 7: With regard to the Gaussian random codebook
considered by Tse et al. [11], it is straightforward to see
is empty with probability one if , since the compo-
nent matrices associated with each user are complex Gaussian
random matrices of size for some . In other
words, if for all and otherwise, then
the error matrix would have rank with probability
one. Therefore, one can rewrite (66) as

(67)

and recover the same union bound used in [11].
Unlike [11] where the authors analyzed each summand

of (67) by a union bound argument with a
Gaussian random codebook, here we will focus on the error
probability of a deterministic codebook (cf. (27)), and at-
tempt to upper bound the probability by using a
joint ML decoder. To this end, in Section V-B we will examine
the minimum Euclidean distance among the noise-free received
code matrices contained in . It should be noted that
here by minimum Euclidean distance, we mean the minimum
Euclidean distance among only the pairs of code matrices in

, not the whole code . Thus, the minimum Euclidean
distance will be a function of , , and .

Once we obtain the minimum Euclidean distance, we will
analyze the error performance of a bounded distance decoder,
which will be used as an upper bound on that of the ML de-
coder. The bounded distance decoder results in an error only
when the noise matrix has norm larger than half of the min-
imum Euclidean distance. More precisely, let be the overall
channel matrix defined in (64) and be known to the decoder; let

be the overall MIMO-MAC code, where
is the codebook of the th user. The minimum Euclidean dis-

tance among all code matrices in is defined as

which is dependent upon . Given the received signal matrix
, the bounded distance decoder outputs

if , and declares a decoding failure oth-
erwise. Thus, only the received signal matrices that are within
distance from the original transmitted overall code ma-
trix can be correctly decoded in the bounded distance decoder.
Other received signal matrices would result in either a decoding

error (i.e., decoding into an erroneous code matrix) or a de-
coding failure (i.e., cannot find a code matrix within distance

). Though this decoder is suboptimal compared to the
ML decoder, its error performance can be mathematically ana-
lyzed.

The error performance analysis following this outline will be
given in Section V-C. Finally, in Section V-F we briefly discuss
the proof for the case of even .

B. Lower Bounds on the Minimum Distance Among Noise-Free
Received Signal Matrices

For any with

...
. . .

...

and

...
. . .

...

let , , and let , where
is the channel matrix associated with the th user.

Given the channel matrix , below we provide a lower bound
on the squared Euclidean distance between and , i.e.,

(68)

We distinguish the following two cases which correspond to the
error events and with , respectively.

1) For event we have for
, otherwise, and

. In this case, let and be defined as in (36) and
let

be the equivalent channel matrix; then we have

Let be the set of ordered nonzero

eigenvalues of where , and
let be the ordered nonzero

eigenvalues of . Then we have

(69)

Note that

(70)

where the first inequality follows from Property 3, and the
second exponential equality is because is fixed and is
independent of SNR.
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By repeatedly using the arithmetic mean-geometric mean
inequality and (70) as in [4], [6] for , we
have

(71)

(72)

SNR SNR

SNR (73)

where (72) follows from (70) and where in (73) we have
set

SNR

Hence the SNR exponent of is lower bounded
by

(74)

2) The second case corresponds to event which
means for ,
otherwise, and . In other
words, the nonzero rows

are not linearly independent over . From Property 2 we
can assume without loss of generality that

are linearly independent for some .

Let and let and be defined as in (36)
with respect to the set . Set
and . Property 2 in turn implies that

. . .

...
...

...

(75)

for some square matrices , where

...
. . .

... (76)

Similar to the previous case, let

be the equivalent channel matrix; then the difference of the
noise-free received signal matrices can be rewritten as

(77)

where

(78)

is an alternative channel equivalent matrix and

(79)

for .
Let be the set of ordered nonzero

eigenvalues of , where , and
let be the ordered nonzero eigen-

values of . Notice that

from Property 3. Arguing similarly as in the first case
shows that

SNR (80)

for , where

SNR (81)

(82)

and

(83)
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Remark 8: We remark that (83) shows the last term is ,
instead of being as in (74). For readers who may wonder
why these two terms are different given both events concern the
case of users in error, the major reason is due to the distance
bounding techniques, i.e., the repeated arithmetic mean-geo-
metric mean inequalities, we have used in the above.

In general, when the equivalent channel matrix of (78),
and similarly when the channel matrix with , has
rank , the rank of the product matrix would be

since is of full rank . Thus our lower bound on
the norm would only capture the smaller eigen-
values of , which are all nonzero. Furthermore, one
reason for introducing the equivalent channel matrix , rather
than working with is that, algebraically speaking, the norm

could be zero as is singular and all the rows of
could lie in the left-null space of . However, since is

random, this occurs with probability zero. In other words, if we
apply the series of arithmetic mean-geometric mean inequalities
to the matrix product , we could end up with the trivial
algebraic inequality

even the right-hand-side has probability 0. Whether the above
could happen depends on the relations among , , , and .
While there is nothing wrong with the algebraic inequality itself,
this bound can actually be further tightened by introducing the
equivalent channel so that we can focus on error events that
have probability larger than zero.

Remark 9: Another heuristic way to see why the last term of
equals follows from the base-alphabet SNR de-

fined in Section III-A. Recall that in the construction of
CDA-based ST code for point-to-point channel [4], [6], to

achieve the DMT optimality therein we would set the base-al-
phabet as

SNR SNR SNR

such that the resulting exponent equals

then along the same lines as in [4], [6] one can prove such code is
approximately universal and achieves diversity gain .
However, it is because we set the base-alphabet as SNR ,
which has size

SNR SNR

meaning an -fold increase in the multiplexing gain, we expect
the error probability associated with event has diversity
gain .

C. Upper Bounds on Codeword Error Probability

Having obtained the squared minimum Euclidean distances
among the signal matrices associated with error

event , and among the signal matrices
associated with error event , below we proceed to an-
alyze the error performance of the proposed construction. The
analysis resembles the sphere bounding technique used in [4],
[6] which is essentially a bounded-distance decoding technique.
That is, the bounded-distance decoder declares an error only
when the noise has norm larger than half of the minimum Eu-
clidean distance. Clearly, the error performance of a bounded-
distance decoder serves as an upper bound on that of a joint ML
decoder.

First, since the lower bounds on the Euclidean distance
hold for all , we define

Then, using the bounded distance decoder discussed in
Section V-A, the probability of error event given
channel matrix can be upper bounded by

(84)

where the inequality follows from the property of a bounded
distance decoder. Hence we see that if

. On the other hand, we may replace the above
upper bound of with the trivial upper bound

when . Thus, it implies

Similarly, for error event with we have
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Since the above bounds do not depend on the specific choices
of , from (66) the union bound on the codeword error prob-
ability gives

(85)

Remark 10: One can regard the probability

as a further upper bound on the union bound
in (66), and the second type of

probability

(86)

as an upper bound on . Furthermore,
the event of users in error has probability upper bounded
by

(87)

It should be noted that in (86) we have over-estimated the
number of choices of -linearly independent rows out of
nonzero rows in the difference matrix
that can happen in the event .

Even with this over-estimate, noting

for all within the range of interest, we can rewrite (85) as

(88)

Below we investigate the diversity orders of each term in (88).

D. Diversity Gain of the First Case

For each , , we have

(89)

SNR SNR

SNR (90)

where , , and
where for . Equation (89) follows
from [31]–[33], and (90) is given in [9] since is a matrix of
size having entries that are i.i.d. complex
Gaussian random variables. The quantity repre-
sents the point-to-point DMT of an MIMO Rayleigh
fading channel at multiplexing gain .

E. Diversity Gain of the Second Case

Similarly, for the second set of maximizations in (88) we have
for each that

SNR SNR

(91)

where is defined in (78) and is of size . Noting
that the entries of are correlated complex Gaussian random
variables, we invoke the following result which was shown inde-
pendently in [34, Corollary 1] and [35, Theorem 3] to simplify
the analysis.

Theorem 11 ( [34], [35]): The diversity order of outage prob-
ability for Rayleigh fading channels with arbitrary full rank cor-
relations is unchanged from the case of i.i.d. Rayleigh fading.
Moreover, if the channel matrix can be decoupled as
where has independent and regular entries, then the optimal
DMT for channel is the same as that for .

Armed with Theorem 11, the analysis of the diversity gain of
the second case is now easy. A direct application of the above
theorem gives

SNR SNR

SNR (92)
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Summarizing results of (88), (90) and (92) gives

SNR

and

This completes the proof.

Remark 11: The above proof shows that

SNR

for error events , , and

SNR

for . This is exactly what is shown in Theorem 2.
Furthermore, in the event of users in error, the proposed
code has error probability

SNR SNR

F. Proof Outline for Even

The proof of Theorem 6 can be adapted to cater to the case
when the number of users is even. Here we discuss only
briefly what the changes are. Firstly, with

inmind, i.e., , the result (68)of thesquaredEuclidean
distance between and remains to hold. Similarly, the fur-
ther lower bounds on in (74) and (83) stay without
changes except that one should keep the following in mind.

1) The parameter of the first case, where
, and out of ’s are distinct, has value from 1

up to . This is because , and we
can always assume without affecting the
value of . Thus the diversity gain resulting from
the first case is

Compared with the case of odd , (90) has up to .
2) The parameters and in the second case can be argued

similarly as the above, and we have
. Hence the diversity gain of this case is

Overall, it shows the MAC-DMT optimality of the proposed
construction remains to hold.

VI. PROOF OF THEOREM 10

The proof of Theorem 10 is similar to that of Theorem 6.
Therefore, we will skip the most of the details and highlight
only the key differences.

First, for any subset
of users, again let denote the event that the decoder
has made an error in decoding users signals, but only the
rows formed by the difference signal matrices of some users,
say user , are linearly independent over . In other
words, let be a pair of distinct information symbols of
the th user for . Set the submatrices and as in
(62) with and . Then the event
corresponds to the case when .

Let denote the channel matrix of the th user
that is known completely to receiver. Since the code matrices

of the th users are of size , here we
will assume without loss of generality that only the first rows
of are used for transmission via the transmit antennas of
the th user, and the remaining rows are discarded
during either encoding or transmission. On the other hand, we
could extend the channel matrix to an equivalent channel
matrix of size by adding on the right an all-zero
matrix with appropriate size. That is, we set

and the received signal matrix can be written as

where is the noise matrix of size .
For the event , let

be the overall equivalent channel matrix, and let

be the ordered nonzero eigenvalues of with

Similarly, let be the ordered

nonzero eigenvalues of . Then the min-
imum squared Euclidean distance between and is
bounded by

SNR

(93)

SNR (94)
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where

(95)

for , and where

SNR
(96)

Equation (93) follows from Property 6 that

SNR

and (94) from Property 5 that

SNR

Now we see that

SNR SNR

SNR (97)

Similarly, techniques used in Sections V-B and V-E can be mod-
ified accordingly to show

SNR (98)

Combining the above results completes the proof of MAC-DMT
optimality of the proposed construction.

Corollary 12: Given and , with
odd, the proposed code defined in (56) achieves the general
individual MAC-DMT of the th user

over a Rayleigh block fading channel that remains static for at
least channel uses and for each , where the min-
imization is taken over all under the
condition . Thus, is individual MAC-DMT optimal.

Proof: Following the proof outline of Theorem 8 it suffices
to show only that the error probability of the th individual de-
coder of the proposed code meets the following bound

SNR

Again, note that the error probability of th individual decoder
can be upper bounded by the joint decoder when the error events

and , , occur with . It then
follows from (97) and (98) that

SNR

This completes the proof.

APPENDIX

PROOF OF THEOREM 3

Consider the multiuser set up with users, each having
transmit antennas. The users are simultaneously and synchro-
nously transmitting the matrix , and
each is using a (user specific) code lattice

, of complex -matrices, so for all . From
the receiver’s point of view, the overall code matrix

...

then becomes interesting. Theorem 2 lists the following require-
ments that the group of lattices should ideally have.

1) Each lattice should have the full rank in order to
reach the maximum multiplexing gain. That is, assuming a
PAM alphabet of size SNR , the code defined by
has size

SNR SNR

which means a multiplexing gain of value for
channel uses.

2) Given any ,
whenever for ,

should have

full row rank , i.e., .
3) In the cases listed in item 2 the determinants

should be bounded away from zero,
i.e., NVD. In term of the notation of exponential equality,
this means

The main idea behind our proof to Theorem 3 is that these
ideal requirements are incompatible if in the third requirement

we have . More precisely, we shall
show that first two requirements imply that the determinants

will necessarily become arbitrarily small,
for all .

For simplicity, here it suffices to prove only the case of
and , and we will show that if the
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first two requirements are met, then for the overall
difference code matrix

though invertible, the absolute of determinant can be
arbitrarily small and be close to 0, hence the third requirement
of NVD cannot be met.

To see this, set

with from the second requirement, and let
be the complex vector space of matrices. Let

be the complex vector space
spanned by these matrices. From the second requirement
we immediately see that . We shall work
with the quotient space . It has a natural structure
of a finite dimensional complex vector space. We also need its
topology which is that of a Euclidean (or a Hermitian) space
that is well known to also be equal to the quotient topology.

The following simple observation is the key to prove Theorem
3.

Lemma 13: The mapping , given by

(99)
is well-defined and continuous.

Proof: Any two matrices and deter-
mine the same coset modulo , if and only if the difference
matrix is a complex linear combination of the ma-
trices . It is immediately clear that in
that case

Therefore is a well-defined function. Continuity of
follows from the continuity of the polynomial function

and the basic properties
of the quotient topology.

Lemma 14: A subgroup in is a lattice if and only if it
is discrete.

Having obtained Lemmas 13 and 14, we are now in position
to prove Theorem 3.

Proof: As above, let us fix nonzero difference matrices
for all the other users. Let

be nonzero. Let denote the natural
projection.

By the second requirement we have

so does not belong to the subspace . Therefore
, and we see that intersects trivially with the lattice

of the first user . So restricted to the free abelian group ,
is an injection. Hence is a free abelian group of

rank and
Because , the quotient space is not big

enough to contain a free abelian group of rank as a dis-

crete subset. Therefore the set must have an accumulation
point in by Lemma 14. In other words, there are matrices in

that are arbitrarily close to each other. As is closed under
addition and negation, it follows that we can find a sequence of
nonzero matrices from the lattice such that the
sequence of their images in the space converges towards zero,
or

The continuity of the function of Lemma 13 then implies that

As all these matrices are of the form prescribed in condition 3),
we see that this last condition cannot be met.
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