
The International Journal of Time-Critical Computing Systems, 19, 149–168 (2000)
c© 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Real-Time Disk Scheduling for Multimedia
Applications with Deadline-Modification-Scan
Scheme

RAY-I CHANG william@iis.sinica.edu.tw
Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC

WEI-KUAN SHIH wshih@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Hsin-chu, Taiwan, ROC

RUEI-CHUAN CHANG rc@cc.nctu.edu.tw
Department of Computer & Information Science, National Chiao Tung University, Hsin-chu, Taiwan, ROC

Abstract. Real-time disk scheduling (RTDS) is important for time-critical multimedia applications. In con-
ventional approaches of real-time disk scheduling, such as SCAN-EDF, the seek-optimizing SCAN scheme is
applied to reduce the disk service time of the real-time EDF schedule. Since only tasks with the same deadline
are seek-optimized, the obtained improvement of SCAN-EDF is limited. In this paper, based on themaximum-
scannable-group(MSG) concept, adeadline-modification-scan(DMS or DM-SCAN) algorithm is proposed. Our
algorithm uses MSG to automatically decide the suitable task groups for seek-optimizing. Based on the MSG
concept, we repeatedly apply DMS to further increase disk throughput to support more tasks. We have imple-
mented the proposed algorithm on UnixWare 2.01. The appropriate problem behaviors and parameter values to
yield good solutions are investigated. Experiments show that DMS is better than conventional approaches in both
the obtained disk throughput and the supported tasks. Moreover, our proposed approach can schedule task sets
that are not schedulable by EDF and SCAN-EDF.

Keywords: RTDS (real-time disk scheduling), multimedia applications, SCAN, EDF (earliest-deadline-first),
operating systems, maximum-scannable-group (MSG), deadline-modification-scan (DMS)

1. Introduction

Multimedia applications have become increasingly popular. To support these time-critical
applications, the scheduler serves disk tasks in real-time manners (Terry and Swinehart,
1988; Anderson et al., 1992). In a real-time disk scheduler, we need to consider two
problem parameters (release timeri and deadlinedi) for each taskTi to decide the scheduled
start-timeei and fulfill-time fi .

• Release time: the earliest time at which the task can be started.

• Deadline: the latest time at which the task must be completed.

• Start-time: the time at which the task is actually started.

• Fulfill-time: the time at which the task is actually completed.

To satisfy the real-time constraints, we must guaranteeri ≤ ei and fi ≤ di . A simple
example to demonstrate the terminology in a real-time disk task is shown in Fig. 1. Notice

150 CHANG, SHIH AND CHANG

Figure 1. The terminology used for a real-time disk task.

Figure 2. The basic architecture of distributed multimedia system.

that the disk task is not preemptive. Therefore, the required service time is defined as
follows: ci = fi − ei . Considering a distributed multimedia system as shown in Fig. 2,
the media data are stored in disks at the server site (Vin and Rangan, 1991; Lougher and
Shepherd, 1993; Wang et al., 1997). To support continuous playback, media data must be
retrieved and transmitted to the client site under guaranteed timing constraints (Rangan and
Vin, 1993; Gemmell and Han, 1994). In such a time-critical system, disk tasks need to be
served not only with high throughput, but also with guaranteed real-time requirements (Lin
and Tarng, 1991; Dan et al., 1994). It is different from the conventional system in which we
focus only on the processor performance (Peterson and Silberschatz, 1985). Since a good
real-time scheduler is important for disk retrieving, we propose a new RTDS (real-time disk
scheduling) algorithm to support real-time disk tasks. Studies about the disk layout, real-
time network transmission, and admission control problems can be found in other papers
(Chang et al., 1997; Wang et al., 1997; Chang et al., 1998; Chang et al., 1999).

The volumes of media data are usually very large. The real-time disk scheduling has
a pronounced effect on the system performance. For scheduling conventional disk tasks,
the SCAN algorithm (as shown in Appendix 1, which scans the disk surface to retrieve
the required data block under disk-head) has been proved as an optimal algorithm under

REAL-TIME DISK SCHEDULING 151

the amortized analysis and probability models (Chen et al., 1992; Chen and Yang, 1992).
However, in a hard real-time system, the service of disk task will become meaningless
and useless if the specified timing constraints are missed (Gemmell and Christodoulakis,
1992). Since the SCAN algorithm does not consider real-time constraints, it is not suitable
for scheduling real-time disk tasks (Rangan and Vin, 1991; Gemmell et al., 1995). In
the conventional real-time system (which models real-time tasks as independent tasks with
related deadlines), EDF (earliest-deadline-first) is known as a good real-time scheduler (Liu
and Layland, 1973; Lehoczky, 1990; Lin and Tarng, 1991). However, in the real-time disk
scheduling problem, the required service time of the real-time disk task depends on the
current position of the disk-head. Since the assumption of task-independence no longer
holds, the employment of EDF will result in poor disk throughput (Yee and Varaiya, 1991;
Reddy and Wyllie, 1994).

In past years, different RTDS methods have been proposed to combine the schemes of the
seek-optimizing SCAN method and the real-time EDF scheduling method. For example, in
the best-known SCAN-EDF approach (Reddy and Wyllie, 1993), the real-time disk tasks
are sorted according to their deadlines by the EDF scheme. Based on the EDF schedule,
the real-time requirements can be guaranteed. Since the movement cost of disk-head is not
considered in scheduling, the obtained throughput would be very low. To reduce the disk
service time, SCAN- EDF tries to reschedule the EDF tasks with the same deadlines by
SCAN. Notice that, the efficiency of SCAN-EDF depends on the number of tasks with the
same deadlines.

To resolve the drawback of SCAN-EDF, we propose a new RTDS algorithm. Our algo-
rithm automatically selects suitable task groups for rescheduling. Given an EDF schedule
as the input schedule, we first define themaximum-scannable-group(MSG) as a set of
consequent tasks that can be successfully rescheduled by SCAN. Thus, by seek-optimizing
tasks in MSG, disk throughput can be improved with guaranteed real-time requirements.
Given an EDF schedule as the input schedule, our obtained disk throughput is intuitively
better than that of SCAN-EDF. In this paper, we introduce a formal definition of the MSG
concept. Then, an O(n) algorithm (wheren is the number of input tasks) is proposed to
identify MSG. The theoretical proof of the correctness of the proposed algorithm is also
presented. Notice that, the initial input and its rescheduled result may not be an EDF sched-
ule. We propose adeadline-modification-scan(DMS or DM-SCAN) algorithm to modify
tasks’ deadlines to satisfy the EDF property. In this way, the problem input would always
be an EDF schedule and the proposed MSG scheme can be repeatedly applied to further
improve the disk throughput.

Comparing with SCAN-EDF, our proposed DMS method can achieve over 14% more
improvements in the obtained disk throughput. Nearly 10% of the improvements are ob-
tained at the first iteration of DMS (calledDMS-1) under the same computation complexity
of SCAN-EDF. Notice that, in conventional approaches, the input task sets are feasible
EDF schedules. In this paper, we also consider the input task sets that are not schedulable
by EDF. The ratio of task sets that can not be scheduled by EDF but can be scheduled by
our proposed approach is over 12. This paper is organized as follows. In section 2, we
introduce the real-time disk scheduling (RTDS) problem. Section 3 gives mathematical
definitions of the proposed MSG concept, and gives a detail description of the proposed

152 CHANG, SHIH AND CHANG

DMS algorithm. The experimental environments and our obtained results are shown in
Section 4. Conclusive remarks and future work are presented in Section 5.

2. Problem Definition for Real-Time Disk Scheduling

2.1. Conventional Disk Service Model and Real-Time Service Model

A magnetic disk is made up of the rotating disks, the heads to access disks, and an assembly
arm that moves the heads into the specified cylinder. Generally, a disk task would specify
the track location of data we want to retrieve. When serving the disk task, aseek-timeis
taken to move the disk arm to the appropriate cylinder. Then, the system must wait until the
desired block rotates under its read-write head by alatency-time. Besides, aswitch-timeis
taken for switching the controller’s attention from one disk-head to the other within the same
cylinder. Finally, the data is transferred from disk to buffer by atransfer-time. The required
disk service time is the summation of the related seek-time, latency-time, switch-time and
transfer-time. Conventionally, the problem objective of disk scheduling is to maximize the
disk throughput in serving the presented disk tasks. However, in a time-critical application,
the first goal of disk scheduling is to meet the specified real-time constraints (Shih et al.,
1992; Mok, 1983). Maximizing the disk throughput is also important, but the schedule is
meaningless if the specified real-time constraints are not satisfied.

When considering a real-time disk taskTi , the release timeri and the deadlinedi are
presented (ri < di , from the definitions) to compute the scheduled start-timeei and the
required fulfill-time fi . To satisfy the real-time constraints, the start-timeei is not earlier
than the release timeri . Besides, the computed fulfill-timefi is not later than the given
deadlinedi (Lehoczky, 1990; Jeffay et al., 1991; Stankovic and Buttazzo, 1995). Define
ci as the required service time. In conventional real-time service models, the required
service time can be specified before scheduling. However, in the RTDS problem, the
required service time depends not only on the data location of the present task, but also
on the current location of the disk-head (the data location of the previous task). It is
determined by the scheduling result and can not be specified before scheduling. In the past
years, some approaches were presented to calculate the service time by the mean distance
or the worst movement distance of disk-head (Steinmetz, 1995). However, the real-time
requirements will not be guaranteed if the approaches with mean movement distance of
disk-head are applied. Although the timing requirements are guaranteed if we apply the
worst movement distance of disk-head to each task, the obtained disk throughputs are very
low. A comprehensive survey for this real-time disk scheduling problem can be found in
Daigle and Srosnider, 1996.

2.2. Formulating the Real-Time Disk Scheduling Problem

A real-time disk taskTi can be denoted by four parameters (ri ,di ,ai ,bi). The release time
ri and the deadlinedi are the timing requirements (Stankovic and Buttazzo, 1995). The
track locationai and the data capacitybi represent the disk service requirements. Define the

REAL-TIME DISK SCHEDULING 153

problem input as a set of real-time disk tasksT = {T0, T1, . . . , Tn} wheren is the number
of tasks. T0 = (0,0,0,0) represents the initial condition of disk arm (at the outermost
track 0). In this paper, a schedulerZ for problem inputT is defined as a procedure that
produces the schedule sequenceTZ = TZ(0)TZ(1) . . . TZ(n).The sequence of subscriptsZ(i),
for i = 0 ton, is a permutation of index{0,1, . . . ,n}. Notice that, when serving taskTi by
the scheduled orderTi−1Ti , the disk-head should move from the track locationai−1 to the
track locationai to retrieve the required data blockbi . The scheduled start-timeei and the
required fulfill-time fi of taskTi can be computed by the following equations:

ei =
{

0 if (i = 0)
max{ri , fi−1} otherwise,

fi = ei + ci−1,i . (1)

The variableci = ci−1,i is the required service time for servingTi after servingTi−1. In a HP
97560 hard disk (Reddy and Wyllie, 1993), the service timeci−1,i can be approximated by

ci−1,i =
{

8.00+ 0.008× Di−1,i if Di−1,i > 383
3.24+ 0.4×√Di−1,i Otherwise

(2)

where the variableDi−1,i = |ai −ai−1| is the movement distance of disk-head. As shown in
the above equation, the required service time is dependent on the schedule result. Although
the disk driver is specified, the schedule result is unknown before scheduling.

In this paper, if all the scheduled tasksTZ(i) (for i = 0 ton) satisfy their real-time require-
mentsr Z(i) ≤ eZ(i) and fZ(i) ≤ dZ(i), this scheduleTZ is called afeasibleschedule. For the
feasible scheduleTZ , the time that it takes to serve all the scheduled tasksTZ(0)TZ(1) · · · TZ(n)

is called theschedule fulfill-time. Since the initial release timer Z(0) = 0, the schedule fulfill-
time (fZ(n) − r Z(0)) of TZ is the same as the fulfill-time of the latest scheduled taskfZ(n).
Define the total retrieved data size asB =∑n

i=1 bi , the disk throughput of scheduleTZ is

B/ fZ(n). (3)

The obtained disk throughput is just related to the inverse of the schedule fulfill-time. When
comparing the schedulerZ with another schedulerX, the improvement of disk throughput
(calledimprovementfor short) obtained byZ can be measured by

(1− fZ(n)/ fX(n))× 100%. (4)

As shown in Eq. (3) and (4), the problem objective defined to maximize the disk throughput
can be achieved by minimizing the schedule fulfill-time. We formally formulate the real-
time disk scheduling (RTDS) problem as follows.

Definition. Real-Time Disk Scheduling (RTDS)Given a set of real-time disk tasksT =
{T0, T1, . . . , Tn}, find a feasible scheduleTZ = TZ(0)TZ(1) · · · TZ(n) that resolvesmin{ fZ(n)}
underr Z(i) ≤ eZ(i) and fZ(i) ≤ dZ(i) for i = 0 ton.

This problem definition can be modeled by a fully connected graphG = (V, E) with
verticesV = T and edgesE. In this graph, there are two cost-bounds (ri anddi) on each
vertexTi and an arbitrary transition costci, j on the edge from vertexTi to vertexTj . The

154 CHANG, SHIH AND CHANG

Figure 3. A simple example to demonstrate the identification procedure of MSG.

goal is to minimize the final tour cost (starting from vertexT0 and visiting each vertex in
G exactly once) without violating the cost-bound constraints (real-time constraints) ofri

anddi . This problem has been proved to be NP-complete (Wong, 1980; Vin et al., 1995).
In recent years, different approaches have been proposed to combine the seek-optimizing
SCAN method and the real-time EDF scheduling method (i.e. SCAN-EDF) to resolve
the RTDS problem. The obtained efficiency greatly depends uponhow often the SCAN
algorithm can be applied. Notably, the best task groups for seek-optimizing (calledthe
best task groups, for short) may have varying sizes for different task groups.

3. Proposed Approach to Reschedule MSG by the DMS Scheme

3.1. Definition of Maximum-Scannable-Group

Generally, doing seek-optimization on the maximum scannable task groups would provide
a large benefit to disk throughput. To avoid the incorrect partitioning of the task groups,
we should identify the scannable task groups as large as possible. In this paper, an MSG
(maximum-scannable-group) concept is introduced as follows.

Definition. MSG (maximum-scannable-group)Given an EDF scheduleTe= TE(0)TE(1)

· · · TE(n), the maximum-scannable-groupGi started from taskTi is defined as the maximum
consequent task groupGi = TE(i)TE(i+1) · · · TE(i+m) which satisfies: fE(k) ≤ dE(i) and
r E(k) ≤ eE(i) for k = i to i +m.

A simple example to demonstrate the proposed MSG concept is shown in Fig. 3. Assume
that the input schedule isT0T1T2T3T4. Considering the groupG1 that started fromT1, we
have f2 ≤ d1 andr2 ≤ e1, but f3 > d1 andr3 > e1. Thus,T2 is in G1, butT3 is not inG1.
Based on the above definition, we can construct all MSG groups (G0 = T0, G1 = T1T2,
G2 = T2, G3 = T3, andG4 = T4). The theoretical proof for the correctness of our MSG
definition is given as follows.

REAL-TIME DISK SCHEDULING 155

THEOREM TE = TE(0)TE(1) · · · TE(n) is an EDF schedule with MSG Gi = TE(i)TE(i+1) · · ·
TE(i+m). Assume that Si = TS(i)TS(i+1) · · · TS(i+m) is the seek-optimized reschedule result
of Gi for TS = TE(0)TE(1) · · · TE(i−1)TS(i)TS(i+1) · · · TS(i+m)TE(i+m+1) · · · TE(n). If TE is
feasible,TE can be rescheduled asTS to improve the disk throughput under guaranteed
real-time requirements.

Proof: (a) In the input scheduleTE, from the definition of the fulfill-time, we have

fE(i+m) = max{· · ·max{eE(i) + cE(i−1),E(i), r E(i+1)} · · ·} + cE(i+m−1),E(i+m). (5)

As Gi is an MSG, we haver E(k) ≤ eE(i) for k = i to i +m. Eq. (5) can be rewritten as

fE(i+m) = eE(i) + cE(i−1),E(i) + cE(i),E(i+1) + · · · + cE(i+m−1),E(i+m).

In scheduleTS, the related fulfill-time ofSi is

fS(i+m) = max{· · ·max{eS(i) + cS(i−1),S(i), rS(i+1)} · · ·} + cS(i+m−1),S(i+m). (6)

From the definition of start-timeeE(i) = max{r E(i), fE(i−1)}, we haveeS(i) ≤ eE(i). Since
Si is a reschedule ofGi , they contain the same tasks. Given a taskTS(x) in Si , we have
rS(x) = r E(k) for an arbitraryk in [i, i +m]. Thus,rS(x) ≤ eE(i) for x = i to i +m. Eq. (6)
can be rewritten as

fS(i+m) ≤ eE(i) + cS(i−1),S(i) + cS(i),S(i+1) + · · · + cS(i+m−1),S(i+m). (7)

GivenSi as a seek-optimized reschedule result ofGi for TS, we have

cS(i−1),S(i) + cS(i),S(i+1) + · · · + cS(i+m−1),S(i+m)

≤ cE(i−1),E(i) + cE(i),E(i+1) + · · · + cE(i+m−1),E(i+m). (8)

⇒ From Eq. (7) and (8), the fulfill-time isfS(i+m) ≤ fE(i+m). The obtained disk through-
put in the rescheduled groupSi would not be smaller than that of the input groupGi .

(b) From the definition of MSGGi , we have fE(k) ≤ dE(i) for all k = i to i + m. As
Gi is an EDF schedule, we also havefE(k) ≤ fE(k+1) anddE(k) ≤ dE(k+1) for all k = i to
i +m− 1. These relations can be rewritten as

fE(i) ≤ fE(i+1) ≤ · · · ≤ fE(i+m) ≤ dE(i) ≤ dE(i+1) ≤ · · · ≤ dE(i+m). (9)

From the definition ofSi , the fulfill-time fS(k) ≤ fS(k+1) ≤ fE(i+m) for all k = i to i +m.
These relations can be written as

fS(i) ≤ fS(i+1) ≤ · · · ≤ fS(i+m) ≤ fE(i+m). (10)

⇒ Note that,min{dS(k) | for all k = i to i + m} = dE(i). From Eq. (9) and (10), we
can guarantee that the real-time constraints forSi are satisfied. IfTE is feasible,TE can
be rescheduled asTS to improve the disk throughput under guaranteed real-time require-
ments.

156 CHANG, SHIH AND CHANG

We prove that the seek-optimized result of MSG can improve the disk throughput with
guaranteed real-time requirements. As the seek-optimized fulfill-time of the rescheduling
result would not be larger than that of the input schedule, we can focus only on the real-time
requirements. In our proposed MSG definition, we usefE(k) ≤ dE(i) andr E(k) ≤ eE(i) (for
k = i to i +m) to guarantee real-time requirements.

3.2. Identification of Maximum-Scannable-Group

Define Gi as the maximum scannable group starting fromTi . There aren + 1 MSG
groups considered(G0,G1, . . . ,Gn). For these successive MSG groups, a usefulsub-
groupproperty is introduced as follows.

Property Give an EDF scheduleTE = TE(0)TE(1) · · · TE(n). For each MSG Gi = TE(i)

TE(i+1) · · · TE(i+m), its sub-group TE(x)TE(x+1) · · · TE(i+m) must be a part of MSG Gx for
x = i + 1 to i +m.

Proof: (a) SinceTE(0)TE(1) · · · TE(n) is an EDF schedule,dE(i) ≤ dE(i+1) andeE(i) ≤ eE(i+1)

for all i .
(b) As Gi = TE(i)TE(i+1) · · · TE(i+m) is an MSG, we havefE(k) ≤ dE(i) andr E(k) ≤ eE(i)

for k = i to i +m.
⇒ From (a) and (b), it can be easily derived thatfE(k) ≤ dE(i) ≤ dE(x) andr E(k) ≤ eE(i) ≤

eE(x) for x = i + 1 to i +m. Thus, the sub-groupTE(x)TE(x+1) · · · TE(i+m) of Gi must be a
part ofGx.

By applying the above sub-group property,n+ 1 MSG groups can be easily identified by
an one-passO(n) algorithm. DefineStart Gi andEnd Gi as the start and the end index of
the task groupGi . The proposed MSG identification algorithm is shown as follows.

Algorithm: MSG (maximum-scannable-group)

1. /* INPUT: an EDF scheduleT0T1 · · · Tn.
OUTPUT: MSG groupsG0,G1, . . . , andGn. */

2. k := 1;

3. for i := 0 to n do begin /* n is the number of input tasks */

4. while ((rk ≤ ei) and (fk ≤ di) and (k ≤ n)) do k := k+ 1;

5. /* Gi is defined asTi Ti+1 · · · Tk−1 */

6. Start Gi := i ; /* Start Gi is the start index of groupGi */

7. End Gi := k− 1; /* End Gi is the end index of groupGi */

8. end /* next MSG group */

REAL-TIME DISK SCHEDULING 157

Notably, tasks in MSG may have the same scan direction (calledscanned MSG). Besides,
these MSG groups may not be mutually-exclusive. In this paper, we consider only the un-
scanned and mutually-exclusive groups for rescheduling. Define the forward scan direction
as+1 and the backward scan direction as−1. We represent the cumulated scan direction
of tasks inGi by variableZ[i]. Notably, the task groupGi is scanned if and only if|Z[i]|
is equal to the group size. The detail description of anO(n) algorithm to identify these
un-scanned and mutually-exclusive MSG groups is illustrated as follows.

Algorithm: MU MSG (mutually-exclusive and un-scanned MSG groups)

1. /* INPUT: MSG groupsG0,G1, . . ., andGn.
OUTPUT: MU MSG, a subset of MSG. */

2. Z[0] := 0; /* Z[i] is the cumulated scan direction ofGi */

3. for k := 1 to n do begin

4. if (ak−1 ≤ ak) thenscandirection := 1; elsescandirection := −1;

5. /* MSG is scanned if and only if the scan directions are+1,+1, . . . ,+1 or
−1,−1, . . . ,−1 */

6. Z[k] := Z[k− 1]+ scandirection;

7. end /* next task */

8. i := 0;

9. while (i < n) do begin

10. if ((|Z[End Gi] − Z[Start Gi]| + 1) = size of Gi) /* if Gi is seek-optimized */

11. then i := i + 1; /* next group */

12. else begin

13. Gi is defined as a MUMSG and can be rescheduled by SCAN;

14. i := End Gi + 1; /* next mutually exclusive group */

15. end /* else */

16. end /* group */

In this paper, these MUMSG groups are identified by a first-come-first-serve (FCFS)
policy. As these MUMSG groups are mutually-exclusive, tasks in different MUMSG
groups can be seek- optimized by SCAN at the same time.

158 CHANG, SHIH AND CHANG

3.3. Deadline-Modification-Scan for Maximum-Scannable-Group

As shown in the previous sub-section, our MSG concept is based on an EDF input schedule.
However, in real-world systems, the problem input may not be an EDF schedule. To resolve
this drawback, a DMS (deadline-modification-scan) algorithm is proposed to modify the
original problem input and transfer it into an EDF input schedule. For example, given the
schedule sequenceTi Tj , we can simply modify the deadlinedi = min{di ,dj } to satisfy
the EDF requirementsdi ≤ dj . This O(n) procedure is calleddeadline-modification (DM).
After executing the DM algorithm, we can prove that the new problem input is an EDF
schedule. The MSG concept can be applied to this new problem input to further improve the
disk throughput. Notice that, the rescheduled result of MSG may violate the original EDF
property. We can execute the DM algorithm again to produce a new EDF problem input.
Thus, the MSG concept can be applied repeatedly to further improve the disk throughput.
This DMS (DM-SCAN) algorithm is described as follows.

Algorithm : DMS (deadline-modification-scan)

1. /* INPUT: the initial schedule. OUTPUT: the obtained schedule. */

2. Stored′k := dk for all tasksTk /* used′k to backup real deadlinedk */

3. repeat

4. for k := n− 1 down to 1 do /* deadline modification */

5. if (dk > dk + 1) then dk := dk+1;

6. Identify all the MSG groups from input schedule

7. Identify all the MUMSG groups from MSG groups

8. for i := 1 to n do /* group seek-optimization */

9. if (Gi is MU MSG) then rescheduleGi by SCAN;

10. until (no deadline is modified); /* no more change */

11. Recoverdk := d′k for all tasksTk. /* restore real deadlines */

A simple example to demonstrate the processing steps of DMS is shown in Fig. 4. Given
an input scheduleT0T1T2T3T4 (asd3 > d4, it is not an EDF schedule), we can modify
deadlined3 = d4 to satisfy the EDF property betweenT3 andT4. By following the same
idea,d2 is not changed andd1 is modified asd2. As the modified deadlines satisfy the
EDF requirements (d0 ≤ d1 ≤ d2 ≤ d3 ≤ d4), the proposed DMS algorithm is correct for
iterative computing. Experiments show that the results of DMS can be convergent within
a small iteration number (¿ n). The theoretical proof of convergence easily can be shown
by the monotonic-decreasing property of modified deadlines (Chang, 1996).

REAL-TIME DISK SCHEDULING 159

Figure 4. A simple example to demonstrate the proposed DMS scheme.

Notably, if the input schedule is feasible for real-time requirements, we havefi ≤ fi+1

and fi+1 ≤ di+1 for each input taskTi (i = 0 ton). Thus, after executing the DM algorithm,
the obtained EDF schedule is also a feasible schedule (Chang, 1996). We can conclude
that the obtained result will be a feasible RTDS schedule if the input schedule is feasible.
Notably, in our MSG definition, the input schedule is not necessary to be feasible. Besides,
the input schedule is not necessary to be an EDF schedule. However, if the input schedule is
infeasible, our obtained result may not be a feasible RTDS schedule. We try to demonstrate
this schedulability ratio by testing infeasible input schedules in our experiments. Many task
sets that are not schedulable by EDF can be scheduled by our proposed approach.

4. Experimental Results

In this paper, we apply the HP 97560 hard disk for performance evaluations. HP 97560 con-
tains 1962 cylinders. It has 19 tracks-per-cylinder and 72 sectors-per-track with 512 bytes
sector size. The rotation speed is 4002 RPM (rotations-per-minute). In this paper, we apply
this disk to model the disk service timeci, j . Given the seek distanceDi, j = |aj − ai |, the
value ofci, j can be computed by Eq. (2). We assume that the data access for each input
task is one disk track (36 KB in HP 97560). The workloads of input tasks are uniformly
distributed on the disk surface. Besides, tasks’ release times are generated with proper
hard-deadlines assigned. In our experiments, the applied release times of tasks are uni-
formly distributed among 0 and 240 ms (milliseconds). The related deadline is formulated
by the release time with an additional period time varied from 120 to 480 ms. More detail
descriptions about the disk layout scheme supported for multimedia applications can be
found in Wang et al., 1997.

160 CHANG, SHIH AND CHANG

Figure 5. The convergence property of SCAN-EDF and the proposed DMS approach.

4.1. Number of Iterations to Convergence

For an iterative algorithm such as DMS, the iteration number required to convergence is an
important factor to measure system performance. In this paper, we evaluate the convergence
property of DMS by the obtained schedule fulfill-time under different iteration numbers.
The obtained results of SCAN-EDF are also presented for comparisons. For each approach,
the same 100 test examples with 10 random-generated disk tasks are applied. The mean
value of the obtained schedule fulfill-time is plotted as shown in Fig. 5. The gray circles,
calledconvergent points, mark the iteration number required to convergence. Notably, as
SCAN-EDF is a non-iterative approach, extra iterations do not change the obtained results.
The required schedule fulfill-time is 414.8 ms. Different from SCAN-EDF, our proposed
DMS method is an iterative approach. The increasing of applied iterations will improve
the obtained results until the convergence is met. By applying only 3 computing iterations,
our method can obtain 356.7 ms in the schedule fulfill-time. The required iteration time to
convergence is small and the obtained results are highly improved. Moreover, our proposed
method can achieve better results than SCAN-EDF in the first iteration (calledDMS-1).
The required computation complexity of the DMS-1 method is O(n logn) (the same as
SCAN-EDF). Table 1 summarizes the minimum, the maximum, and the average schedule
fulfill-time obtained for different test approaches. We apply the same 100 test examples for
all test approaches to keep the comparison as fair as possible. Each test example contains

REAL-TIME DISK SCHEDULING 161

Table 1.The obtained schedule fulfill-time and the related improvement.

Algorithms Schedule Fulfill-Time (ms: millisecond)

minimum maximum average improvement

DMS 289.27 ms 402.36 ms 356.74 ms 14.00%
DMS-1 317.24 ms 460.18 ms 375.12 ms 9.58%
SCAN-EDF 377.06 ms 462.70 ms 414.84 ms ≈ 0.00%

Figure 6. The performance improvements of DMS with different input tasks.

10 random-generated disk tasks and has a feasible EDF schedule. Comparing the obtained
improvements defined in Eq. (4), our DMS approach can achieve over improvements that
are 14% higher (9% at the first iteration) than SCAN-EDF.

4.2. Number of Input Tasks

To further demonstrate the capability of DMS, we compare the obtained improvements for
different computing iterations under four different problem sizes (14, 16, 18, and 20 input
tasks) as shown in Fig. 6. In each point, the mean value of the performance improvements
for 100 test examples is presented. Experiments show that all the obtained results have
improvements that are over 10%. Besides, all these test examples are convergent before
n computing iterations (n is the number of tasks). This iteration bound can be easily
proved by the limited number of input tasks and the definition of applied MSG (Chang,
1996). In Fig. 7, DMS is applied to compare with conventional approaches by the obtained
improvements under different number of input tasks. We increase the test problem sizes from

162 CHANG, SHIH AND CHANG

Figure 7. Experiments for DMS with different numbers of input tasks.

Table 2.The numbers of task supported.

Algorithms Number of Supported Tasks

minimum maximum average

DMS 7 25 13.8
SCAN-EDF 4 24 10.2
FCFS 1 10 4.1
SCAN 1 4 3.3

3 to 20 input tasks. In each test problem size, 100 test examples are applied. Experiments
show that the proposed DMS approach is better than these conventional approaches in all
the test examples. Our proposed DMS method can achieve improvements over 11% in disk
throughput when the problem size is increased to 20 tasks. It demonstrates that DMS can
handle large-sized problems.

Table 2 shows the minimum, the maximum and the average number of input tasks that
can be supported by different approaches. For each test approach, the same 100 test ex-
amples are applied. In each test example, we try to increase the number of input tasks
until the obtained schedule is not feasible. The applied problem size is recorded as the
supported number of requests in this test example. Experiments show that our proposed
DMS approach can support more tasks than conventional approaches. Comparing with
EDF, our proposed method achieves over 1.35 in the ratio of the supported average number
of tasks. This ratio is defined as follows:

(tasks schedulable by DMS)/(tasks schedulable by EDF). (11)

REAL-TIME DISK SCHEDULING 163

Notice that, as the real-time constraints are not considered in SCAN scheduling, the SCAN
method has the worst results in the supported number of tasks. Although SCAN is a seek-
optimization method for disk scheduling, these seek-optimized schedules are not acceptable
for time-critical applications.

4.3. Ratio of Schedulability

In conventional approaches, the input task set must be a feasible EDF schedule. As the input
task set is schedulable by EDF, these approaches just have a minor improvement to obtain a
better fulfill-time. In this paper, our proposed DMS method can schedule task sets that are
not schedulable by EDF. As shown in the left side of Fig. 8(a), the EDF scheduleT0T1T2T3T4

is not feasible for real-time requirements because taskT4 misses its deadline (d4 < f4). This
task set is not schedulable by EDF and SCAN-EDF. In this paper, by applying our DMS
algorithm toT0T1T2T3T4, we obtain the MSG groupT0T1T2T3 (see Fig. 8(a)). As shown in
Section 3, this MSG group can be successfully seek-optimized asT0T1T3T2 to reduce the
related fulfill-time. Thus, the next taskT4 can be started earlier than that in the original
schedule. The new fulfill-time (calledf ∗4) is smaller thanf4. As show in the right side of
Fig. 8(a), we havef ∗4 ≤ d4 < f4. The output schedule of DMS (T0T1T3T2T4) is feasible
for real-time requirements even when the input EDF scheduleT0T1T2T3T4 is infeasible.

Although our proposed algorithm can schedule task sets that are not schedulable by EDF,
the real-time requirements could be guaranteed only when the input schedule is feasible. In
another words, reschedule results may be infeasible for real-time requirements if the input
schedule is infeasible. We define the ratio of schedulability as follows:

(task sets schedulable by DMS)/(task sets schedulable by EDF). (12)

Fig. 8(b) shows the obtained ratio of schedulability under different problem sizes. For each
problem size, the same 100 test examples are applied to both the EDF and DMS approaches
for fair comparisons. Experiments show that the obtained ratio will be 1 if the number of
input tasks is less than 5. When the problem size is increased to 21 tasks, the obtained
ratio is increased to 13. Our proposed approach can schedule the task sets that are not
schedulable by EDF. The ratio of task sets that are not schedulable by EDF but schedulable
by DMS is over 12.

4.4. Implementation Results

In this paper, we also implement our proposed DMS scheme on a real system to evaluate
the obtained performance. The best-known SCAN-EDF scheme is implemented for com-
parisons. At the server site, we design a parent thread to deal with arrival media services.
These presented media services are random-arrived with uniformly distributed data allo-
cations. After receiving the requests of media services, a child thread is created (by the
parent thread) to decide the data location and send the real-time disk tasks. Our algorithm is
implemented on the system kernel to handle these real-time disk tasks. Thus, the real-time
network transmission scheduler (Chang et al., 1997) can send the retrieved media data to

164 CHANG, SHIH AND CHANG

Figure 8. (a) By applying the proposed DMS method, an infeasible input schedule may produce a feasible output
schedule. (b) The ratio of schedulability obtained.

the clients for continuous playback. Our implementation currently runs on a platform with
UnixWare 2.01 operating system. The applied storage device is the Seagate ST-31200N
hard disk with the Adaptec SCSI-2742AT control card. In this paper, we consider a disk
array system with 20 identical disk devices. For each hard disk, 20 KB/s bandwidth is
required for serving one MPEG-I video stream. We implement the real-time disk scheduler
on theportable device interface(PDI) of the SCSI hard disk driver. It takes the advantage

REAL-TIME DISK SCHEDULING 165

Figure 9. The implementation results of the proposed DMS method on UnixWare 2.01.

to organize and standardize the processing flow of device drivers. Thus, our implemen-
tation can be easily ported to other systems. More detail discussions about the top-down
hierarchical structure of PDI, the original design of PDI for disk scheduling, and the detail
implementation of the proposed algorithms can be found in (Chang, 1996). Fig. 9 shows
the obtained improvements of implementation results for different number of input tasks
(task arrival rates). In each point, the mean value of improvements obtained for 100 test
examples is presented. Our implementation results show that the proposed DMS method
can achieve better results than the well-known SCAN-EDF approach.

5. Conclusion

In this paper, based on the MSG (maximum-scannable-group) concept, we propose a DMS
(deadline-modification-scan) algorithm to resolve the RTDS (real-time disk scheduling)
problem. In conventional RTDS methods, the seek-optimization procedure is applied only
for the tasks with the same deadline. Thus, the obtained improvement is limited. Our DMS
algorithm can automatically identify MSG to iteratively reduce the disk service time. Thus,
the obtained disk throughput can be highly improved. In this paper, both the experiment
results and the implementation results are presented. The investigations of the appropriate
problem behaviors and parameter values to yield good solutions are also proposed. Exper-
iments show that our obtained approach can achieve higher disk throughput and support
more real-time disk tasks than the conventional approaches. Different from the conventional
SCAN-EDF approach, our problem input is not necessary to be a feasible EDF schedule.
Many task sets that are not schedulable by EDF can be schedulable by our proposed ap-

166 CHANG, SHIH AND CHANG

proach. In this paper, the introduced MSG and DMS are two general concepts for real-time
disk scheduling. Based on different problem configurations, we can define different MSG
formulations and different DMS algorithms. How to further extend these concepts to other
real-time applications is an interesting research problem. We will investigate this problem
in our future works.

Appendix 1

Algorithm: SCAN

1. /* Input: a set of tasksT = {T0, T1, . . . , Tn}.
Output: the scheduleTS = TS(0)TS(1) · · · TS(n). */

2. Assume that the initial disk-head is at track 0 (the data location of taskT0 is a0 = 0).

3. Sort the input tasks in the ascending order of their data locations.

4. Assume thataS(0)aS(1) · · ·aS(n). The schedule result isTS = TS(0)TS(1) · · · TS(n).

5. /* The sequence of subscriptsS(i)(i = 0 ton) is a permutation of task index{0,1, . . . ,
n}. */

Acknowledgments

The authors would like to thank anonymous referees for their valuable comments and
suggestions about this paper. This work was partially supported by NSC under grants
NSC88-2213-E-001-018 and NSC88-2213-E-001-019.

References

Anderson, D. P. 1993. Metascheduling for continuous media.ACM Trans. Computer Systems11(3): 226–252.
Anderson, D. P., Osawa, Y. and Govindan, R. 1991. Real-time disk storage and retrieval of digital audio/video

data. Tech. Report, Univ. of California, Berkeley, Dept. of Computer Science.
Anderson, D. P., Osawa, Y. and Govindan, R. 1992. A file system for continuous media.ACM Trans. Computer

Systems10(4): 311–337.
Chang, R. I. 1996. Real-time disk scheduling in multimedia systems. Ph.D. Thesis, College of EE and CS, Dept.

of CIS, NCTU, Taiwan, ROC.
Chang, R. I., Chen, M. C., Ho, J. M. and Ko, M. T. 1997. Optimizations of stored VBR video transmission on

CBR channel.Proc. SPIE VVDC: Performance and Control of Network Systems, pp. 382–392.
Chang, R. I., Chen, M. C., Ho, J. M. and Ko, M. T. 1998. Characterize the minimum required resources for

admission control of pre-recorded VBR video transmission by an O(n logn) algorithm. Proc. IEEE Int. Conf.
on Computer Communications and Networks.

Chang, R. I., Chen, M. C., Ho, J. M. and Ko, M. T. 1999. An Effect and Efficient Traffic-Smoothing Scheme for
Delivery of Online VBR Media Streams.Proc. IEEE INFOCOM.

Chang, R. I., Shih, W. K. and Chang, R. C. 1998. Deadline-modification-scan with maximum-scannable-groups
for multimedia real-time disk scheduling.Proc. IEEE RTSS.

REAL-TIME DISK SCHEDULING 167

Chen, M., Kandlur, D. D. and Yu, P. S. 1993. Optimization of the grouped sweeping scheduling (GSS) with
heterogeneous multimedia streams.Proc. ACM Multimedia Conf., pp. 235–242.

Chen, S. and Thapar, M. 1996. I/O channel and real-time disk scheduling for video servers.Proc. NOSSDAV,
pp. 113–122.

Chen, T. S. and Yang, W. P. 1992. Amortized analysis of disk scheduling algorithm V(R)*.Journal of Inform.
Science and Eng. 8: 223–242.

Chen, T. S., Yang, W. P. and Lee, R. C. T. 1992. Amortized analysis of some disk scheduling algorithms: SSTF,
SCAN, andN-Step SCAN.BIT 32: 546–558.

Daigle, S. J. and Srosnider, J. K. 1996. Disk scheduling for continuous media data streams.Proc. SPIE Conference
on High-Speed Networking and Multimedia Computing.

Dan, A., Sitaram, D. and Shahabuddin, P. 1994. Scheduling policies for an on-demand video server with batching.
Proc. ACM Multimedia Conf., pp. 15–22.

Gemmell, D. J. and Christodoulakis, S. 1992. Principles of delay sensitive multimedia data storage and retrieval.
ACM Trans. Information Systems10(1): 51–90.

Gemmell, D. J. and Han, J. 1994. Multimedia network file servers: multichannel delay sensitive data retrieval.
Multimedia Systems1(6): 240–252.

Gemmell, D. J., Vin, H. M., Kandlur, D. D., Rangan, P. V. and Rowe, L. A. 1995. Multimedia storage servers: a
tutorial. IEEE Computers, pp. 40–49.

Jeffay, K., Stanat, D. F. and Martel, C. U. 1991. On nonpreemptive scheduling of periodic and sporadic tasks.
Proc. of Real-Time Systems Symp., pp. 129–139.

King, R. P. 1990. Disk arm movement in anticipation of future requests.ACM Trans. Computer Systems8(3):
214–229.

Lehoczky, J. P. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines.Proc. Real-Time
Systems Symp., pp. 201–212.

Lin, T. H. and Tarng, W. 1991. Scheduling periodic and aperiodic tasks in hard real-time computing systems.
Proc. SIMMetrics Conf., pp. 31–38.

Liu, C. L. and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard real- time environment.
Journal of ACM, pp. 46–61.

Lougher, P. and Shepherd, D. 1993. The design of a storage server for continuous media.The Computer Journal
36(1): 32–42.

Mok, A. 1983. Fundamental design problems for the hard real-time environment. MIT Ph.D. Dissertation,
Cambridge, MA.

Peterson, J. L. and Silberschatz, A. 1985.Operating System Concepts. Addison-Wesley.
Rangan, P. V. and Vin, H. M. 1991. Designing file systems for digital video and audio.Proc. ACM Symp. Operating

Systems, pp. 81–94.
Rangan, P. V. and Vin, H. M. 1993. Efficient storage techniques for digital continuous multimedia.IEEE Trans.

Knowledge and Data Engineering, 5(4): 564–573.
Reddy, A. L. N. and Wyllie, J. 1993. Disk scheduling in a multimedia I/O system.Proc. ACM Multimedia Conf.,

pp. 225–233.
Reddy, A. L. N. and Wyllie, J. 1994. I/O issues in a multimedia system.IEEE Computers., pp. 69–74.
Ruemmler, C. and Wilkes, J. 1994. An introduction to disk drive modeling.IEEE Computers, pp. 16–28.
Shih, W. K., Liu, J. W. S. and Liu, C. L. 1992. Modified rate monotone algorithm for scheduling periodic jobs

with deferred deadlines. Tech. Report, Univ. of Illinois, Urbana-Champaign, Dept. of Computer Science.
Stankovic, J. A. and Buttazzo, G. C. 1995. Implications of classical scheduling results for real- time systems.

IEEE Computer, pp. 16–25.
Steinmetz, R. 1995. Multimedia file systems survey: approaches for continuous media disk scheduling.Computer

Communication18(3): 133–144.
Terry, D. B. and Swinehart, D. C. 1988. Managing stored voice in the etherphone system.ACM Trans. Computer

Systems6(1): 3–27.
Tindell, K. and Burns, A. 1994. Fixed priority scheduling of hard real-time multi-media disk traffic.The Computer

Journal37(8): 691–697.
Vin, H. M., Goyal, A. and Goyal, P. 1995. Algorithms for designing multimedia servers.Computer Comm. 18(3):

192–203.
Vin, H. M. and Rangan, P. V. 1991. Designing file systems for digital video and audio.Proc. ACM Symp. Operating

System Principles, pp. 81–94.

168 CHANG, SHIH AND CHANG

Wang, Y. C., Tsao, S. L., Chang, R. I., Chen, M. C., Ho, J. M. and Ko, M. T. 1997. A fast data placement scheme
for video server with zoned-disks.Proc. SPIE VVDC, pp. 92–102.

Wong, C. K. 1980. Minimizing expected head movement in one dimension and two dimension mass storage
system.Comput. Survey12(2): 167–178.

Yee, J. and Varaiya, P. 1991. Disk scheduling policies for real-time multimedia applications. Tech. Report, Univ.
of California, Berkeley, Dept. of Computer Science.

Yee, J. and Varaiya, P. 1995. Modeling and performance of real-time disk access policies.Computer Communi-
cations18(10).

