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Polyhedral Face Reconstruction and Modeling from a 
Single Image with Structured Light 

Zen Chen, Shinn-Ying Ho, and Din-Chang Tseng 

Abstract- The determination of the 3-D geometric model of visible 
polyhedral faces from a single view is addressed. It applies a grid 
coding technique to derive the normal vector of each visible polyhedral 
face and the depth parameter of the face equation based on the given 
dimensions of the grid on the code plate. It is shown that the method is 
correspondenceless. Furthermore, it also determines the 3-D face model 
for all visible polyhedral faces including the occlusion relations between 
faces. ’ b o  edge reconstruction methods are given and their goodness 
are compared. For the determination of the final object model, three 
different integration methods are given. Some experiments are reported 
to illustrate the method. 

I. INTRODUCTION 
The determination of the 3-D object structure from a single image 

or multiple images is of fundamental importance in computer vision. 
The 3-D structure information is useful to object recognition, part 
inspection and robot guidance tasks, etc. There are four major 
approaches to acquire the 3-D information [1], [2 ] :  

1) passive monocular approaches, 
2) passive binocular approaches, 
3) active monocular approaches, 
4) active binocular approaches. 
Generally speaking, in the first two methods the object features 

(e.g., points, lines or contours) used for the 3-D object structure 
recovery are imbedded in the rather complicated scene and are not 
easy to extract from the scene; quite often, additional information 
about the objects is required. For instance, object reflectance model 
or object surface of a regular pattern is assumed in some passive 
monocular methods, and the correspondence information between 
object features and image features is needed in most of the passive 
binocular methods. This additional information is either not available 
or hard to obtain [1] [4]-[9]. In the active monocular methods using 
the “time-of-flight” technique, the depth determination is generally 
not very accurate if the returned beam is weak or noisy. For the 
active binocular method using triangulation to compute the depth 
information, they also suffer from the possible depth inaccuracy 
[3]. Besides, the triangulation technique determines the range data 
on a point-by-point basis, so it is a slow process; the object must 
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remain still during the whole process. To alleviate the processing 
time, some active sensing methods apply the grid coding technique 
[4]-[16]. In these methods a set of parallel stripes or a crossing grid 
pattern is projected onto the object to produce a spatial encoded 
image for analysis. Again, the correspondence problem is needed 
to solve in most of these methods using techniques such as spatial 
labeling [4], relaxation [SI and color encoding [6], etc. However, 
under the assumption of a parallel projection model, Aggarwal and 
his co-workers [7]-[9] infered the object surface orientation and 
its relative depth without using correspondences. Nevertheless, the 
absolute depth cannot be determined by their methods. 

On the other hand, since only the bright (or dark) stripes of the 
object surface are perceived by the above active sensing methods, 
so the complete object boundary (or contour) is not obtainable and, 
therefore, the object boundary cannot be precisely determined; jump 
edges or false edges between the object faces are judged subjectively 
by comparing the relative depth change with a specified threshold 
value [17]. Wang and Aggrawal [9] proposed to use integration of 
active and passive sensing techniques in order to extract the complete 
object boundary. On the other hand, Shirai and his co-workers [18] 
used a vertical slit projector to generate a set of parallel stripes and are 
able to detect the occlusion at the endpoints of the stripes. However, a 
single set of parallel stripes will miss the edges parallel to the stripes. 
Therefore, the occlusion detection has not been effectively solved. 
This defect results in inability to obtain face adjacency relationship. 
It, in turn, makes object recognition or object registration problem 
more difficult to tackle. 

A new active sensing method also using the grid coding technique 
is to be proposed that aims to remove most of the difficulties 
mentioned previously, in particular. 

1) it can determine the absolute depth and the normal vectors of 
all visible polyhedral faces from a single image, assuming the 
face is not too small. 

2) it does not require or need to solve the correspondences 
between the object features (e.g., points or lines) and image 
features. 

3) it can determine the 3-D structure of the *visible polyhedral 
faces in the scene including 

a) the face equations 
b) the angles between adjacent face pairs 
c) the edge lengths 
d) the angles between edge pairs 
e) a unique set of visible polyhedral vertices, and 
f )  the occlusion relations between faces. 

In addition, in order to develop the multiple face equations for the 
object model, we shall need to determine on line which set of parallel 
laser planes produces the grid ,lines on all visible polyhedral faces. 

Furthermore, a sensitivity analysis of the face equation parameters 
under a small variation in the extracted projected grid lines will be 
given to indicate how to design a robust estimation method. Also 
several methods for determining polyhedral edges and vertices are 
given and their goodness measures are compared. The sensitivity 
analysis provides the guideline for better system performance. 

In section 11, the plane equations of all visible faces are individually 
estimated from the associated projected grid lines based on the 
grid coding technique. In section 111, the sensitivity analysis of 
face equation parameters is given to indicate how to design a 
robust estimation method. In section IV, two methods are given 
for the polyhedral edge estimation and their goodness measures are 

, 
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compared. In section V, three different methods for determining a 
unique set of visible polyhedral vertices are given and compared. 
In section VI, experimental results are reported to illustrate the 
performance of our method. Section VI1 is the conclusion. 

11. FACE EQUATION DETERMINATION BY GRID CODING 
Now an active sensing system using a grid coding technique is 

going to be used to derive the plane equations of all visible polyhedral 
faces contained in a scene. The basic operation principle of this 
system is first described in [19]. A brief description of the system is 
given here. The system contains a laser projector which produces an 
expanded beam of parallel laser light like a colliminator. The parallel 
laser beam passes perpendicularly through a code plate with a grid 
pattem of two sets of parallel lines perpendicular to each other. The 
spaces between the two sets of parallel grid lines are given as sl and 
s2. Thus two sets of parallel light planes are yielded that travel in 
space. When they run across a polyhedral surface, a grid pattern on 
the surface is seen. The pattem is a result of the parallel projection of 
the original grid pattern on the code plate. However, the dimensions 
of the grid on a tilted polyhedral face will be different from those on 
the code plate due to the foreshortening effect. We shall infer the grid 
dimensions later. The normal vectors of the two perpendicular sets 
of laser planes, with respect to the camera coordinate system, are 
obtained via a came5a calibytion method [19]. Assume they have 
been determined as N1 and N 2 .  In [19] only a single polyhedral face 
was reconstructed in which the face normal vector was determined 
using the vanishing point technique. The method is more sensitive to 
the error in the projected grid line extracted. Here we shall deveIop 
a new method using the geometric relations to determine the normal 
vector. This technique is more reliable, as indicated by a formal 
sensitivity analysis. More importantly, this technique is more general 
in the sense that it is applicable even the face is approximately planar. 
Moreover, we shall determine all visible polyhedral faces for face 
modeling with a face occlusion analysis. In order to find multiple 
faces, we need to determine on line the identifications of the two sets 
of parallel laser plates on all visible faces. 

A. The Face Normal Vector Determination 

Let a backprojection plane be defined by the lens center and a 
projected grid line, as shown in Fig. l(a). Let the projected grid line 
be indicated by I ,  in the image and the grid line on the polyhedral 
face by L,.  Also assume that the normal vecJors of the_ backprojection 
plane and the laser plane are given by Npl  and N,,  respectively. 
Now, we shall use two crossing projected grid lines produced by the 
two perpendicular laser planes to determine the normal vector of the 
polyhedral face which the laser planes run across. 

From the projective geomety, the unit vector of the polyhedral 
grid line L,,  i E 1 ,2 ,  called UL, is given by 

Then the unit normal vector of the polyhedral face is expressed by 

Here do is selected to point outward and it has a negative 2 
component, since the face is supposed to be visible or partially 
visible. The dimensions of a grid on a tilted polyhedral face will 
be different from the dimensions of a grid on the code plate due to 
the foreshortening effect of a parallel projection transformation. It can 
be readily shown that the unit grid length on the polyhedral face is 
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(b) 
Fig. 1. The geometry of the vision system. 

equal to S c / 1 & .  Uzt 1, i = 1,2, where s1 and s2 are the dimensions 
of one grid cell on the code plate. 

B. The Depth Parameter Determination 

After the determination of the surface normal vector, the next step 
is to determine the distance between the polyhedral face to the origin 
(i.e., lens center), namely, the value of D in the face equation 

aX + bY + cZ = D 
where the parameter vector (a, b, c) represents the unit normal vector 
to the plane and ( X ,  Y ,  2) is a 3-D point on the polyhedral face. 
To determine the parameter D, two suitable points on a projected 
grid line with a spacing of, say k grid units, are selected. Denote 
these two points as p = (z, y )  and q = (z’, y’) in Fig. l(b). Let 
the corresponding points on the polyhedral face be P, = ( X ,  Y, 2)  
and Q = (X’ ,Y’ ,Z’) .  Assume the line direction PQ determined 
by (1) is denoted by a vector (Ut,V,,Wt), i E {1,2}. The length 

(3)  

is given by 

Let 

x‘ = fX ‘ /Z ‘  
y‘ = fY‘ /Z’  

where f is the focal length of the lens. Furthermore, P and Q are 
related by one of the following two relations: 

1) Q=P+(U, ,V , ,Wi)  
2) Q = P - (Ui, V,,  Wi) 
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It can be shown that 

x = XZ/f 

y = YZ/f 

The correct solution of P is the one with a nonnegative value 
of Z, because the face is visible. From (5c) we obtain the different 
value of Z for different image points p = (x ,y)  and q = (z',y'). 
Furthermore, the depth parameter D can be calculated as 

D = a X  + bY + CZ = (ax/ f + b y /  f + c )Z .  

In this determination of the polyhedral face equation, no actual 
correspondences between the polyhedral grid points (or lines) and 
the projected grid points (or lines) in the image are required. @stead, 
i c  (l), (2) and (5) we only use the common normal vectors N l  azd 
N2 of the two sets of parallel laser planes and the normal vectors N p l  
and N>2 of the backprojection planes that are each defined directly 
by a selected projected grid line Pq and the lens center. Furthermore, 
we need to know which of the two sets of laser planes produces the 
projected grid line Pq? This is determined as follows (Please refer 
to Fig. 1). On the projected grid line Pq there are k - 1 intersecting 
grid lines which are pro_duced by k - 1 parallel laser sheets with the 
same normal vector N3-1, i =1 or 2. Based on the vanishing point 
property [21], let the k - 1 intersecting grid lines be extended to 
yield a vanishing point, say V = (xu,  yu) then the vector given by 
(xu,  yu, f )  is perpendicular to N3--1. In this way, we know on line 
the set of parallel laser planes with the normal vector f l t  produces 
grid line Pq, where N3*--r . (xu, yu, f )  z 0. There are other different 
methods to determine the identification of the projected grid lines 
such as the one in [12]. However, our method is different from them 
and simpler. Thus, our reconstruction method is a correspondenceless 
method. 

111. SENSITIVITY ANALYSIS OF FACE PARAMETER ESTIMATION 
The estimation of the polyhedral face equation t X + b Y  + c Z  = D 

involves two components: the normal vector N o  = (a, b , c )  and 
the depth parameter D. We shall consider the sensitivity of these 
parameters under the small perturbation of extracted projected grid 
lines due to the minor image processing or system error. 

A. The Sensitivity of the Normal Vector (a,b,c) Estimation 

From (1) and (2) the estimation accuracy of the norm21 vectcr 
(a, b ,  c )  depends on the two projected grid line directio!s L1 an! Lz 
which, in turn, are determined by the normal vecJors, N1 a_"d N z ,  to 
the two laser planes and the normal vectors, Npl  and N p 2 ,  to the 
two backprojection planes. Since fl l  and f l 2  are computed in the 
camera calibration process which can be carefully calibrated once for 
all. So the accuracy of the determination of N>, and N>* are the 
main concerns here. 

In the method two projected %rid lines, Z l  and Z2, are used to 
determine the vectors Npl  and N p 2 .  Their locations and directions 
are obtained by an image processing method based on a rotating line 
mask. To examine the error model of any one of these two lines, 
assume the line has length Z and slope cy, with the two endpoints 
being at (x ,y)  and (z',y'). 

Assume the line has small perturbations Ax and Ay in the 
horizontal and vertical directions. The perturbations may be mainly 
due to the thickness of the projected grid lines, i.e., the line width. 

F3 
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@) 
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Fig. 2. The two methods for polyhedral edge length estimation. (a) The 
overall view of the configuration. @) The auxilliary view of the configuration 
for the backpropagation method. (c) The auxilliary view of the configuration 
for the plane-intersection method. 

Let the line after perturbation has a new slope /3, namely 

t an  p = (1 sin a + Ay)/(l cos cy + Ax). 

It can be readily shown that ,B is nearly equal to cy under the follow- 
ing mild condition: max{lZ sin cy[, 11 coscyl} >> max(lAz1, IAyl}. 
Since max{ IZ sin cy[, IZ cos aI} 2 Z/*, so the above condition can 
be also given by Z/& >> max{lAzl, [Ayl}. In a typical case, 
Z 2 100, lAzl 5 2, lAyl 5 2. Thus, as far as the accuracy of the line 
slope is concerned, choose either the longest or a sufficiently long 
projected grid line whose length is much greater than its width. Under 
this condition the normal vector of the polyhedral surface equation 
can be rather accurately estimated. 
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Fig. 3. The extraction of projected grid lines on a face from a polyhedral scene. (a) The scene. (b) The segmentation result by 
thresholding. (c) Some extracted projected grid lines. (d) The obtained projected edges of the face. 

B. The Sensitivity of the Depth Parameter D Estimation 

In our method two projected grid points on a sufficiently long 
projected grid line are used to infer the actual depth of the polyhedral 
face. From the foregoing discussion, the small endpoint perturbation 
of the projected grid line does not affect the line slope, if the 
line length is sufficiently larger than its width. Therefore, the small 
perturbation is represented by the change in the line length. Namely, it 
only causes the endpoints to drift along the line direction. To simplify 
the analysis, consider the perturbations of the endpoints one at a time. 
Let the projected grid point (x, y) be the one unchanged and the other 
grid point (x’, y’) drift along the line. Accordingly, the line segment 
has a resultant length change dl along the line direction. From (5), 
since x‘ = x + 1 cos a and y‘ = y + 1 sin cy, we have 

f U  - WX’ f U  - w x  - Wl coscy , if x’ # x - Z =  - 
2’ - x 1 cos cy 

or 

f V - W y ’ -  fV-Wy-Wlsincy 
Z =  - , i f Y ‘ # Y  

Y’ - Y I sin cy 

Under the perturbation of grid point (x ’ ,~ ’ ) ,  let 2’‘ = x + ( 1  + 
dl) cos cy and y” = y + (E  + d l )  sin cy, the new value of Z becomes 

f U - WX - W(1 + d l )  COS CY 
Z + d Z =  , if 2’’ # x 

(1  + d l )  cos cy 

or 

f V - Wy - W(l + d l )  sin cy 
(1  + dl) sin cy 

Z + d Z =  , if Y” # Y 

Therefore, the depth parameter D changes from the old value 

to the new value 

It can be readily shown 

or 

e = - ( L ) ( f v - w y ) ,  D l + d l  f V - W y ’  i f y ’ z y .  (6b) 

Furthermore, assume the two grid points (X, Y, 2)  and ( X I ,  Y’, 2’ ) 
are on a distant polyhedral face, i.e., I (X /Z ) (  << 1 and 
I(X’/Z’)l << 1 then we can further approximate (6) as follows. 

C a s e l :  if W # 0 

or 
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Therefore, (6) can be approximated by 

Case 2: if W = 0, it can be shown by the trigonometric relations 
that 

From (7) the sensitivity of the depth parameter d D / D  is almost 
equal to dl/l.  Thus a robust estimation of the depth parameter D can 
be made, if a long projected grid line is used. 

Kaio F2 \ I 
./a3\ e8 \ I 

/ A I I a9 

( 4  
IV. POLYHEDRAL EDGE DETERMINATION 

A. Two Edge Construction Methods 

After the polyhedral face equation is determined, we need to find 
the face boundary in terms of its edges. There are two possible 
methods to determine the face edges. 

1) The Plane-lntersection Method: If the two faces on both sides 
of an edge are visible in the scene simultaneously, then the edge 
can be found through the intersection of these two faces. This edge 
construction method is called the plane-intersection method. When 
the two faces along an edge are not both visible in the scene, the above 
method does not work. In this case, we shall use the backprojection 
method to construct the edge. 

2) The Backprojection Method: The real 3-D edge of the face is 
found through the intersection of a backprojection plane and the face 
itself. The backprojection plane is constructed from the lens center 
and an extracted boundary edge on the projected face in the image. 
To find the boundary edges of the projected face, a face equation and 
two of its grid points are first determined from the image as before. 
To detect the rest of the projected grid lines, we can interpolate and 
extrapolate to obtain all hypothetical polyhedral grid lines based on 
the two grid points used in the face equation determination. Then 
we apply the known perspective transformation to these generated 
polyhedral grid lines to obtain the would-be perceived grid lines. 
These would-be perceived grid lines are then superimposed onto the 
real perceived grid lines in the image. In this way we can trace along 
the would-be perceived grid line to see if the real perceived grid 
line coincides with it. When the perceived grid line breaks away at a 
certain point. This break point is one endpoint of the real perceived 
grid line. A line fitting to these endpoints on the same face will 
produce the wanted projected edges of the face in the image. Notice 
that if the wanted projected edge is sufficiently long, the line fitting 
to the endpoints always produces a rather accurate fitting result. 
B. The lnfluence of the Depth Parameter Variation over the Edge 
Length Estimation In theory, both the plane-intersection method 
and the backprojection method should produce the same result for 
the polyhedral edges. But, due to the small variation of the depth 
parameter, these two methods do not produce the same result, as will 
be described below, 

1) The Influence in the Backprojection Method: In Fig. 2(a) let the 
backprojection plane be defined by the lens center “0” and the two 
rays denoted by ZE and ZE, where points a and b are on polyhedral 
face FO and points c and d are on another face that is obtained through 
a translate of face Fi by a quantity A D  of the depth parameter. The 
quantity A D  is denoted in Fig. 2(b) by the distance between points 

(b) 
Fig. 4. The reference labels of geometric entities of the polyhedral objects 

used in (a) Experiment 1 and (b) Experiment 2. 

TABLE I 
THE ESTIMAllON RESULT OF ALL VISIBLE POLYHEDRAL FACES IN EXPERIMENT 1 

A-THE FACE EQUATION ESTIMATlON 

Face The Estimated Face Equation 
F1 
F2 
F3 
FA 

0.189X + 0.860Y - 0.4742 = -243.0 
-0.661X - 0.281Y - 0,6962 = -368.1 

0.751X - 0.422Y - 0.5082 = -272.2 
0.755X - 0.417Y - 0.5072 = -298.4 

&THE ESTIMATION OF ANGLES BETWEEN ADJACENT FACE PAIRS 

Anele 
Face True Value Measured Value 

( F l , F 3 )  90.0 91.4 
(F2,F3)  90.0 91.1 
(F23F4) 90.0 91.4 

Average Error (deg.) 1.50 

Pl and P;. It can be shown that 

n 
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TABLE I1 
THE ESTIMATION RESULT OF POLYHEDRAL EDGE LENGTHS IN EXPERIMENT 1 

Edge Type of True Measured Length (mm) 

Projected Length Method l(Error%) Method 2(Error%) Method 3(Error%) Edge (mm) 
el occluding 70.0 71.6(2.28%) 69.8(0.28%) 73.3(4.71%) 
e2 internal 70.0 64.5(7.85%) 67.7(3.28%) 58.9(15.86%) 
e3 internal 70.0 72.2(3.14%) 69.4(0.86%) 72.8(4.00%) 
e4 occluding 70.0 66.3(5.28%) 70.3(0.43%) 62.4(10.86%) 
e5 occluding 110.0 110.7(0.64%) 113.2(2.91%) 107.7(2.09%) 
e6 occluding 40.0 36.1(9.75%) 39.9(0.25%) 33.4(16.50%) 
e7 internal 40.0 41.3(3.25%) 41.2(3.00%) 45.6( 14.00%) 
e8 occluding 42.4 40.4(4.72%) 43.5(2.59%) 34.3(19 0.10%) 
e9 internal 40.0 41.8(4.50%) 40.2(0.50%) 54.0(35.00%) 
el0 occluding 40.0 46.9(17.25%) 39.6(1.00%) 52.2(30.5%) 
el l  occluding 70.0 75.3(7.57%) 68.7(1.86%) 80.2(14.57%) 

Average Length Error 5.75% 1.66% 14.52% 
el2 occluding 70.0 71.9(2.71%) 67.9(3.00%) 74.9(7 0.00%) 

TABLE Ill 
THE ESTIMATION RESULT OF ANGLES BETWEEN POLYHEDRAL 

EDGE PAIRS IN EXPERIMENT 1 

Angle True Value Measured Value (deg.) 
(den.) Method 1 Method 2 Method 3 

a1 90.0 89.9 91.7 89.4 
a2 90.0 90.5 88.0 88.0 
a3 90.0 88.0 89.8 91.6 
a4 90.0 91.5 90.4 91.1 
a5 90.0 96.3 84.8 110.5 
a6 90.0 83.5 94.0 69.9 
a7 225.0 224.3 223.6 231.9 
a8 135.0 136.7 136.4 127.9 
a9 90.0 91.6 87.7 88.6 
alo 90.0 87.6 93.3 91.2 

a12 90.0 85.1 89.6 87.9 
a13 90.0 98.5 89.9 90.2 
a14 90.0 78.4 91.3 81.6 
a15 90.0 95.8 90.3 90.9 
a16 90.0 84.7 90.2 90.1 

Average Error (dea.) 4.21 1.56 5.28 

a1 1 90.0 98.0 89.3 100.2 

and, by similar triangles, 

2) The Influence in the Plane-Intersection Method: In Fig. 2(a) as- 
sume plane FO translates to plane FA by A D  as before, while the 
other planes F1, F2 ,  F3 stand still. By the plane-intersection method, 
the polyhedral edge ab on plane FO will become the new edge 3 
after translation. This portion of figure is redrawn as Fig. 2(c) in 
which point v is the intersection of edges Ei and fi on face F1 and 
lines vp2 and vp; are the perpendicular distances from point v to 
faces FO and FA. It can be shown that = AD. Let the length 
of vpg be denoted by L. Then 

(9) 

From (8) and (9), the polyhedral edge changes due to a translation 
A D  in the previous two methods are related by the ratio D : L. In 
general, D >> L, so it implies the backprojection method is better 
than the plane-intersection method. However, when polyhedral faces 
F 2  and F3 are nearly parallel, then the ratio D : L becomes less 
than one; therefore, the plane-intersection method may become better. 
Notice that if faces FZ and F3 are exactly parallel, then only one of 

TABLE IV 
THE ESTIMATION RESULT OF ALL VISIBLE POLYHEDRAL FACES IN EXPERIMENT 2 

A-THE FACE EQUATION ESTIMATION 

Face The Estimated Face Equation 
F1 0.200X+O.364Y-0.91OZ = -526.3 
F2 -0.69OX-0.168Y-0,7042 = -392.6 
F3 0.734X-0.378Y-0.5642 = -312.9 
F4 0.165X+0.882Y-O.4412 = -238.5 

&THE ESTTMATION OF ANGLES BETWEEN ADJACENT FACE PAIRS 
~ ~~ 

Angle 

(deg.) (den.) 
(F1 , F2) 116.2 116.2 
(F1 , F3) 123.5 121.5 
(F1 , F4) 135.0 139.0 
(F2 , F3) 90.0 92.6 
(F2 , F4) 90.0 92.8 
(F3 , F4) 90.0 92.1 

Average Error (den.) 2.25 

Face True Value Measured Value Pair 

them is visible. In this case, the plane-intersection method is not 
applicable, and the polyhedral edge can only be determined by the 
backprojection method. 

v. THE PARTIAL. GEOMETRIC MODELING OF THE POLYHEDRON 

A .  Face Adjacency Relation 

The face adjacency relation is an important description of the 
geometric model of the polyhedron. This relation can be determined 
by occlusion check conducted on the projected grid lines as follows. 
For each projected edge of a face found by an image processing 
technique, check to see if the projected edge is completely adjacent 
to the background area of the polyhedral scene? 

If yes, then the projected edge is an occluding edge and the 
face has no adjacent face along the edge. 
If no, then find any two touching or almost touching projected 
grid lines on both sides of the projected edge and check to make 
sure they are produced by the same set of laser sheets. Next, 
identify the two laser planes that produce these two projected 
grid lines, check to see if these two planes are coplanar? 

a) if they are coplanar, then the projected edge is an internal 
edge of the polyhedron in the scene. 

b)if they are not coplanar, find the 2 coordinate values of 
the two 3-D points corresponding to the intersection points 
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TABLE V 
THE ESTIMATION RESULT OF POLYHEDRAL EDGE LENGTHS IN EXPERIMENT 2 

Edge Type of True Measured Length (mm) 
Projected Edge Length Method l(Error%) Method 2(Error%) Method 3(Error%) 

(mm) 
el internal 81.2 
e2 internal 102.4 
e3 internal 94.3 
e4 occluding 70.0 
e5 internal 20.0 
e6 internal 20.0 
e7 occluding 84.0 
e8 occluding 100.0 
e9 occluding 70.0 
elo internal 20.0 
e l l  occluding 100.0 
e12 occluding 84.0 

Average Length Error 

82.3(1.35%) 
104.0(1.56%) 
96.2(2.01%) 
72.9(4.14%) 

25.0(25.00%) 
24.5(22.50%) 
89.7(6.78%) 
103.8(3.80%) 
72.5(3.57%) 

24.7(23.50%) 
95.5(4.50%) 
81.5(2.97%) 

8.47% 

of the projected edge and the two projected grid lines. The 
face containing the 3-D point of a smaller 2 coordinate 
value occludes the other face. The 2-D projected edge 
associated with the visible face is an occluding edge, and 
this same edge is a false edge of the other face. 

B. The Computation of a Unique Set of Polyhedral Vertices 

Since the 3-D edges of each visible polyhedral face are computed 
by the backprojection method or the plane-intersection method. The 
3-D vertices are the intersections of the edges. Notice that there may 
be redundant 3-D vertices that lie on two or three visible polyhedral 
faces. We need to merge them into one common vertex in order to 
derive a unique set of visible polyhedral vertices. There are three 
possible methods for the final vertex determination, as given below. 

Method 1: The Direct Averaging Method 

Each final vertex of the polyhedron is the direct average of its 
different versions on the corresponding polyhedral faces that are 
determined separately based on the backprojection method for edge 
construction. 

Method 2: The Averaging-After-Face-Assembly Method 

Each final vertex of the polyhedron is obtained in the same way as 
in method 1 except that the averaging takes place after the faces are 
assembled. Here one of the involved faces is selected as the core face 
according to the depth parameter sensitivity measure given by dD/D 
given in (6). The remaining faces are then translated to merge with 
the core one. 

Method 3: The Three-Face-Zntersection Method 

Each final vertex of the polyhedron is computed as the intersection 
of three involved faces, whenever applicable. The other vertices are 
computed as in method 1. 

A remark is in order here. The direct averaging method is an 
intuitive method which is commonly used [20]. The average-after- 
face-assembly method is similar to the first method in nature, but 
taking the object boundedness into consideration. The three-face- 
intersection method is a theoretically sound method in which the final 
vertices associated with each polyhedral face are coplanar. Notice that 
the first two methods may not satisfy this strict coplanarity condition 
of the face vertices. Theoretically speaking, these three method are 
equivalent,, but, in practice, they are somewhat different, depending 

82.7(1.85%) 
103.3(0.88%) 
97.0(2.86%) 
70.3(0.43%) 
20.9(4.5%) 

20.4(2.00%) 
89.1(6.07%) 
102.9(2.90%) 
69.9(0.14%) 
19.6(2.00%) 
98.3(1.70%) 
83.7(0.36%) 

2.14% 

61.3(24.51%) 
74.4(27.34%) 
69.9(25.87%) 
76.2(8.86%) 

41.5(107.50%) 
37.6(88.00%) 
89.9(7.02%) 
103.5(3.50%) 
74.7(6.71%) 

44.2(121 .00%) 
90.5(9.50%) 
780.8(6.19%) 

36.33% 

TABLE VI 
THE ESTIMATION RESULT OF ANGLES BETWEEN POLYHEDRAL 

EDGE PAIRS IN EXPERIMENT 2 

Angle True Measured Value (deg.) 
Value Method Method Method 
(deg.) 1 2 3 

a1 60.5 60.9 61.8 61.0 
a2 48.5 48.3 48.6 50.1 
a3 71.0 70.8 69.6 68.8 
a4 90.0 97.7 88.9 87.5 
a5 142.0 136.9 145.3 145.0 

a7 90.0 . 99.5 88.1 89.9 
ag 90.0 86.6 89.1 90.4 
ag 122.0 110.0 122.5 123.1 
a10 148.0 141.8 150.5 149.8 
a l l  90.0 97.6 88.1 87.7 
ai2 90.0 87.8 90.9 91.3 
a13 90.0 101.8 88.0 88.2 . 
a14 90.0 96.4 88.4 85.2 
a15 90.0 96.8 92.2 103.9 
a16 90.0 95.0 90.2 83.6 
a17 141.3 131.5 140.0 139.1 
a18 128.7 119.4 129.6 128.2 

a6 128.0 118.0 128.5 127.3 

Average Error 6.32 1.36 2.62 

on their sensitivity to the depth parameter. This phenomenon will be 
reported in the experiments presented next. 

VI. EXPERIMENTAL RESULTS 
In this section we shall report the following experimental results: 
1) the face equations, 
2) the angles between adjacent face pairs, 
3) the occlusion relations between the visible faces, 
4) the lengths of visible polyhedral edges, and 
5) the angles between the edge pairs on each face. 
We use two different polyhedra in the experiments. In each 

experiment a grid-coded polyhedral picture is digitized into an array 
of 512x512 pixels. The projected grid lines in the image are extracted 
and two sufficiently long grid lines on each visible polyhedral face 
are used to derive the face equation. A typical image processing result 
obtained from a polyhedral scene is given in Fig. 3. 

Experiment 1. In this experiment a single view of a polyhedral 
object containing an occluded (Le. partially visible) face and three 
completely visible faces is analyzed. 
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(e) 
Fig. 5. The reprojection of the polyhedral edges between 

Experiments 1 and 2. (a) and @) By method 

(9 
the vertices found by the three given methods to the image plane for 
1. (c) and (d) By method 2. (e) and ( f )  By method 3. 

Fig. 4(a) shows the reference labels of geometric entities of the 
polyhedral object used in this experiment. The estimation result of all 
visible polyhedral faces, including the face equations and the angles 
between adjacent face pairs, is listed in Table I. Table I1 gives the 
true and measured edge lengths between the final polyhedral vertices 
found by the three different methods given in the last section; the 
edge types of all projected polyhedral edges are also shown. Table 
111 gives the estimation result of the angles between polyhedral edge 
pairs. 

Experiment 2. In this experiment a different polyhedral object is 
analyzed, as shown in Fig. 4(b). The face equations and the angles 
between adjacent face pairs are given in Table IV. Table V gives the 

true and measured edge lengths between the final vertices found by 
the three different methods for vertex determination. Table VI gives 
the estimation result of angles between polyhedral edge pairs. 

In Fig. 5, the edges between the final vertices of the above two 
polyhedron found by the three methods are reprojected back to the 
image plane, as indicated by the white line segments. We find method 
2 gives the best overall estimation results, method 1 next and method 
3 finishes last. These results indicate that method 3 is more sensitive 
to the possible small variation in the depth parameter of the polyhedral 
face estimation while method 2 is very stable. On the other hand, the 
normal vector of the face equation of all visible polyhedral faces is 
rather accurate, since the overall error in the measurement of angles 
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between adjacent face pairs is very small. We also find that the edge 
of each face constructed by the backprojection method always give a 
good individual face shape, because the small variation in the depth 
parameter of the face equation only affects the face shape a little. 
This is very useful for individual face recognition. 

VII. CONCLUSION 
A correspondenceless method has been presented to determine the 

plane equation of all visible polyhedral faces from a single view. It 
applies grid coding technique using two perpendicular sets of laser 
planes. The normal vector of each visible polyhedral face is first 
determined through the geometfic relations and the depth parameter 
of the face equation is then calculated based on the given dimensions 
of the grid on the code plate. A sensitivity analysis indicates that the 
estimation is rather robust if two sufficiently long projected grid line 
segments are used to infer the face equation parameters. To delimit the 
face boundary, we use two different methods for edge construction: 
the backprojection method and the plane-intersection method. The 
goodness measures of these two method are given. Finally, the unique 
set of polyhedral vertices is computed in three different ways. The 
experimental results indicate that the vertex determination by the 
averaging-after-face-assembly method gives the best result of the 
three possible methods. From the experimental results, we can see 
that our method is capable of producing a remarkable accurate result 
for the recovery of the 3-D structure of the visible polyhedral faces 
from a single image. At present we are extending the method to 
infer the cylindrical object and obtain some encouraging results that 
will be reported in a coming-up paper. Furthermore, for the image 
in which the planar face appears in accompany with other curved 
surface to form an object such as a cone, half sphere, or cylinder, we 
can first reconstruct the planar face and, then, determine the curved 
contour that is the intersection between the curved surface and the 
planar face. From this curved contour e.g., a circle, we can infer some 
shape parameters of the curved sufface, too. 
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Representation of Nonstructured Concurrency 
by Petri Net Languages 

Hyung Lee-Kwang and Joel Favrel 

Abstract- The concurrency is classified into two types: structured 
concurrency and nonstructured concurrency. After showing that the 
nonstructured concurrency cannot be represented by the conventional 
notations in the Petri net language, a method to represent such concur- 
rency by the language is proposed. The proposed method allows us to 
utilize the existing approaches for analyzing properties of a nonstructured 
concurrency by the Petri net languages. 
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