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Abstract—Two major challenges pertaining to wireless asyn-
chronous transfer mode (ATM) networks are the design of
multiple access control (MAC), and dynamic bandwidth alloca-
tion. While the former draws more attention, the latter has been
considered nontrivial and remains mostly unresolved. In this
paper, we propose a new intelligent multiple access control system
(IMACS) which includes a versatile MAC scheme augmented
with dynamic bandwidth allocation, for wireless ATM networks.
IMACS supports four types of traffic—CBR, VBR, ABR, and
signaling control (SCR). It aims to efficiently satisfy their diverse
quality-of-service (QoS) requirements while retaining maximal
network throughput. IMACS is composed of three components:
multiple access controller (MACER), traffic estimator/predictor
(TEP), and intelligent bandwidth allocator (IBA). MACER em-
ploys a hybrid-mode TDMA scheme, in which its contention access
is based on a new dynamic-tree-splitting (DTS) collision resolution
algorithm parameterized by an optimal splitting depth (SD).
TEP performs periodic estimation and on-line prediction of ABR
self-similar traffic characteristics based on wavelet analysis and a
neural-fuzzy technique. IBA is responsible forstaticbandwidth al-
location for CBR/VBR traffic following a closed-form formula. In
cooperation with TEP, IBA governsdynamicbandwidth allocation
for ABR/SCR traffic through determining the optimal SD. The
optimal SD’s under various traffic conditions are postulated via
experimental results, and then off-line constructed using a back
propagation neural network (BPNN), being used on-line by IBA.
Consequently, with dynamic bandwidth allocation, IMACS offers
various QoS guarantees and maximizes network throughput
irrelevant to traffic variation.

Index Terms—Bandwidth allocation, collision resolution algo-
rithm, multiple access control (MAC), neural-fuzzy technique,
quality-of-service (QoS), self-similar traffic, wireless asynchronous
transfer mode networks (WATM).

I. INTRODUCTION

W ITH THE rapid proliferation of personal commu-
nication services provided to multimedia portable

computers, wireless access to existing networks has emerged
as a significant concern [1]. Essentially, wireless ATM [2] has
been envisioned as a potential framework for next-generation
wireless networks capable of supporting integrated multimedia
services with a wide range of service rates and different
quality-of-service (QoS) requirements. Expected supported
services include constant bit rate (CBR), variable bit rate
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(VBR), available bit rate (ABR), and signaling control (SCR)
for CBR/VBR traffic. Two major challenges pertaining to
such wireless ATM networks are the design of multiple access
control (MAC), and dynamic bandwidth allocation.

Existing MAC schemes, such as time-division multiple
access (TDMA) [2]–[5] and code-division multiple access
(CDMA) [4], [6], [7], exhibit various performance merits
and weaknesses. This paper, taking advantage of CDMA
features, mainly focuses on the design of a TDMA-based MAC
protocol. Generally, compared to solely reservation-based or
contention-based TDMA, the combination of reservation-based
and contention-based, namely the hybrid-mode TDMA [8]–[10]
has been considered most promising. In essence, the reserva-
tion-access mode is indubitably advantageous for guaranteed
services, such as CBR/VBR traffic. The contention-access
mode, on the other hand, is beneficial to the best effort and
access-delay-sensitive traffic, such as ABR and SCR traffic,
respectively. While the former mode has been considerably
explored in the literature, the latter mode, especially the design
of collision resolution [5], becomes one of the major focuses
of this paper.

Existing collision resolution algorithms are either dis-
tributed-oriented [11] or centralized-oriented [12], [13]. In
the distributed-oriented algorithm, each backlogged station
probabilistically computes the backoff time interval for the
subsequent retransmission based on the ALOHA protocol.
This algorithm [11] was shown to achieve high utilization via
simulation. On the other hand, in centralized-oriented algo-
rithms, the central station resolves collisions in a deterministic
and FCFS manner. The examples obtaining the most merit are
tree-splitting algorithms [5], [12]. They can be further classified
as being exhaustive [12] or static [13]. Exhaustive tree-split-
ting algorithms defer new transmissions until all previously
collided packets have been resolved. These algorithms ensure
FCFS transmissions, but unfortunately suffer from throughput
degradation and occasional drastic increases in delay for other
traffic. In contrast, the static tree-splitting algorithm resumes
new transmissions when the number of tree splittings reaches
the predetermined, fixed splitting depth (SD). This algorithm
offsets the drawbacks of exhaustive splitting algorithms.
Nevertheless, the engagement of a single SD can be impractical
for networks undergoing traffic fluctuation. The first goal of
this paper is to propose a new dynamic tree-splitting collision
resolution algorithm using an optimal SD.

With regard to bandwidth allocation, there are two prevailing
classes of mechanisms—static allocation and dynamic alloca-
tion. A significant static allocation application is admission con-
trol [14], which is beyond the scope of this paper. Based on static
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Fig. 1. Frame and slot structures.

allocation, PRMA and companions [8] provided QoS guaran-
tees for traditional CBR voice traffic only. The dynamic alloca-
tion mechanisms proposed in [15] and [16] managed efficient
bandwidth usage particularly for VBR or CBR traffic, unfor-
tunately, with complete disregard for SCR traffic. DQRUMA
[17] further offered minimum delay guarantee for SCR traffic,
but discounted differentiated services between VBR and ABR
traffic. PRMA/DA [9] governed dynamic bandwidth allocation
among CBR, VBR, and SCR traffic, however, at the expense
of a noticeable decrease in network throughput. Ultimately, the
second goal of this paper is to provide efficient static and dy-
namic allocation for the four aforementioned services while re-
taining maximal network throughput.

In this paper, we propose an intelligent division multiple
control system (IMACS) for wireless ATM networks, sup-
porting CBR, VBR, ABR, and SCR traffic types. IMACS is
composed of three components: multiple access controller
(MACER), traffic estimator/predictor (TEP), and intelligent
bandwidth allocator (IBA). MACER employs a hybrid-mode
TDMA scheme, incorporating reservation access and con-
tention access governing the CBR/VBR and ABR/SCR traffic,
respectively. In particular, this contention access is based
on a new dynamic-tree-splitting (DTS) collision resolution
algorithm using an optimal splitting depth (SD). Based on
wavelet analysis and a neural-fuzzy technique, TEP performs
periodic estimation and on-line prediction of ABR self-similar
traffic characteristics. IBA is responsible for the static allo-
cation of reservation bandwidth to VBR and CBR on a call
basis. In cooperation with TEP, IBA also governs the dynamic
allocation of contention bandwidth by determining the optimal
SD, aiming to balance the tradeoff between ABR throughput
and SCR blocking probability. Finally, experimental results
postulate the optimal SD as a complex function of ABR mean,
variance, the Hurst parameter, and SCR mean. These results
are off-line trained and constructed using a back propagation
neural network (BPNN), which is efficiently used on-line by
IBA.

Thus, the major contribution of this paper is summarized as
follows.

• MACER performs a hybrid-mode TDMA scheme with
contention access based on a new dynamic-tree-splitting
(DTS) collision resolution algorithm.

• TEP performs on-line ABR self-similar traffic prediction
using a self-constructing neural-fuzzy inference network.

• IBA provides static allocation for VBR traffic via a closed
form formula, and dynamic allocation for ABR and SCR
traffic by determining the optimal SD parameter.

The remainder of this paper is organized as follows. Section II
presents the architecture of IMACS. Section III describes the
MACER operation, including its MAC scheme and the DTS col-
lision resolution algorithm. Section IV outlines the TEP logic.
Section V provides throughput analyses and experimental re-
sults on which IBA is based for optimal-SD determination. Fi-
nally, concluding remarks are given in Section VI.

II. THE IMACS ARCHITECTURE

IMACS operates in the base station (BS) of an infrastruc-
ture-based wireless ATM network [2]. The medium bandwidth
is divided into two separate channels: uplink and downlink. The
uplink channel transfers information from mobile terminals
(MT’s) to the BS, based on a new hybrid TDMA scheme
described in the next section. The downlink channel typically
broadcasts information and acknowledges previous transmis-
sions made on the uplink channel. This operation is beyond the
scope of this paper. Furthermore, time on the uplink channel is
divided into a contiguous sequence of fixed-size TDMA frames
(see Fig. 1).

Each frame is further subdivided into a fixed number of slots
to be dynamically allocated to four ATM-traffic classes: CBR,
VBR, ABR, and SCR. As was mentioned, while CBR and VBR
traffic are governed by reservation access using reservation
(R)-type bandwidth, ABR and SCR traffic are controlled by
contention access using contention (C)-type bandwidth. Each
slot contains a data packet or, more specifically, an ATM cell,
other than guard times, sync, and other control fields [3].
Notice that, with guard times provided, the propagation delay
between the BS and MT’s can be ignored. This in turn allows
acknowledgment for all packet transmissions made in the
current slot to be available to all MT’s prior to the beginning
of the next slot.

Most significantly, the network is assumed to use phase-shift
keying (PSK)-based encoding equipped with simple CDMA
capability [18], namely pseudo-code sequence generation.
Essentially, all MT’s with ABR packets in their buffers are
required to inform the BS through placing different code
sequences at the last slot of each frame, called the common
notification field (CNF). Due to orthogonality and phase
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Fig. 2. IMACS architecture.

differences [18] of CDMA, the BS is able to identify the total
number of different codes, which corresponds to the total
number of active MT’s during the last frame. This information
is made available by TEP for the on-line traffic estimation and
prediction described in Section IV.

IMACS is composed of three major components (see Fig. 2):
multiple access controller (MACER), traffic estimator/predictor
(TEP), and intelligent bandwidth allocator (IBA). It supports
four types of traffic—CBR, VBR, ABR, and SCR. IMACS has
been designed to satisfy delay guarantees for CBR/VBR traffic
while offering minimal access delay for ABR and SCR traffic.
Accordingly, MACER employs a reservation-based access pro-
tocol for CBR and VBR traffic making use of a fixed amount
of R -type and R -type bandwidth (R R R) (in slots),
respectively. By contrast, for SCR and ABR traffic, MACER
adopts a contention-based access protocol using C-type and
C -type bandwidth (C C C) (in slots), respectively. In
particular, due to the access-delay-sensitive nature, SCR traffic
is particularly governed by contention access using the DTS col-
lision resolution algorithm parameterized by the optimal SD,
denoted as DTS-, if SD .

IBA then takes responsibility for the static allocation of
R-type bandwidth on a call basis and the dynamic allocation of
C-type bandwidth on a frame basis. The major focus has been
the dynamic allocation of C-type and C -type bandwidth
through determining the optimal SD, aiming at satisfying
the minimum ABR throughput and acceptable SCR blocking
probability, while retaining maximal aggregate throughput. On
behalf of IBA, TEP performs periodic estimation and on-line
prediction of ABR traffic characteristics based on past CNF
values. Provided with ABR load information in the CNF and
the SCR blocking probability requirement, IBA determines the
optimal SD prior to every subsequent frame. Once the optimal
SD is identified, C bandwidth is determined. The remaining
bandwidth (C ) is then allocated to ABR traffic.

III. M ULTIPLE ACCESSCONTROLLER(MACER)

MACER employs reservation access for CBR and VBR
traffic and contention access for SCR and ABR traffic. Specifi-

cally, CBR and VBR traffic are statically allocated with fixed
amounts of bandwidth (Rand R ) for an entire call, satisfying
the duty cycle and maximum end-to-end delay requirements,
respectively. Due to the allocation simplicity for CBR traffic,
further detail is omitted here. In this section, we focus on
reservation access for VBR traffic, and contention access,
particularly the DTS collision resolution algorithm for SCR
traffic.

A. Reservation Access

VBR traffic is assumed to be controlled through a leaky-
bucket ( ) regulator [19], where is the mean leaky rate, and

is the maximum bucket size, as shown in Fig. 3. Accordingly,
a VBR traffic source can be characterized by three parameters
( , , D ), where D is the maximum tolerable end-to-end
delay. In the sequel, we derive the minimum bandwidth Rfor
VBR traffic satisfying a given end-to-end delay bound, D.
Let denote the total number of packets arriving in a time
interval , and the packets served within the time in-
terval . Since arriving packets must conform to the (, )
regulator, , where denotes the ceiling
function. Let denote the maximum signaling delay for the es-
tablishment of a VBR connection. First, D can be given as

D (1)

Notice that R . Equation (1) becomes
D R . Since
condition R must be satisfied, it follows that D

R , which results in the fixed bandwidth to be al-
located to VBR:

(2)

B. Contention Access

As was previously stated, the contention access protocol
is augmented with a DTS collision resolution algorithm. The

- algorithm (if SD ) is described as follows. In
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Fig. 3. VBR source traffic model and variables.

Fig. 4. An example: DTS collision resolution with SD= 1 (DTS-1).

each frame, SCR traffic is initially allocated with the least
amount of bandwidth, called the basic allocation (in slots).
First, slots from the basic allocation are randomly accessed.
Should collisions occur and the number of splitting is less
than , twice as many as the number of collided slots are
allocated at the next splitting level. This process repeats until
either there is no collision or the number of splitting levels has
reached . All unresolved transmissions then back off in the
next frame. It is worth noticing that SCR call requests are not
considered blocked until the number of frame backoffs exceeds
a predefined threshold, called the retry count (RC).

In Fig. 4, we illustrate an example of the DTS-1 algorithm
using 5-slot basic allocation. In the example, due to the presence
of 3-slot collisions in the basic allocation, a number of 6 (32)
slots are allocated at the next splitting level. Collision resolution
terminates after the depth-one splitting and the unresolved slot
(marked “X”) will back off in the subsequent frame.

IV. TRAFFIC ESTIMATOR/PREDICTOR(TEP)

On behalf of IBA, TEP is responsible for the periodic estima-
tion of the Hurst parameter (denoted as H), and the prediction of
the short-term mean and variance of ABR traffic. Specifically,
H is periodically estimated based on wavelet analysis [20], [21].
The short-term mean and variance for the subsequent frame are
predicted by means of an on-line neural-fuzzy approach [22].
Since the prediction of the variance can be similarly applied, in
the sequel we describe the estimation of H and prediction of the
short-term mean number of active MT’s.

A. Wavelet-Based Traffic Estimation

A self-similar process [23], [24] can be characterized
by H, a key measure of self-similarity. Namely, a process

is said to be self-similar with
parameter if

and

(3)

where , and var and
denote the variance and autocorelation functions, respectively.
Considering the multiresolutional wavelet decomposition [21]
of a sample function :

, where represents the approx-
imation of at the th level decomposition, is the
orthonormal mother wavelet at resolution, and coefficient

measures the amount of energy in the analyzed process
at resolution . Define , where
is the number of wavelet coefficients at resolution. Notice
that an important property [20], [21] of self-similar traffic is
related to the behavior of the power spectral density at low
frequencies: as . We thus obtain
the relationship between the amount of energy associated with
different resolution planes: . Hence, H can
simply be estimated from the slope ( ) of the best-fitting
straight line of function versus the resolution level,.

In Fig. 5, we illustrate the estimation of traffic .
We discovered that satisfactory estimation requires as few as
10 resolution levels of decomposition, i.e., 2CNF values. In
other words, H can be estimated per every 1024 frames. This
fact justifies the viability of frequent estimation of H.

B. Neural-Fuzzy On-Line Traffic Prediction (NFTP)

NFTP performs on-line traffic prediction based on a self-
constructing neural-fuzzy inference network [22]. It is involved



1662 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 09, SEPTEMBER 2000

Fig. 5. Hurst-parameter estimation—wavelet analysis.

in two phases of learning: structure and parameter learning.
The structure-learning phase determines the structure of fuzzy
if–then rules, and the parameter-learning phase tunes the coeffi-
cients of the rules adapting to the input traffic dynamics. Unlike
existing neural-fuzzy models using sequential learning, NFTP
performs the structure and parameter learning in parallel. This
makes NFTP advantageous for fast on-line prediction.

NFTP is a six-layer network taking on a number of input
nodes and one output node, as shown in Fig. 6. Initially, there
are no rules in the network other than input nodes (layer 1)
and an output node (layer 6). Upon receiving on-line training
data, the structure-learning process proceeds by dynamically
self-constructing fuzzy if–then rules (layer 3) according to
an input–output clustering-based space-partitioning algorithm
[22]. Once a new rule is generated, the centers and widths
of the corresponding set of Gaussian membership functions
(layer 2 and layer 5) are assigned. The output of a layer 3 node
corresponds to the firing strength of the corresponding fuzzy
rule, which is in turn normalized in layer 4. Consequently, the
predicted output value,, is given as

fuzzy rule index, and

Fuzzy rule

(4)

where
contribution of fuzzy rule to the predicted output
value;
th input value;
th membership function of fuzzy rule;

normalized firing strength of fuzzy rule;
center of the membership function in layer 5 connected
to fuzzy rule .

Meanwhile, in the parameter-learning process, the centers and
widths of input membership functions (layer 2) are dynami-
cally adjusted based on the least mean squares (LMS) algorithm
[22], whereas those of output membership functions (layer 5)
are tuned using the back propagation algorithm [25].

Fig. 6 illustrates an NFTP network with three inputs. This
network predicts the future CNF value (), which corresponds
to the mean number of active MT’s in the subsequent frame,
based on three input values taken from three most-recent CNF

values (denoted as , to 3). At the end of each frame, in
addition to predicting the CNF value of the next frame, NFTP
also performs the learning operation described above. This is
indicated in Fig. 6 by the arrowed link pointing from the CNF
of Frame 4 to the NFTP output node.

We experimented on two different NFTP structures using
different types of inputs, respectively, via simulation. In the
first structure, calledCNF-based NFTP, the inputs are taken
directly from a set of different numbers of past CNF values
( ), ranging from 4 to 24, similar to what is shown in Fig. 6.
In the second structure, referred to asCNF-correlation-based
NFTP, we adoptedexponential-averaging -lag correlation
of CNF values as inputs. Specifically, taking an example of
NFTP with four inputs , to 4, at the end of theth
frame, will be set as the -lag correlation defined as:

, where , and
is the smoothing constant ( ). With this structure,
we also carried out 4 to 24 different numbers of inputs. In this
simulation, we on-line predicted a set of 200 frames, using both
structures of NFTP. All parameters used in the simulation are
summarized in Table I. In addition, the performance of NFTP is
evaluated in terms of its prediction precision (error rate), time
complexity, and space complexity. The error rate was computed
as the normalized average deviation between the actual and
predicated CNF values. The space complexity was given in
terms of the total number of fuzzy rules generated at the end of
200-frame prediction. Notice that since such inference network
can be implemented in hardware, we thus disregarded its time
complexity. Simulation results are displayed in Table II.

We observed during the experiment that the prediction error
rate using either structure is irrelevant to the Hurst parameter
(H), but highly sensitive to the variance. This can be perceived
by the fact that, by and large, manifests only long-term be-
havior, whereas variance greatly reflects short-term fluctuation.
In essence, as shown in Table II under traffic , the error
rate greatly increases with the variance. Furthermore, compared
to CNF-based NFTP, CNF-correlation-based NFTP achieves
greater precision (lower error rate) and lower space complexity
(less number of fuzzy rules). We finally discovered in the table
that NFTP (either structure) with 12 inputs invariably exhibits
better performance under both variances. Namely, small or
large numbers of inputs yield inferior performance for on-line
prediction.

Moreover, we conducted another experiment via simulation
to further demonstrate the viability of correlation-based NFTP
for off-line training. In the simulation, we off-line trained a
sample path of self-similar traffic with 100 CNF values, for three
rounds. The traffic was generated with mean50, variance
60, and H 0.6 and 0.8. The NFTP network takes on 12 in-
puts. In addition, , , learning constant

, and . The LMS algorithm was replaced
by the recursive least squares (RLS) algorithm [22]. Simulation
results are sketched in Fig. 7. In the figure, we make compar-
isons between actual and predicted CNF’s under both H0.6
and 0.8. We discovered that the off-line trained NFTP network
achieves superior prediction precision at the expense of higher
space complexity under both H values. Furthermore, the more
fuzzy rules, the better the precision, irrelevant to H.
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Fig. 6. NFTP architecture.

TABLE I
NFTP PARAMETERS USED IN SIMULATION

TABLE II
PERFORMANCE OFNFTP USING TWO DIFFERENTSTRUCTURES

V. INTELLIGENT BANDWIDTH ALLOCATOR

(IBA)—DETERMINATION OF OPTIMAL SD

A. Design Principle

The bandwidth allocation problem can be elucidated by the
following dilemma. We observed that greater SD values yield
appealing SCR blocking probability, but at the expense of pe-
nalized ABR throughput. Nevertheless, smaller SD values still
render unfavorable ABR throughput and aggregate throughput
despite the price of increasing SCR blocking probability paid.
Therefore, the objective of IBA has been the determination
of the optimal SD per every frame, aiming at satisfying SCR
blocking probability and ABR throughput requirements, while

retaining maximal aggregate throughput. In short, IBA has
been designed to provide optimal allocation betweenand
C types of bandwidth.

To this end, we performed both precise and simulation-based
throughput analyses. In both analyses, SCR traffic is invari-
antly assumed Poisson distributed. ABR traffic is first simplified
as Poisson distributed in the precise throughput analysis. ABR
traffic is then practically modeled as self-similar in the simu-
lation-based throughput analysis. The generated throughput re-
sults then postulate the optimal SD’s under various traffic con-
ditions. These results are then off-line trained and constructed
using a back propagation neural network (BPNN) [25] which
is used on-line by IBA. Without loss of generality, we assume
that the number of slots in the aggregate bandwidth ( )
remains a constant throughout this section.

B. Precise Throughput Analysis

In this subsection, theaggregate throughputis derived under
two cases: , and . Analyses for higher SD values
can be similarly applied. Variables used throughout the analysis
are summarized in Table III.

The aggregate throughput, denoted as, is defined as the
ratio of the mean number of successful slots for SCR and ABR
cell transmissions to the total number of slots in a frame ().
Namely,

(5)

Case 1— : corresponds to no splitting.
Therefore, the total numbers of slots allocated to SCR and ABR
traffic are constants, namely and , respectively.
Moreover, for each of a total of SCR Poisson arrivals (cells),
the probability of successful transmission is .
Thus,

(6)
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Fig. 7. Comparisons of actual and predicated CNF values. (a) Traffic H= 0.6. (b) Traffic H= 0.8.

TABLE III
VARIABLES USED THROUGHOUT THEANALYSIS

Similarly, for ABR traffic using a total number of
remaining slots, can be given as

(7)

From (5)–(7), can be directly obtained.
Case 2— : Since there is one level of collision reso-

lution in this case, the total numbers of Cand C slots in each
frame are no longer constants. With SCR and ABR throughput
jointly considered, (5) becomes (8), as shown at the bottom of
the page.

To compute the conditional mean number of successful slots
in (8), we consider two contention results prior to the first split-
ting: no collision, and collisions of SCR cells, . In
addition, random variable is independent of . We thus get

(9)

The conditional mean in the first term of (9) can simply be given
by the sum of successful SCR slots and mean successful ABR
slots. Namely,

(10)

To compute the conditional mean in the second term of (9), we
first consider the total number of slots with collisions before the
first splitting. For instance, if there are slots with collisions,
there will be slots allocated for SCR traffic during the first
splitting, and a number of remaining slots allo-
cated for ABR traffic. As a result,

(11)

(8)
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Fig. 8. Analytical and simulation results of throughput. (a) SD= 0. (b) SD= 1:

Fig. 9. ABR throughput versus H. (a) Light-load, low-variance ABR traffic. (b) Light-load, high-variance ABR traffic. (c) High-load, low-varianceABR traffic.
(d) High-load, high-variance ABR traffic.

Next, we compute the conditional probability in (9), namely,
. Define function as the number of

arrangements such that a number ofSCR cells undergo colli-
sions within slots. Since there exist at least two SCR cells in
each collision, can be formulated as

(12)

Furthermore, is equal to zero. Also,
is equal to zero if the total number of slots with suc-

cessful transmissions ( ) exceeds the size of basic alloca-
tion. Accordingly, we get (13) as shown at the bottom of the next

page. With function defined,
in (11) can simply be expressed as

(14)
Finally, aggregate throughput can be directly derived from
(8)–(14).

To demonstrate the validity of this analysis, we also carried
out event-based simulation under both and 1 cases. The
simulation was terminated after the execution of a total of 10
frames at which the system has reached its steady state. Fig. 8
depicts the analytical and simulation results of SCR, ABR, and



1666 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 09, SEPTEMBER 2000

Fig. 10. ABR throughput versus SCR load. (a) Light-load, low-H ABR traffic. (b) Light-load, high-H ABR traffic. (c) Heavy-load, low-H ABR traffic. (d)
Heavy-load, high-H ABR traffic.

aggregate throughput, under a light ABR load (50 cells/frame).
It is worth mentioning that we observed more trivial and un-
surprising results under higher ABR loads. These results are
thus omitted here. First, analytical results are shown to be in
profound agreement with simulation results. Surprisingly, com-
pared to , the case invariantly yields poorer
SCR and ABR throughput, resulting from the waste of unused
remaining bandwidth for ABR traffic with relatively light load.

C. Simulation-Based Throughput Analysis

We adopted the fractional Gaussian noise (FGN) process
[23], [24] and a fast-generation algorithm [26], for the modeling
and generation of self-similar traffic, respectively. Particularly
for traffic generation, we considered a set of ten slots each
time for generating a nonnegative number of cell arrivals.
For managing negative arrivals, alternative approaches can be
found in [27] and [28]. Given a mean arrival, we first randomly

generated a number, which represents the total number of
arriving cells, in each group of ten slots. The exact arriving
epochs of these cells were then uniformly distributed in ten
slots.

As was previously mentioned, SCR and ABR cells are
handled differently with respect to the backoff policy. Collided
ABR cells back off in the next frame. Collided SCR cells (calls)
back off a maximum of times within a frame provided that

. Failed calls keep retrying the next frame until reaching
the predetermined number of frames, namely the RC. Failed
calls are at that moment considered blocked. Notice that the RC
is inferred from the maximum tolerable call-setup delay. In our
simulation, the RC was set to five (frames) corresponding to a
maximum call-setup delay of 50 ms. Moreover, it is required
to impose limits on the basic-allocation size and maximum SD
value so that the total amount of bandwidth never exceeds
the frame size. In the simulation, for a frame of 300 slots in

if and

or

otherwise

(13)
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Fig. 11. Blocking probability for SCR traffic. (a) Light SCR load (30 cells/frame). (b) Heavy SCR load (90 cells/frame).

Fig. 12. Aggregate network throughput. (a) Light ABR load. (b) Heavy ABR load.

length, the size of the basic allocation ranged from 10 to 50
slots, and the maximum eligible SD value was set as 6.

1) Satisfaction of ABR QoS-ABR Throughput:We experi-
mented on ABR throughput under a variety of ABR traffic
based on the - collision resolution al-
gorithm. Simulation results are displayed in Fig. 9. As shown
in Fig. 9(a) and (b), under light ABR loads, ABR throughput
declines with increasing H. This phenomenon can be perceived
by the fact that greater H corresponds to higher burstiness,
resulting in more collisions. The situation deteriorates under
higher-variance conditions, as depicted in Fig. 9(b). However,
we surprisingly discovered from Fig. 9(c) and (d) that ABR
throughput increased with H under heavy loads. This is due
to the fact that heavy-load and lower-H traffic yields a large
amount of cells to be evenly distributed among slots, causing
collisions everywhere.

We further investigated the impact of different DTS-algo-
rithms on ABR throughput. We once more discovered incom-
patible performance under light and heavy ABR loads. That
is, ABR throughput increases withunder light loads, but de-
creases with under heavy loads. This is because under high
bandwidth demand, there appears to be a clear tradeoff between
SCR and ABR throughput. But, in contrast, under light loads

or low bandwidth demand, ABR throughput no longer benefits
from decreasing SD, as exhibited in Fig. 9(a) and (b).

Moreover, in Fig. 10, we draw comparisons of ABR
throughput versus the SCR load. In the experiment, we em-
ployed four DTS- variants and the traditional exhaustive
binary-tree-splitting (EBTS) collision resolution algorithm.
Notice that the EBTS algorithm corresponds to DTS-4 in this
case, resolving collisions up to the entire bandwidth within a
frame. As shown in Fig. 10(a) and (b) under light ABR loads,
DTS-2 outperforms other DTS and EBTS algorithms. As the
SCR load increases reaching a turning point, which is located
distinctively under different algorithms, ABR throughput starts
declining. Among all approaches, DTS-3 and EBTS undergo
the most deteriorating performance. In addition, higher variance
and H traffic results in inferior throughput [see Fig. 10(b)]. On
the other hand, under heavy ABR loads as shown in Fig. 10(c)
and (d), ABR throughput invariably declines with increasing
SCR load in all algorithms. The greater the SD, the poorer the
throughput. Specifically, DTS-0 achieves the best performance
among all algorithms due to the provision of a fixed amount of
bandwidth to ABR traffic despite the increase in the SCR load.

2) Satisfaction of SCR QoS-Blocking Probability:We
now discuss (from Fig. 11) the sensitivity of SCR blocking
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probability with respect to the SD value and basic allocation,
under light and heavy SCR traffic loads. As was expected,
blocking probability declines with increasing basic allocation
and SD value. Specifically, heavier loads [see Fig. 11(b)] de-
mand greater SD values to achieve the same grade of blocking
probability. For example, to achieve nonblocking, SD
and SD are required under light and heavy SCR loads,
respectively.

3) Maximization of Aggregate Throughput:We finally ex-
amine the aggregate throughput under various traffic and SD
values. In Fig. 12 we depict the aggregate throughput as a func-
tion of SCR load under light and heavy ABR loads, using four
variants of the DTS algorithm. Initially starting from a light
SCR and ABR load in Fig. 12(a), greater SD values unsurpris-
ingly achieve better throughput. However, as the SCR load in-
creases, greater SD values can no longer benefit the aggregate
throughput resulting from substantial unresolved collision. At
this moment, greater SD values yield more bandwidth waste,
leading to poorer throughput. The turning point again is located
differently for different variants of the DTS algorithm. Under a
heavy ABR traffic load shown in Fig. 12(b), we observed consis-
tent plots which, however, exhibit earlier turning points owing
to the contribution of the heavy ABR load.

Accordingly, the optimal SD is dependent on four traffic char-
acteristics: ABR mean load, variance, the Hurst parameter, and
the SCR mean load. As was previously stated, these results are
then off-line trained and constructed via a BPNN, which can be
effectively accessed on-line by IBA offering optimal bandwidth
allocation.

VI. CONCLUSION

In this paper, we proposed an integrated system, IMACS,
facilitating a hybrid-TDM-based MAC protocol and dynamic
bandwidth allocation, via three components—MACER, TEP,
and IBA. Unlike existing protocols, MACER particularly em-
ploys dynamic-tree-splitting collision resolution parameterized
by the optimal SD. With estimation and prediction of ABR self-
similar traffic through TEP, IBA provides efficient bandwidth
allocation by determining the optimal SD, achieving satisfac-
tory SCR blocking probability and ABR throughput require-
ments, while retaining maximal aggregate throughput. Analyt-
ical and simulation results demonstrated that the optimal SD
is highly dependent on ABR mean, variance, the Hurst param-
eter, and SCR mean. The dependency, which is often contrary
under different traffic settings, can be off-line constructed using
a BPNN.
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