
IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 15, NO. 5, SEPTEMBER 2000 881

Automatic Flux-Weakening Control of Permanent
Magnet Synchronous Motors Using a Reduced-Order

Controller
Jiunn-Jiang Chen and Kan-Ping Chin, Member, IEEE

Abstract—This study presents a novel means of designing a
simple and effective position and velocity controller for perma-
nent magnet synchronous motors (PMSM). In contrast to the
conventional two-loop control methods with full-state feedback,
the proposed controller does not need current information of the
motor for feedback purposes. However, under normal operation
the steady-state -axis current can still be controlled to zero to
minimize power dissipation. In addition, implementing a simple
overmodulation strategy allows the controller to automatically
generate a flux-weakening control to expand the range of op-
erating speed when voltage saturation occurs. In addition to
not depending on system parameters used by the controller, the
automatically generated demagnetizing current is also optimal
in the sense of minimum power dissipation that differs from the
maximum output torque design or the constant power design
of the general flux-weakening control methods. Simulation and
experimental results show that the controller can achieve an
effective speed and position control with near-minimum power
dissipation, even when voltage saturation occurs.

Index Terms—Feedback, flux-weakening control methods,
PMSM, torque.

I. INTRODUCTION

RECENT advances in power electronics and high-speed mi-
croprocessors have led to considerable attention in ap-

plying nonlinear control theory to electronically-commutated
alternate current (ac) electrical machines. In general, the math-
ematical model of an ac motor consists of coupled high-order
nonlinear ordinary differential equations representing the dy-
namics of electrical and mechanical subsystems. Hence, a fully
digitally controlled ac motor is a multiinput nonlinear system
where the inputs are the phase voltages and the outputs are the
position, the velocity or the torque at the rotor shaft. Recent
developments in nonlinear system analyzes and control tech-
nologies suggest that the controllers for electrical motors should
be designed directly from nonlinear models. To simplify con-
troller design, the two-loop control method [1], as shown in
Fig. 1, is the most frequently applied in small electrical ma-
chine control. Sliding mode control has also been applied to
the control of electrical machines, such as induction motors [2]
and synchronous motors [3]. More recently, feedback lineariza-
tion techniques have been extensively applied to the control of
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Fig. 1. Block diagram of a two-loop control system for the PMSM.

variable reluctance motors [4], permanent magnet synchronous
motors (PMSM) [5], induction motors [6], and hybrid motors
[7], [8]. Other investigations have applied adaptive control with
feedback linearization terms in various motors [9]–[11]. Al-
though these nonlinear control technologies can be used for vari-
able speed control design, intensive computations and full-state
feedback, including position, velocity and phase currents, are
required for such implementation.

Another relevant topic of motor controls is how to extend the
speed ranges. As it rises with an increasing speed, the back emf
cancels a portion of the input voltages and limits the injected
currents, thus restricting the maximum speed of the motor to a
certain level. To extend the range of operational speed of the
motor, many authors have proposed different algorithms to
accomplish flux-weakening control [12]–[17]. Flux-weakening
control of PMSM’s employs a negative-axis current (demag-
netizing current) to suppress the back emf. References [12]–[15]
proposed several flux-weakening controls of PMSM’s. In these
methods, a -axis current command is determined to achieve
maximum torque output or constant power output. However,
these methods are extremely sensitive to the accuracy of the
motor parameters used in controllers. References [16], [17]
presented flux-weakening control methods that do not require
knowledge of the load torque or motor parameters. A method
is that in which the -axis current command is proportional to
the filtered -axis current error [16]. Another method is that
in which the -axis current command is adjusted by taking a
PI control of the voltage error between the saturated voltage
and the output voltage command of current controller [17].
However, for both of these flux-weakening control methods,
the control stability in flux-weakening regions always depends
on the choices of the control gains which are used to tune the
-axis current command. Consequently, how to select control

gains is of primary concern when implementing these two
flux-weakening control methods.

In this study, we present a nonlinear reduced-order model for
a PMSM by approximating the original full-order model using
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Fig. 2. Block diagram of a reduced-order control system for the PMSM.

a singular perturbation method [18], [19]. The motivation be-
hind doing so is to exploit the two-time-scale properties of small
electrical machines where the mechanical subsystem is signifi-
cantly slower than the electrical subsystem. Under such circum-
stances, the mechanical variables in the electrical subsystem are
regarded as frozen and the electrical variables in the mechanical
subsystem are regarded as capable of instantaneously arriving
at their quasisteady-state. Consequently, the electrical variables
can be expressed as functions of the mechanical variables; a re-
duced-order dynamic model that only consists of the mechan-
ical variables is derived as well. The resulting reduced model
of the PMSM is accurate enough to capture the dominant dy-
namic behavior of the PMSM, and can be used to develop effec-
tive nonlinear PMSM reduced-order controllers. Fig. 2 schemat-
ically depicts a reduced-order control system.

Because this reduced-order model is a second-order non-
linear system, many standard nonlinear and adaptive control
techniques can be applied to the design of the controllers.
Moreover, with this control methodology, the current measure-
ment, which is sensitive to noise corruption and required in
any full-state feedback controller, can be eliminated. Although
phase currents are not measured for control purposes, the
steady-state -axis current can still be indirectly controlled to
zero under normal operation to achieve near-minimum power
dissipation. Furthermore, implementing an overmodulation
strategy allows the controller to automatically generate a
demagnetizing current to expand the speed range when input
voltage saturation occurs. This flux weakening control is
also optimal in the sense of minimum power dissipation,
and differs from the maximum output torque design or the
constant power design in the general flux-weakening control
methods [12]–[15]. Stability analyzes based on the Lyapunov’s
linearization method indicate that, to stabilize the closed-loop
system, the control gains in the reduced controller must be
both upper and lower bounded. In addition, when voltage
saturation occurs, the closed-loop system is still stable, as long
as the degree of saturation is not too much. Simulation and
experiments are performed to verify the performance of the
proposed controller. According to those results, the proposed
controller can achieve an effective position and velocity control
with near-minimum power dissipation, even when voltage
saturation occurs.

The rest of this paper is organized as follows. Section II
presents the mathematical model of a PMSM. In Section III, we
derive a reduced model using the singular perturbation method.
The reduced controller based on this reduced model, as well as
the overmodulation strategy that we have adopted is also de-
scribed. Section IV describes the stability analyzes. Sections V
and VI summarize the simulation and experimental results,
respectively. Conclusions are finally made in Section VII.

II. M OTOR MODEL

The mathematical model of a surface permanent magnet
synchronous motor (SPMSM) in a synchronous frame, or the
so-called frame, can be described as follows:

sgn
(1)

(2)

where
mechanical state vector whose components
are the rotor position and rotor velocity, re-
spectively;
electrical state vector in the frame, and
the components of are the direct and the
quadrature-axis stator currents respectively;
input vector whose components are input
voltages in the frame;
phase inductance;
phase resistance;
number of pole pair;
torque (permanent magnet) constant;
rotor inertia;
viscous damping coefficient;
Coulomb friction coefficient.

Owing to that this study focuses on achieving position or ve-
locity controls without using the current information, the input
voltage is constrained to a function of time and the mechanical
states, .

III. CONTROL STRATEGIES

A. Reduced Order Modeling

The two-time-scale phenomenon of small electrical machines
is manifested by the fact that the time constant of the elec-
trical subsystem, , is significantly smaller than that of the
mechanical subsystem, . Hence, assigning a small positive
constant allows us to rewrite the motor model (1), (2)
into a standard singular perturbation model [18], [19] by multi-
plying to both sides of the electrical subsystem (2)

sgn
(3)

(4)

Notably, in (4), although is a small number, the term
may not be a small one when is large. Therefore,
cannot be considered as a negligible parasitic term.

Suppose the fast subsystem (4) reaches its quasisteady-state
instantaneously when the electrical time constant is significantly
smaller than the mechanical time constant. The quasisteady-
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state of the electrical variables can be determined by substituting
in (4)

(5)

where , and and are the quasisteady-
state values of and , respectively. By replacing in (3) with
its quasisteady-state, a reduced model of the full system (3),
(4) is obtained

sgn
(6)

The reduced model (6) is described by a set of nonlinear second-
order differential equations in which the states are the same as
the states of the mechanical subsystem in the full mode (3), (4).
For further development, we let , , and

, where and are the desired position and
the desired velocity respectively.

B. Control Law Design

Let be the desired steady-state-axis current. The relation-
ship between and that produces this steady-state-axis
current can be solved from (5) as follows:

(7)

By substituting (7) into (5), becomes

(8)

Furthermore, the reduced model (6) can be rewritten as the fol-
lowing form by substituting (8) into (6):

sgn

(9)
Based on (9), a feedback linearization control law can be chosen
as follows:

sgn (10)

where , , and , and
are control gains. By substituting the control laws (10) into

the reduced model (9), the closed-loop error dynamics becomes

(11)

By selecting the control gains as ,
, and , we can assign the eigen-

values of the closed-loop error dynamics (11) to , and
. Consequently, the equilibrium point of the reduced model

(6) is globally exponentially stable under the control law (7) and
(10), as long as the control gains, , or equivalently,
the real part of the values, , are all positive.

Fig. 3. Adopted overmodulation strategy.

C. Overmodulation Strategy

Overmodulation occurs when the magnitude of the command
voltage is greater than the saturated voltage, which is the max-
imum magnitude of the output voltage of an inverter, and is lim-
ited by the inverter dc link voltage. The inverter dc link voltage
is denoted as . An overmodulation strategy determines the
actual output voltage vector when overmodulation occurs [20].
In this study, the overmodulation strategy is chosen so that when
the magnitude of the command voltage vector exceeds the sat-
urated voltage, the magnitude of the command voltage vector
is shrunk to be equal to the saturated voltage; meanwhile, the
angle of the command voltage vector remains unchanged. The
overmodulation strategy can be described as follows:

(12)

(13)

where

(14)

is a scaling factor for the output voltages when the saturation oc-
curs, denotes the magnitude of the saturated voltage, and
and represent the actual output voltages after scaling. Fig. 3
illustrates the adopted overmodulation strategy. Theoretically,
the boundary of all saturated voltage vectors of a PWM inverter
will form a hexagon. In this study, the hexagon is replaced by a
circle as the boundary of all saturated voltage vectors for conve-
nience. Under such a condition, the relation between the actual
output voltage and the saturated voltage can be described by the
following equation:

(15)

where the magnitude of the saturated voltage is a constant value
and can be expressed as .

IV. STABILITY ANALYSES

In the previous section, control laws (7) and (10) are designed
to stabilize the reduced model, which assumes that the fast (elec-
trical) subsystem reaches its quasisteady-state instantaneously.
Nevertheless, (7) and (10) will also stabilize the original full
system as demonstrated hereinafter. In this section, we analyze
the stability of the closed-loop full system under both normal
operating condition and voltage saturation condition using the
Lyapunov’s linearization method.
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TABLE I
THE RATINGS AND IDENTIFIED

PARAMETERS OF THESINANO #7CB30-2SE6F MOTOR

A. Normal Operation

Because the-axis current, , does not generate torque in a
SPMSM system, it is commanded to become zero under normal
operating conditions to reduce the power dissipation from the
winding resistance. However, becauseis not a state in the
reduced model, to achieve near minimum power dissipation in
this study, we will let instead. By substituting (7) and
(10) with and be a constant into the original model
(1) and (2), the closed-loop error dynamics of the full system
becomes

(16)
where and . The system described
by (16) is an autonomous system, and its origin is a unique
equilibrium point. Consequently, the asymptotic stability of (16)
also indicates the control goals, , , and

, are achieved. The local stability of the system
(16) can be analyzed by linearizing (16) around its equilibrium
point. The parameters of the motor listed in Table I are employed
in the following eigenvalue analyzes. Fig. 4(a)–(c) illustrate the
loci of eigenvalues of (16) by varying from 10 to 4000 rpm.
On the other hand, the equivalent control gains are chosen to
have equal values, , at , , and

for Fig. 4(a)–(c), respectively. One set of two loci on
the left-hand side of Fig. 4(a) consists of eigenvalues of the elec-
trical subsystem, and the other set of three loci on the right-hand
side of Fig. 4(a) consists of eigenvalues of the mechanical sub-
system. In Fig. 4(b) and (c), where the equivalent control gains
are increased to and , respectively, the set of

Fig. 4. Loci of eigenvalues when! = 10 � 4000 rpm and (a)� = � =

� = 5 � 2�, (b) � = � = � = 35 � 2�, and (c)� = � = � =

60 � 2�.

loci representing eigenvalues of the electrical subsystem moves
toward the imaginary axis and to the right of the set of loci repre-
senting eigenvalues of the mechanical subsystem. Furthermore,
when the equivalent control gains are further increased to above
a certain value, the set of loci representing eigenvalues of the
electrical system moves into the right-half plane and the system
becomes unstable. From this, we can infer that the control gains
in (10), which was developed from the reduced model, not only
needs to be lower-bounded, but also upper-bounded to stabilize
the full model.
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B. Voltage Saturation Operation

During the control of an electrical motor, the back emf,
which is proportional to the speed of the motor, cancels the
input voltage and restricts the motor speed to a certain value
corresponding to a given input voltage level. When the input
voltage reaches the saturation voltage of the inverter, the motor
reaches its maximum speed unless a demagnetizing current is
generated to achieve the so-called flux-weakening control. In
terms of speed control, the motor may even become unstable if
the flux-weakening control is not implemented and the desired
motor speed requires an input voltage level that exceeds the
saturation voltage. In this study, because the current is only
indirectly controlled in the reduced controller, what happens
to the overall closed-loop system when the voltage saturation
occurs is of interest. Let be zero and be kept at a constant
speed as before. When the voltage saturation occurs, the
actual output voltages are expressed as in (12) and (13). By
substituting (12), (13) and the control law (7) and (10) into the
original full model (1) and (2), the closed-loop error dynamics
becomes

sgn (17)

where , is a constant, and
is the scaling factor at the equilibrium point of (17). By

translating the coordinate axis of the system (16) to in
(17), the equilibrium point is moved to the origin of (17). Con-
sequently, the asymptotic stability of (17) also indicates the con-
trol goals, , , and , are achieved.
As in the previous section, the system described by (17) is lin-
earized around its equilibrium point to analyze the stability of
(17). Fig. 5 illustrates the loci of eigenvalues of (17) by setting
the three equivalent control gains at ,
and by varying from 10–4000 rpm. Moreover, Fig. 5(a) and
(b) illustrate the loci of eigenvalues corresponding to the condi-
tions when the scaling factor at equilibrium point is
and , respectively. Notably, the loci of eigenvalues
plotted in Fig. 4(b) are equivalent to the loci of eigenvalues when

. These figures reveal that, when the value of de-
creases, the set of loci representing eigenvalues of the mechan-
ical subsystem moves to the right of the pole plane. These re-
sults indicate that the closed-loop system operating under the
voltage saturation region is stable as long as the degree of sat-
uration is not too much. Moreover, following the loci of eigen-
values move toward the imaginary axis, the settling time of the

Fig. 5. Loci of eigenvalues when! = 10 � 4000 rpm,� = � = � =

35 � 2�: (a) � = 0:5 and (b)� = 0:3.

responses under voltage saturation operation is longer than that
under normal operations. The longer settling time implies that
the controller under voltage saturation operation has weaker
abilities of trajectory tracking and disturbance rejection. Based
on these analysis results, an additional control strategy is pro-
posed in the Experimental Section to reduce these drawbacks.

Also of relevant interest is how voltage saturation affects the
values of the currents. By substituting the overmodulation
rules (12) and (13) into (5), the quasisteady-state-axis current
under voltage saturation, , becomes

(18)

Because is always less than zero when , it is a de-
magnetizing current that realizes flux-weakening control auto-
matically when voltage saturation occurs. Moreover, the scaling
factor at equilibrium can be derived from (15) as

(19)

where

sgn
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Consequently, by substituting (19) into (18), at equilib-
rium can be expressed as

(20)

where .
The quasisteady-state-axis current in (20), , as gen-

erated by our reduced controller when voltage saturation occurs,
is an optimal that satisfies both the loading condition in the
mechanical subsystem and the saturated voltage constraint in
the inverter. To prove this result, we consider the full model (1)
and (2) operating at constant speed and constantcurrents

sgn (21)

(22)

and solve the following problem [21]:

maximize

subject to

sgn

According to our results, the two extremums are on the
boundary of saturated voltage constraint, and the optimal value
of is derived as follows:

(23)

Because in (23) is equal to in (20), we can con-
clude that the reduced controller proposed herein automatically
becomes a flux-weakening controller when voltage saturation
occurs. In addition, the generated steady-state demagnetizing
current, , is also optimal in the sense of minimum power
dissipation.

The effect of , as generated by the reduced controller
when saturation occurs, can be further explained through a

current figure. Consider the two sets of equations (21) and
(22). For a given set of electrical parameters, ( ),
and input conditions, ( , ), only a unique set of currents, (,

), satisfies (22) when the motor speed is fixed at a constant.
However, when the motor speed is sufficiently high such that
voltage saturation occurs and , the solutions
of (22) can be plotted as a parabola, as shown in Fig. 6 which
employs the motor parameters listed in Table I. The shaded
area under the parabola in Fig. 6 denotes all solutions of (22)
that satisfy the voltage constraint . Notably,

Fig. 6. Voltage-limit curve for the PMSM.

the shaded area in Fig. 6 is generated from the model of the
electrical subsystem (22) under the voltage constraint alone.
On the other hand, the model of the mechanical subsystem
(21) dictates that is a constant. Hence, the solutions of (21)
and (22) can be plotted as a segment of a straight line,AB, in
Fig. 6. The intersections of this line segment and the parabola
at point A and point B depict the solutions of (21) and (22)
when the voltage saturation occurs. From the results of (20)
and (23) we can infer that when voltage saturation occurs
continuously, control law (7), (10) combined with the adopted
overmodulation strategy (12), (13) forces the operation point
to stop at point A in Fig. 6 although the is set at zero.
Furthermore, the value of point A in Fig. 6 depends only on
the motor parameters and the saturated voltage. As a result, we
can infer that under the prerequisite of stable control neither
the parameters nor the gains in the controllers can affect the
value of point A in Fig. 6.

V. SIMULATION RESULTS

The performance of the proposed controller is first verified
through velocity tracking simulations. The parameters of the
model of the simulated motor are identified from the motor used
in the experimentation in the next section. Table I lists the pa-
rameters. Simulations are performed under four different con-
ditions.

i) An ideal normal operating condition assumes that the
motor parameters are identified correctly, and the input
voltage is not saturated.

ii) Although an ideal operating condition assumes that
the motor parameters are identified correctly, the input
voltage is saturated in a high-speed region.

iii) Inexact motor parameters are used in the controller to
examine the robustness of parameter uncertainty of the
controller. In this case, the inertia,, the winding resis-
tance, , and the motor constant,, in the controller are
chosen to be 50%, 50% and 105%, respectively, of the
values used in the simulated motor. In addition, this sim-
ulation assumes that the motor is under normal operation
and the input voltage is not saturated.

iv) The parameters in the controller are the same as in iii).
However, the input voltage is saturated in a high-speed
region.

The dc link voltage is set at 180 V when the simulation con-
ditions dictate that voltage saturation should not occur, and at
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Fig. 7. Trajectory of the velocity command.

Fig. 8. Results of the tracking simulation with the reduced-order controller
which contains exact motor parameters. dc link voltage isV = 180 V. (a)
position error, (b) velocity error, (c)d-axis current, and (d)q-axis current.

140 V for the simulations that voltage saturation is desired in
a high-speed region. When the dc link voltage is set at 140 V,
overmodulation continuously occurs at a high speed (exceeding
3311 rpm) for this simulated PMSM. The velocity command,
as illustrated in Fig. 7, is a composite trapezoidal trajectory
with two constant speed regions: one at 4000 rpm and the other
at 3000 rpm. The position command is the integration of the
velocity command. In all the simulations, the sampling rate is
5 kHz, and the three equivalent control gains are chosen to have
equal values at .

Figs. 8–11 summarize the simulation results under the above
four conditions. According to Figs. 8(a) and (b) and 10(a) and
(b), the position error and the velocity error have converged to
zero under normal operation. However, the response ofin
these simulations must be more closely examined. The value
of when its dynamics disappears is equivalent to the quasis-
teady-state -axis current . According to (5) and (7),

as long as the parameters in the controller
are equivalent to the real electrical parameters of the motor.
This finding correlates with the simulation result in Fig. 8(c),
where the controller parameters are assumed to be correct. Also,

Fig. 9. Results of the tracking simulation with the reduced-order controller
which contains exact motor parameters. dc link voltage isV = 140 V. (a)
position error, (b) velocity error, (c)d-axis current and estimatedd-axis current,
and (d)q-axis current and estimatedq-axis current.

Fig. 10. Results of the tracking simulation with the reduced-order controller
which contains inexact motor parameters. dc link voltage isV = 180 V. (a)
position error, (b) velocity error, (c)d-axis current, and (d)q-axis current.

strays from zero as illustrated in Fig. 10(c), where the elec-
trical parameters used in the controller are inexact. Additional
sensitivity analysis, as shown in Fig. 12, indicates that among
the three electrical parameters, is the most sensitive to the
magnet constant . Consequently, if high precision control of
the steady-state-axis current is demanded, accurate identifi-
cation of the electrical parameters, especially the magnet con-
stant , is required before implementing the proposed control.
Nevertheless, according to [22], the magnet constantcan be
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Fig. 11. Results of the tracking simulation with the reduced-order controller
which contains inexact motor parameters. dc link voltage isV = 140 V. (a)
position error, (b) velocity error, (c)d-axis current, and (d)q-axis current.

Fig. 12. Sensitivity ofi with respect to electrical parameters.

identified the most accurately among the three electrical param-
eters by using the batch least-square method. Additionally, if
precise electrical parameters are given, the-axis and the -axis
currents can be estimated by constructing a simple current esti-
mator from (5):

(24)

where represents the index of the sampling sequence, and
and are the estimated values of and , respectively.

Fig. 9(c) and (d) illustrate the simulation results of this current
estimator. It is possible to use these estimated currents as a soft-
ware indicator for over current in the motor and the driver.

Fig. 13. Results of the tracking experiment with the reduced-order controller,
whose steady-stated-axis current command isi = 0. dc link voltage isV =

180 V. (a) position error, (b) velocity error, (c)d-axis current, and (d)q-axis
current.

When voltage saturation occurs, the position error and the ve-
locity error also converge to zero, as shown in Figs. 9(a) and
(b) and 11(a) and (b). However, the transient errors are larger
than that at normal operation. Fig. 9(c) reveal that, although
the -axis current command is zero, decreases to a nega-
tive value automatically at high speed and returns to zero at low
speed. Moreover, by comparing at the voltage saturation re-
gion in Figs. 9(c) and 11(c), the two negative steady-state,
or the so called demagnetizing currents, have the same value.
This finding implies that the steady-state demagnetizing current
under our control law is independent of the system parameters
used in the controller.

Although this study is focused on SPMSM’s, additional sim-
ulations indicate that, by using the proposed control method, we
are able to achieve automatic flux-weakening control for inte-
rior permanent magnet synchronous motors (IPMSM’s) as well.

VI. EXPERIMENTAL RESULTS

The experimental setup includes a Sinano #7CB30-2SE6F
permanent magnet synchronous motor, the power stage of a
Micro Trend UT90 driver, a proprietary control card made
in-house, and a PC. The control card converts the analog phase
current measurements into digital signals, decodes the encoder
signals, and generates space vector pulse width modulation
(SVPWM) switching signals to control the power stage. The
PC is then used to compute the control algorithms and the
coordinate transformations among the vector space, the stator
reference frame, and the rotor reference frame. Notably, the
current measurements herein are only used to monitor the
current responses. They are not used for control purposes.
The experimental conditions resemble those in the tracking
simulation, except that the identified motor parameters, as
shown in Table I, are used in the controllers. Figs. 13 and 14



CHEN AND CHIN: AUTOMATIC FLUX-WEAKENING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTORS 889

Fig. 14. Results of the tracking experiment with the reduced-order controller,
whose steady-stated-axis current command isi = 0. dc link voltage isV =

140 V. (a) position error, (b) velocity error, (c)d-axis current, and (d)q-axis
current.

summarize the experimental results under dc link voltage that
is set at 180 V and 140 V, respectively. Under normal operation,
both the position error and the velocity error converge to zero,
and is also approximately zero, as exhibited in Fig. 13.
When voltage saturation occurs, Fig. 14(c) indicates that the
phenomenon of auto-flux-weakening indeed appears in the
experiment. Consequently, both the position error in Fig. 14(a)
and the velocity error in Fig. 14(b) can still converge to zero at
voltage saturation operation. However, the transient errors are
larger than that at normal operation. This phenomenon has been
predicted from the eigenvalue analysis for voltage saturation
operation in Fig. 5. According to that analysis, reducing the
degree of voltage saturation can reduce the transient errors and
increase the control robustness in voltage saturation region. The
fact that approaches its optimal value automatically
whenever voltage saturation occurs allows us to modify the
command current in (7) to reduce the degree of voltage
saturation. As a result, we set according to the following
rules:

if (25)

where denotes a positive overmodulation tuning gain, and
the initial value is set to zero. In (25), is modified as the
integration of the degree of overmodulation when voltage satu-
ration occurs. Consequently, varies until voltage saturation
stops, or equivalently, controller returns to normal operation.
Fig. 15 presents the new experimental results with the modified
control law. Apparently, the control performance is improved.

Since phase currents are not measured in this study, the pro-
tection of the motor and the driver from overloading must be

Fig. 15. Results of the tracking experiment with the reduced-order controller,
whose steady-stated-axis current command is the auto-adjusting command. dc
link voltage isV = 140 V. (a) position error, (b) velocity error, (c)d-axis
current, and (d)q-axis current.

implemented using other methods. For example, the current es-
timator (24) can be used as a software indicator for over cur-
rent if the motor parameters are accurately known. Other hard-
ware-oriented methods include the installation of a simple pro-
tection device or circuit, e.g., fuse, or a current-sensing resis-
tance, which is much cheaper than a Hall current sensor, in
the dc link bus. This idea comes form the fact that the cur-
rent flowing in the dc link bus at any time is always the max-
imum phase current among the three phase windings when they
are connected in a wye configuration. Consequently, there is no
need to measure the current in the individual winding.

VII. CONCLUSION

This study applies the singular perturbation method to design
a position and velocity controller for a SPMSM control system.
The controller proposed herein is computationally simple and
does not require the measurement of current signals for the feed-
back purposes. Consequently, the cost of the motor driver can be
reduced. On the other hand, although this controller is designed
without current-loop control, the steady-state current can
still be demanded indirectly under normal operation to reduce
the copper loss. Moreover, this controller automatically gener-
ates a flux-weakening control to follow the velocity command
when the voltage saturation occurs, and the demagnetizing cur-
rent is optimal in the sense of minimum power dissipation. As
a result, this controller can always achieve near-minimum power
dissipation both during normal operation and voltage saturation
operation. Simulation and experimental results show that the
controller can achieve effective variable-speed and position con-
trol with near-minimum power dissipation, even when voltage
saturation occurs.
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