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Abstract

This paper describes an interpolation algorithm for two-dimensional (2-D) discrete signals using fuzzy rule-based in-
ference. The original signal is estimated by the main-surface function in the interpolation region, and four sub-plane
functions surrounding the interpolation region. The main-surface is a bilinearly interpolated function passing through four
signal samples in the interpolation region and the four sub-planes re
ect the tendencies of pixels from the left, right, up,
and down of the interpolation region. Drawing fuzzy inferences about signals from these �ve functions, we can estimate
original signals very well even when the signals are buried in noise. We veri�ed the method by computer simulations
of some assumed 2-D signals and by resampling of the actual image data. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Interpolation algorithms for 2-D signals have been proven useful in a wide range of applications, especially
in image processing systems [11]. All interpolation algorithms generally start by determining a continuous
interpolation function from a set of discrete signal samples, and then resample this interpolated function
according to the number of points speci�ed. The simplest algorithms are the nearest neighbor and bilinear
interpolations [16]. The more re�ned cubic B-spline interpolation algorithm, proposed by Hou and Andrews [7],
is, however, computationally complex. Several alternative cubic convolution techniques [3,15,20] have been
proposed to reduce its computational complexity. It must be noted that all these algorithms were proposed
to estimate original signals in noise-free environments. However, during the courses of transmission, storage,
and retrieval, noise is generally embedded in signals from various sources, i.e., during coding and decoding,
errors are induced in signals and transmitted signals are usually corrupted by noise. Because the interpolation
curves obtained by using these algorithms are so calculated that they pass exactly through the given noisy
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points, these algorithms are obviously not good at estimating original signals from noisy signals. To improve
this situation, we propose a new 2-D noisy signal interpolation algorithm, based mainly on the fuzzy inference
rule.
Fuzzy logic has been successfully applied to various kinds of engineering problems [1,2,9,10,18]. Fuzzy

theory allows the inclusion of fuzzy if–then rules concerning fuzzy concepts. These rules may come from
human experts or be generated automatically by matching input–output pairs through training routines [4,6,12].
In the �eld of image processing, successful image enhancement results have been reported after the fuzzy
indices of input images were reduced [13,14], and [17] used fuzzy inference rules derived from pixels of in-
terest and its neighboring pixels. In particular, a fuzzy rule-based interpolation algorithm for one-dimensional
discrete signals has recently been proposed [19]. This algorithm interpolates between two noise-free points
in Euclidean space by aggregating the fuzzy sets de�ned on the surrounding points. An advanced algo-
rithm for the noisy points is also proposed; this interpolation is done by classifying the neighboring noisy
points into groups. In this direction, this paper investigates a fuzzy rule-based interpolation algorithm for 2-D
signals.
This paper is organized into four sections. The architectural framework of the entire system is discussed

in detail in Section 2. Derivation of the main surface and the four sub-planes are then presented. This is
followed by construction of the membership functions and fuzzy rules for inferring 2-D signals. Computer
simulations of assumed 2-D signals and image resampling examples are presented in Section 3. Comparison
results are also given. Section 4 contains some concluding remarks.

2. 2-D signal interpolation by fuzzy rule-based inference

During the courses of transmission, storage, and retrieval, 2-D signals are usually corrupted by noise. Since
the signals are inevitably buried in noise, schemes that can remove the noise during the course of interpolation
are required. In the spatial domain, a successful and frequently used method for removing noise from images
is neighborhood averaging [5, Section 4.3], a method mainly concerned with masks. If the center of a mask
is located at pixel (x; y) in an image, the gray level of (x; y) is replaced by the average gray level of all
pixels in the area of the mask. In a similar manner, our proposed 2-D signal interpolation scheme uses fuzzy
inference, a more sophisticated neighborhood averaging technique involving application of fuzzy logic to sam-
pled noisy data. That is, we propose a 2-D fuzzy rule-based interpolation scheme in which fuzzy inference is
used to derive results similar to those obtained by using neighborhood averaging for interpolation tasks. First,
we �nd the main-surface function of the interpolation region and then �nd four surrounding plane functions,
called sub-planes, of the main-surface. The main-surface is a bilinearly interpolated function passing through
four signal samples, and the sub-planes re
ect the tendencies of pixel 
uctuations from four directions, left,
right, up, and down, of the interpolation region. Next, some fuzzy if–then rules for these �ve functions are
presented to carry out the interpolation task. Because of the inference rules employed for interpolation, orig-
inal signals can be correctly interpolated and resampled despite the original signals having been corrupted
by noise.
Let f̂(x; y) be the estimated function and Is(i; j); i=0; 1; : : : ; M − 1; j=0; 1; : : : ; N − 1, be the M × N

sampled noisy data as shown in Fig. 1(a). In Fig. 1(b), we de�ne an interpolation region Ri; j as follows:

Ri; j = {(x; y) | xi6x6xi+1; yj6y6yj+1}; i=0; 1; : : : ; M − 2; j=0; 1; : : : ; N − 2: (1)

From (1) we can similarly represent the eight regions, Ri−2; j ; Ri−1; j ; Ri+1; j ; Ri+2; j ; Ri; j−2; Ri; j−1; Ri; j+1,
and Ri; j+2, around the region of interest. In our interpolation algorithm, we use �ve functions, one surface
function generated from Ri; j and the other four plane functions generated from Ri−1; j ; Ri+1; j ; Ri; j−1, and
Ri; j+1, respectively, to determine the estimation function f̂(x; y). Function Fc(x; y), i.e., the main-surface,
passes through the four signal samples, Is(i; j); Is(i+1; j); Is(i; j+1), and Is(i+1; j+1); of the interpolation
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Fig. 1. The interpolation region and its contiguous regions.

region Ri; j. Let fl(x; y); fr(x; y); fu(x; y), and fd(x; y) be the four sub-planes that pass through the local
signal averages of the four contiguous regions, Ri−1; j ; Ri+1; j ; Ri; j−1, and Ri; j+1, and re
ect pixel 
uctuation
tendencies. Subscripts l; r; u and d denote left, right, up, and down, respectively. To interpolate a point (x; y)
in the region Ri; j; f̂(x; y) is obtained by taking into account the fuzzy aggregation of the function Fc(x; y) in
the interpolation region and the four planes, fl(x; y); fr(x; y); fu(x; y), and fd(x; y) next to the interpolation
region.
Let the original M ×N 2-D signal Is(i; j) be interpolated during resampling periods Nx and Ny in the

x- and y-directions, respectively. In region Ri; j we can then calculate the new coordinates (xi; yj) of the
given sample points and the new coordinate (x; y) of the interpolated point as follows (see Fig. 1): xi= iNx,
i=0; 1; : : : ; M − 1, yj = jNy, j=0; 1; : : : ; N − 1; x= xi + u; u=0; 1; : : : ; Nx − 1, y=yj + v; v=0; 1; : : : ; Ny − 1.
In what follows, the procedures for deriving the main-surface, sub-planes, and for constructing the fuzzy rules
are described.

2.1. Deriving the interpolation main-surface

Function Fc(x; y) is bilinearly interpolated from the four corner signals of region Ri; j and we call function
Fc(x; y) the main-surface. Suppose Fc(x; y) is represented by the following:

Fc(x; y)= ax + by+ cxy+ d; xi6x6xi+1; yj6y6yj+1: (2)
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In (2), the four unknown coe�cients, a; b; c; and d, can easily be determined from the following four
equations using these four signal samples. I.e.,

Is(i; j)= axi + byj + cxiyj + d;

Is(i; j + 1)= axi + byj+1 + cxiyj+1 + d;

Is(i + 1; j)= axi+1 + byj + cxi+1yj + d;

Is(i + 1; j + 1)= axi+1 + byj+1 + cxi+1yj+1 + d:

(3)

Thus, we have




a

b

c

d


=




xi yj xiyj 1

xi yj+1 xiyj+1 1

xi+1 yj xi+1yj 1

xi+1 yj+1 xi+1yj+1 1




−1


Is(i; j)

Is(i; j + 1)

Is(i + 1; j)

Is(i + 1; j + 1)


: (4)

After mathematical manipulations (see Appendix A), (2) takes the following form:

Fc(x; y)= �(x; y) Is(i; j) + �(x; y) Is(i; j + 1) + 
(x; y) Is(i + 1; j) + �(x; y) Is(i + 1; j + 1); (5)

where

�(x; y)= (1− (x − xi)=Nx)(1− (y − yj)=Ny);
�(x; y)= (1− (x − xi)=Nx)((y − yj)=Ny);

(x; y)= ((x − xi)=Nx)(1− (y − yj)=Ny);

(6)

and

�(x; y) = ((x − xi)=Nx)((y − yj)=Ny); xi6x6xi+1; yj6y6yj+1;

i=0; 1; : : : ; M − 2; j=0; 1; : : : ; N − 2: (7)

2.2. Deriving the four sub-planes

To derive the sub-plane, using the left-hand surrounding plane fl as an illustrative example, we need to
know the relationship between the local signal average of the interpolation region and the local signal averages
of the two consecutively contiguous regions on the left-hand side of the interpolation region. These local signal
averages are calculated as follows:

Gi; j = 1
4{Is(i; j) + Is(i; j + 1) + Is(i + 1; j) + Is(i + 1; j + 1)};

i=0; 1; : : : ; M − 2; j=0; 1; : : : ; N − 2: (8)

In (8), Gi; j is the local signal average of the interpolation region Ri; j. The local signal averages, Gi−2; j and
Gi−1; j, of these two contiguous regions, Ri−2; j and Ri−1; j can be calculated in a similar manner.
Sub-plane fl(x; y) may be inclined or 
at. If it is inclined, it is parallel to the inclined plane included in

the cuboid Cubl of the contiguous region Ri−1; j. Cuboid Cubl is bounded by the maximum and minimum of
the sampled noisy data, Is(i − 1; j); Is(i − 1; j + 1); Is(i; j), and Is(i; j + 1), in the region of interest Ri−1; j,
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Fig. 2. The cuboid, Cub l, in Ri−1; j .

as shown in Fig. 2; hence, the cuboid will enclose these sampled data. To this end, the maximum Maxi−1; j
and minimum Mini−1; j of Ri−1; j are de�ned as

Maxi−1; j =max{Is(i − 1; j); Is(i − 1; j + 1); Is(i; j); Is(i; j + 1)};
Mini−1; j =min{Is(i − 1; j); Is(i − 1; j + 1); Is(i; j); Is(i; j + 1)};

i=1; 2; : : : ; M − 1; j=0; 1; : : : ; N − 2: (9)

Sub-plane fl(x; y) is determined according to the geometric perspective among the following three
contiguous regions, {Ri−2; j ; Ri−1; j ; and Ri; j}. To derive fl(x; y), the following parameters, G1; G2; G3;
(xc; yc); max; and min, must be de�ned. G1; G2, and G3 are, respectively, the local signal averages
of the regions Ri−2; j ; Ri−1; j ; and Ri; j. (xc; yc) denotes the coordinate of the center of Ri−1; j; whereas
max and min represent the maximum, Maxi−1; j, and the minimum, Mini−1; j, of Ri−1; j, respectively.
In summary, to derive fl(x; y), these parameters are de�ned as follows (see Fig. 3(a)): G1 =Gi−2; j,
G2 =Gi−1; j, G3 =Gi; j; xc = (xi−1 + xi)=2; yc = (yj + yj+1)=2; max=Maxi−1; j ; min=Mini−1; j. Next we
use these parameters to derive the sub-plane fl(x; y). When deriving fl(x; y), we must distinguish among
three cases.
Case 1: G1¡G2¡G3. In this case, pixel values tend to increase from the left-hand side of Ri; j, and sub-

plane fl(x; y) is introduced to re
ect this tendency. Sub-plane fl(x; y) is an inclined plane that passes through
the point ((xc; yc); G2) and parallels plane Plh in the cuboid Cubl, where the subscript lh indicates the tendency
from lower gray levels toward higher ones as the pixel moves from the left-hand side of Ri; j. Plane Plh and
its normal vector Vlh are shown in Fig. 4(a). After the coordinates of the vertices of Cubl have been taken,
the equation of the normal vector Vlh is given by

Vlh = (v1; v2; v3)= (Nx; 0;max −min)× (0; Ny; 0)

=
(∣∣∣∣ 0 max −min
Ny 0

∣∣∣∣ ;
∣∣∣∣max −min Nx

0 0

∣∣∣∣ ;
∣∣∣∣ Nx 0
0 Ny

∣∣∣∣
)
; (10)
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Fig. 3. The positional relationships among the parameters
G1, G2, and G3, referred to as the three-region sets,
{Ri−2; j ; Ri−1; j ; Ri; j}, {Ri; j ; Ri+1; j ; Ri+2; j}, {Ri; j ; Ri; j+1; Ri; j+2},
and {Ri; j−2; Ri; j−1; Ri; j}; of the three regions.

Fig. 4. When fl is derived, (a) case 1 is satis�ed; (b) case 2 is
satis�ed.

where × is the vector cross product. Let fl(x; y)= z be represented implicitly as

v1x + v2y + v3z + d=0: (11)

Since ((xc; yc); G2) is on the plane fl(x; y), it follows that ((xc; yc); G2) satis�es (11). Hence,

d=−v1xc − v2yc − v3G2: (12)

With vector Vlh and d given above, the left-hand interpolation sub-plane fl(x; y) is given by

fl(x; y)= (−d− v1x − v2y)=v3: (13)
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Case 2: G1¿G2¿G3. In this case, pixel values tend to decrease from the left-hand side of Ri; j, and
sub-plane fl(x; y) is introduced to re
ect this tendency. Sub-plane fl(x; y) is again an inclined plane that
passes through point ((xc; yc); G2) and parallels plane Phl in the cuboid Cubl, where the subscript hl indicates
a tendency from higher gray levels toward lower ones as the pixel moves from the left-hand side of Rij.
Fig. 4(b) shows plane Phl and its normal vector Vhl. Normal vector Vhl is given by

Vhl = (v1; v2; v3)= (Nx; 0;min−max)× (0; Ny; 0)

=
(∣∣∣∣ 0 min−max
Ny 0

∣∣∣∣ ;
∣∣∣∣min−max Nx

0 0

∣∣∣∣ ;
∣∣∣∣ Nx 0
0 Ny

∣∣∣∣
)
: (14)

Case 3: Neither case 1 nor case 2 condition holds. No pixel tendency can be inferred in this case. Plane
fl(x; y) is a horizontal plane that passes through point ((xc; yc); G2). It is represented as follows:

fl(x; y)=G2: (15)

Referring to Figs. 3(b)–(d), we can derive fr(x; y); fu(x; y), and fd(x; y) in a manner similar to that used
to derive fl(x; y).

2.3. Constructing the fuzzy sets and inference rules for interpolation

Since the 2-D signal is interpolated via fuzzy inference on the main-surface and sub-planes, the membership
functions for the main-surface and sub-planes are de�ned �rst. As shown in Fig. 5, Wc(x; y) and Wi; j(x; y)
are the respective membership functions assigned to the main-surface and sub-planes. Wc(x; y) is a cubic of
height “1”. Wi; j(x; y) is a pyramid of height “1” and is given by (see Fig. 6)

Wi; j(x; y) = 1−max{2|x − xc|=Lengthx; 2|y − yc|=Lengthy};
i=0; 1; : : : ; M − 2; j=0; 1; : : : ; N − 2; (16)

where (xc; yc)= ((xi+xi+1)=2; (yj+yj+1)=2) is the center coordinate of each region and Lengthx and Lengthy
represent the lengths of the pyramid in the x- and y-directions, respectively. The values of Lengthx and
Lengthy can be chosen freely and they determine relative weighting of sub-planes on computing f̂(x; y).
In this paper, we set Lengthx =3Nx and Lengthy =3Ny. We use Wi−1; j(x; y); Wi+1; j(x; y); Wi; j−1(x; y),
and Wi; j+1(x; y) to represent the membership functions assigned to fl(x; y); fr(x; y); fu(x; y), and fd(x; y),
respectively, of which only Wi−1; j(x; y) and Wi+1; j(x; y) are shown in Fig. 5 for simplicity.
Finally, the interpolation of f̂(x; y) in the region Ri; j is carried out according to the following rules:

Rule 1: If the interpolation membership function is Wc;

then the corresponding interpolation surface is Fc(x; y):

Rule 2: If the interpolation membership function is Wi−1; j ;
then the corresponding interpolation plane is fl(x; y):

Rule 3: If the interpolation membership function is Wi+1; j ;

then the corresponding interpolation plane is fr(x; y):

Rule 4: If the interpolation membership function is Wi; j−1;
then the corresponding interpolation plane is fu(x; y):

Rule 5: If the interpolation membership function is Wi; j+1;

then the corresponding interpolation plane is fd(x; y):

(17)
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Fig. 5. Membership functions assigned to the main-surface and
the sub-planes, and the fuzzy rules for interpolation in region Ri; j .

Fig. 6. The pyramid membership function Wi; j(x; y).

Thus the interpolated value, f̂(x; y), in the region Ri; j is given as follows:

f̂(x; y)

=
Wi−1; j(x; y)fl(x; y) +Wi+1; j(x; y)fr(x; y) + 4Fc(x; y) +Wi; j−1(x; y)fu(x; y) +Wi; j+1(x; y)fd(x; y)

Wi−1; j(x; y) +Wi+1; j(x; y) + 4 +Wi; j−1(x; y) +Wi; j+1(x; y)
;

xi6x6xi+1; yj6y6yj+1; i=0; 1; : : : ; M − 2; j=0; 1; : : : ; N − 2: (18)

In (18), the weighting of the main-surface is four times greater than those of the sub-planes. This is
to balance the e�ect of the main-surface with the e�ects of the remaining four sub-planes. Note that,
at the edges of the images, we may eliminate some items from (18) in case G1; G2; or G3 cannot be
de�ned. For example, sub-plane fl(x; y) and Wi−1; j(x; y) must be eliminated from interpolation equation
(18), when interpolating the left edge of the image; sub-planes fl(x; y); fu(x; y), and their correspond-
ing weighting membership functions have to be ignored when interpolating the left-upper corner of the
image.
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3. Simulations and results

In order to con�rm the validity of the proposed 2-D fuzzy rule-based inference interpolation algorithm,
we conducted computer simulations on synthetic signals, as shown in the following examples. We used
�ve simulations to test the proposed algorithm. In these simulations, performance in terms of reconstruc-
tion accuracy of the present algorithm was compared with bilinear interpolation and the cubic convolution
interpolation proposed by Keys [8]. With respect to reconstruction accuracy, we used the mean square er-
ror (MSE) and the mean absolute error (MAE) as the comparison indices. These two error indices are
given by

MSE=
1
MN


M−1∑

i=0

N−1∑
j=0

[f(i; j)− f̂(i; j)]2

; MAE=

1
MN


M−1∑

i=0

N−1∑
j=0

|f(i; j)− f̂(i; j)|

; (19)

where f(i; j) and f̂(i; j) represent the original and the resampled signals, respectively, and both of them
consist of M ×N pixel arrays.
Then, we applied the proposed algorithm to image resampling examples and compared the results with the

other two interpolation algorithms.

3.1. Synthetic signal interpolation

3.1.1. Simulation 1
In this synthetic signal interpolation simulation, the original signal was given as follows:

S1(x; y)= 20x exp(−x2 − y2); −26x62; −26y62: (20)

A 45× 45 point array S1(xk ; yl), from which k =0; 1; : : : ; 44; l=0; 1; : : : ; 44; was created by uniformly sam-
pling S1(x; y) in the de�ned region. The noisy point array S ′1(xk ; yl), was created by adding Gaussian
noise of zero mean and unit variance to S1(xk ; yl), and its MSE and MAE were 1.105 and 0.8, respec-
tively. The 12× 12 point sampled noisy data array Is(i; j) was obtained from Is(i; j)= S ′1(xk ; yl), where
i=0; 1; : : : ; 11; j=0; 1; : : : ; 11; k =4i; l=4j. We then put Is(i; j) with Nx =4 and Ny =4 into the pro-
posed algorithm, to derive the resampling function f̂(x; y). And, putting Is(i; j) into the bilinear interpolation

Table 1 Table 2
The MSEs for the resampling signals f̂(x; y) from the three in-
terpolation algorithms applied in �ve simulations

The MAEs for the resampling signals f̂(x; y) from the three in-
terpolation algorithms applied in �ve simulations

Noise Fuzzy Bilinear Cubic

Simulation 1 1.015 0.355 0.549 0.696
Simulation 2 8.429 3.669 6.021 7.199
Simulation 3 31.596 6.420 7.825 9.987
Simulation 4 1.684 0.876 1.095 1.313
Simulation 5 0.966 0.394 0.504 0.656

Noise Fuzzy Bilinear Cubic

Simulation 1 0.801 0.479 0.591 0.668
Simulation 2 2.534 1.686 2.174 2.43
Simulation 3 5.515 2.311 2.489 2.764
Simulation 4 0.915 0.662 0.751 0.838
Simulation 5 0.789 0.500 0.565 0.649

Note: Simulations 2 and 3 were calculated based on the loss
region only, and the others on the whole signal region, −26x62,
−26y62.

Note: Simulations 2 and 3 were calculated based on the loss
region only, and the others on the whole signal region, −26x62;
−26y62.
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and cubic convolution interpolation algorithms, we respectively obtained the corresponding resampling signals
f̂(x; y). To compare reconstruction accuracy, the MSEs of the resampling signals f̂(x; y) obtained from the
bilinear, cubic spline, and the proposed algorithm were 0.549, 0.696, and 0.355, respectively. And the
MAEs were, respectively, 0.591, 0.668, and 0.479. The results of these algorithms are shown in Tables 1
and 2. From these MSEs and MAEs, we can see the reconstruction accuracy of the fuzzy rule-based in-
terpolation algorithm was better than those of the other two interpolation algorithms. The proposed al-
gorithm not only generated reconstructed signals from the region of interest but also kept track of pixel
variation trends from the four surrounding sub-planes, and hence yielded better noise removal
results.

3.1.2. Simulation 2
We assumed that the noisy signal S ′1(x; y) was due to a complete loss of the original signal S1(x; y) in

(20) from the following region, {(x; y) | −0:26x60:25; −0:296y60:16}. MSEs and MAEs for f̂(x; y) were
calculated only in the lost 6× 6 region, by the three interpolation algorithms, these results are also shown in
Tables 1 and 2. From these two tables, it is evident that the proposed method demonstrated the best signal
recovery ability.

3.1.3. Simulation 3
In this simulation, the noisy signal S ′1(x; y) was also assumed to be due to the loss of signal S1(x; y) in

the 6× 6 region, {(x; y) | 0:616x61:06; −0:836y6 − 0:38}. MSEs and MAEs for the resampled signal
f̂(x; y) calculated only in the 6× 6 lost region, are also shown in the two tables mentioned above. The fuzzy
inference approach led to the smallest error.

3.1.4. Simulation 4
In Simulation 4, noisy signal S ′1(x; y) su�ered from losses in regions of Simulation 2 and 3, i.e., {(x; y) | −0:2

6x60:25; −0:296y60:16} and {(x; y) | 0:616x61:06; −0:836y6−0:38}. The MSEs and MAEs for the

Fig. 7. Lena’s eye images. The primary data was 64× 64, with display dimensions of 256× 256 using zero-order hold. (a) The original
image; (b) The noisy image.
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45× 45 point array f̂(x; y) at −26x62 and −26y62 are also shown in Tables 1 and 2, respectively. The
smallest error was still recorded by the proposed approach.

3.1.5. Simulation 5
In the last synthetic signal simulation, we considered another signal S2, which was rougher than S1, given by

S2(x; y) = 3(1− x)2 exp[−x2 − (y + 1)2]− 10(x=5− x3 − y5) exp[−x2 − y2]

−(1=3) exp[−(x + 1)2 − y2]; −26x62; −26y62:

Fig. 8. Resampling using three di�erent methods. (a) Fuzzy rule-based interpolation algorithm; (b) bilinear interpolation algorithm;
(c) cubic convolution interpolation algorithm.
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A 49× 49 point array S2(xk ; yl), where k =0; 1; : : : ; 48; l=0; 1; : : : ; 48, was also created by uniform sampling
S2(x; y). And a 49× 49 point noisy array S ′2(xk ; yl), was created similar to that in Simulation 1. The noisy sig-
nal’s MSE and MAE are also shown in Tables 1 and 2. The 13× 13 point sampled noisy data array Is(i; j) was
sampled from the noisy point array S ′2(xk ; yl); i.e., Is(i; j)= S

′
2(xk ; yl), where i=0; 1; : : : ; 12; j=0; 1; : : : ; 12;

k =4i; l=4j. The sampled noisy data was resampled to a 49× 49 point array f̂(x; y), and the MSEs and
MAEs for f̂(x; y) are also shown in Tables 1 and 2. As in the other simulations, the fuzzy inference approach
produced the smallest errors.
In these simulations and their error measures, the proposed fuzzy rule-based interpolation algorithm demon-

strated the best noise removal and signal recovery abilities.

3.2. Image resampling

2-D signal interpolation algorithms have a wide range of application areas in many image processing
systems. For example, 2-D interpolation algorithms are used for image resampling to change the sizes of
digital images interactively. To demonstrate the power of our algorithm on image resampling, we applied the
2-D interpolation scheme on a 256× 256 image of Lena’s eye. The result was compared with results obtained
from the bilinear and cubic convolution interpolation algorithms. The original image, as shown in Fig. 7(a),
had primary data of 64× 64, with display dimensions of 256× 256 obtained from zero-order hold. Fig. 7(b)
shows the noisy image from zero-order hold, which was created by adding zero-mean Gaussian noise to
the primary image at a signal-to-noise ratio (SNR) of 11.7 dB. Next, the 64× 64 noisy image was put into
the three algorithms and resampled to 256× 256 images. The resampled images from the fuzzy rule-based
interpolation, bilinear, and cubic convolution interpolation algorithms are shown in Figs. 8(a)–(c). Comparing
these three �gures, we can see that our algorithm removed noise better than the other two algorithms and
outperformed the bilinear interpolation algorithm in reducing blocky e�ect. Moreover, the interpolated image
of the proposed algorithm is comparable to that of the cubic convolution interpolation algorithm, in spite of
the much simpler scheme used by our method, as compared to the third-order scheme of the cubic convolution
algorithm.

4. Conclusion

An interpolation algorithm for 2-D signal using fuzzy rule-based inference has been proposed in this pa-
per. The proposed interpolation scheme �rst �nds a bilinearly interpolated main-surface that passes through
four signal samples in the region to be interpolated, and �nds four sub-planes, surrounding the interpolation
region, that re
ect the pixel tendencies of the interpolation region. Some fuzzy if–then rules for these �ve
functions were presented for carrying out 2-D signal interpolation. Because of the inference rules employed
for interpolation, the original signal can be interpolated and resampled very well despite the original signal
having been corrupted by noise. When we applied the proposed algorithm to image resampling, the result was
also very successful.

Appendix A. The deriving of Fc(x; y)

In this appendix, the equivalence of (2) and (5) is proved. From (4),


a
b
c
d


=




xi yj xiyj 1
xi yj+1 xiyj+1 1
xi+1 yj xi+1yj 1
xi+1 yj+1 xi+1yj+1 1



−1


Is(xi; yj)
Is(xi; yj+1)
Is(xi+1; yj)
Is(xi+1; yj+1)


: (A.1)
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Since Nx = xi+1 − xi and Ny =yj+1 − yj, the inverse of the matrix in (A.1) can be derived by




xi yj xiyj 1
xi yj+1 xiyj+1 1
xi+1 yj xi+1yj 1
xi+1 yj+1 xi+1yj+1 1



−1

=




−yj+1=NxNy yj=NxNy yj+1=NxNy −yj=NxNy
−xi+1=NxNy xi+1=NxNy xi=NxNy −xi=NxNy
1=NxNy −1=NxNy −1=NxNy 1=NxNy

xi+1yj+1=NxNy −xi+1yj=NxNy −xiyj+1=NxNy xiyj=NxNy


:

(A.2)

By substituting (A.2) into (A.1), we have

a = − yj+1
NxNy

Is(i; j) +
yj
Nx Ny

Is(i; j + 1)− yj+1
NxNy

Is(i + 1; j)− yj
Nx Ny

Is(i + 1; j + 1);

b = − xi+1
NxNy

Is(i; j) +
xi+1
NxNy

Is(i; j + 1) +
xi
Nx Ny

Is(i + 1; j)− xi
Nx Ny

Is(i + 1; j + 1);

c =
1

NxNy
Is(i; j)− 1

NxNy
Is(i; j + 1)− 1

NxNy
Is(i + 1; j) +

1
NxNy

Is(i + 1; j + 1);

d =
xi+1yj+1
NxNy

Is(i; j)− xi+1yj
Nx Ny

Is(i; j + 1)− xiyj+1
NxNy

Is(i + 1; j) +
xiyj
Nx Ny

Is(i + 1; j + 1):

(A.3)

By substituting the above four coe�cients into Fc(x; y)= ax + by + cxy + d and after a few mathematical
manipulations, we have

Fc(x; y) =
(xi+1 − x)(yj+1 − y)

NxNy
Is(i; j) +

(xi+1 − x)(y − yj)
NxNy

Is(i; j + 1)

+
(x − xi)(yj+1 − y)

NxNy
Is(i + 1; j) +

(x − xi)(y − yj)
NxNy

Is(i + 1; j + 1): (A.4)

Since xi+1 − x = Nx − (x − xi) and yj+1 − y = Ny − (y − yj), it follows that

Fc(x; y) =
[Nx − (x − xi)]

Nx

[Ny − (y − yj)]
Ny

Is(i; j) +
[Nx − (x − xi)]

Nx

(y − yj)
Ny

Is(i; j + 1)

+
(x − xi)
Nx

[Ny − (y − yj)]
Ny

Is(i + 1; j) +
(x − xi)
Nx

(y − yj)
Ny

Is(i + 1; j + 1); (A.5)

which is exactly (5).
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