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Abstract

Many methods for computing optical 
ow (image motion vector) have been proposed while others continue to appear.
Block-matching methods are widely used because of their simplicity and easy implementation. The motion vector is
uniquely de�ned, in block-matching methods, by the best �t of a small reference subblock from a previous image frame in a
larger, search region from the present image frame. Hence, this method is very sensitive to the real environments (involving
occlusion, specularity, shadowing, transparency, etc.). In this paper, a neural fuzzy system with robust characteristics and
learning ability is incorporated with the block-matching method to make a system adaptive for di�erent circumstances.
In the neural fuzzy motion estimation system, each subblock in the search region is assigned a similarity membership
contributing di�erent degrees to the motion vector. This system is more reliable, robust, and accurate in motion estimation
than many other methods including Horn and Schunck’s optical 
ow, fuzzy logic motion estimator (FME), best block
matching, NR, and fast block matching. Since fast block-matching algorithms can be used to reduce search time, a three-
step fast search method is employed to �nd the motion vector in our system. However, the candidate motion vector
is often trapped by the local minimum, which makes the motion vector undesirable. An improved three-step fast search
method is tested to reduce the e�ect from local minimum and some comparisons about fast search algorithms are made. In
addition, a Quarter Compensation Algorithm for compensating the interframe image to tackle the problem that the motion
vector is not an integer but rather a 
oating point is proposed. Since our system can give the accurate motion vector, we
may use the motion information in many di�erent applications such as motion compensation, CCD camera auto-focusing
or zooming, moving object extraction, etc. Two application examples will be illustrated in this paper. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The measurement of optical 
ow (or image motion vector) is a fundamental problem in the processing
of image sequences. The goal is to compute an approximation to the 2-D motion �eld – a projection of
the 3-D velocities of surface points onto the imaging surface. Several methods exist for computing optical

ow: block-matching methods, di�erential techniques, etc. [3]. Regretably, however, these systems are usually
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sensitive to noise, do not easily converge to the desired motion estimation, and have poor accuracy. This
paper introduces neural fuzzy system to attack these problems.
Many methods for computing optical 
ow have been proposed and classi�ed by Barron [3]. Di�eren-

tial techniques, phase-based and energy-based methods, and region-based matching techniques are the most
widely used means for computing the 2-D motion �eld. Di�erential techniques compute velocity from spa-
tiotemporal derivatives of image intensity or �ltered versions of the image (using low-pass or band-pass
�lters) [8,16,26,27,30,31]. One requirement of di�erential techniques is that I(x; t) (image intensity at pixel
location x and time t) must be di�erentiable. This implies that temporal smoothing at the sensor is needed
to avoid aliasing and that numerical di�erentiation must be done carefully. Another problem of di�erential
techniques is that, if more accurate results from the spatiotemporal patterns of image intensity are desired,
then more than two spatiotemporal patterns are required. Regretably, having more than two patterns occupies
much memory and takes much time. Image velocity is de�ned in terms of the phase behavior of band-pass
�lter outputs in phase-based methods. The zero-crossing techniques [6] are classi�ed as phase-based methods
because zero crossing can be viewed as level phase crossing. Energy-based techniques based on the output
energy of velocity-tuned �lters are also called frequency-based methods owing to the design of velocity-tuned
�lters in Fourier domain [9]. Region-based matching methods attempt to �nd the best �t of a small reference
subblock from a previous image frame in a larger, search region from the present image frame [10,18,19].
More clearly, an image frame is segmented into two-dimensional small blocks of N ×N pixels. Each block
searches for the displacement which produces the best match among the candidate blocks in the present frame.
Fast block-matching algorithms can be used to reduce search time [18,19]. However, the fast search algorithms
are easily trapped by the local minimum and thus result in considerable error.
Because of noise or aliasing in the image acquisition process, �nding a perfect match is impossible. Since

fuzzy logic gives greater generality, higher expressive power, an enhanced ability to model real-world problems
and, most importantly, a methodology for exploiting the tolerance for imprecision, it can be applied for image
motion estimation. The fuzzy logic motion estimator (FME) proposed by Lipp [23] is a method based on
block-matching algorithm linked with fuzzy logic. In the FME, for each subblock comparison, the fuzzy logic
system classi�es an (M ×M) subblock in the search region as to its potential membership in the subblock
being matched using fuzzy membership function (FMF). The FME has shown more accurate motion vector
estimates with uniform and a�ne modeled frame-to-frame image motion of real-image data than those from
Horn and Schunk’s optical 
ow algorithm [16] or Netravali and Robbins’ pel recursive algorithm [28]. In the
FME system, however, the generation of membership for each subblock comparison is quite subjective; this
subjectivity in turn harms the accuracy of the motion estimation even if the FME technique has better system
performance than conventional methods do.
This paper integrates the conventional region-based matching method and a �ve-layered neural fuzzy network

into a system to estimate image motion. The backpropagation (BP) learning rule is used for choosing proper
membership functions in order to make this system adapt to di�erent environments. Since the fast block-
matching algorithm is a good choice for reducing search time, it was adopted in this system. However,
since the local minimum problem appears in the searching process of the conventional fast block-matching
algorithms and results in considerable error for the motion estimation, an improved fast block-matching method
is proposed to lessen the local minimum problem. Some comparisons of fast search algorithms are made. This
system is more reliable and accurate for image motion estimation when compared with other methods including
Horn and Schunck’s optical 
ow algorithm, best block-matching, Netravali and Robbins’ (NR) pel recursive
algorithm, FME, and three-step fast block-matching algorithm. As a summary, the signi�cant characteristics
of the proposed system include that it is more robust than several previous methods; it can estimate motion
vector more accurately than several other methods; the system parameters are tunable through neural learning;
each subblock in the search region will be assigned similarity membership contributing di�erent degrees to
the motion estimation; and it adopts a modi�ed fast block-matching method which can reduce local minimum
problem.
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The architecture and learning algorithm of the proposed system are described in Section 2. Some perfor-
mance comparisons are made in Section 3. In Section 4, the applications of the proposed system are illustrated.
Conclusions are summarized in Section 5.

2. The architecture of the neural fuzzy motion estimator

Fig. 1 shows the system architecture of the proposed neural fuzzy motion estimator. It is a �ve-layered
network structure. Fig. 2 is the functional block diagram of this system. First, two image sequences containing
moving objects were processed by a region-based matching technique attempting to �nd a best �t of a small
reference subblock from a previous image frame in a larger search region from the present image frame.
Second, the outputs from region-based matching were fed into a neural fuzzy motion estimator which computed
the motion �eld of the image sequences.
Nodes at layer one were input units representing inputs in linguistic variables. Nodes at layer two were

input term nodes which acted as membership functions for performing the similarity measure of each subblock
in the search region of the present image frame. Layer 3 represented the rule nodes. Layer 4 contained output
term nodes and Layer 5 contained two output nodes producing the crisp image velocity value in the x1 and x2
directions, respectively. In the proposed system, the motion vector was not decided merely by the best �t of
the reference subblock from a previous image frame in the larger search region of the present image frame.
For each subblock matching, a fuzzy membership function (FMF) will give potential membership to each
subblock in the search region. A potential membership represents the con�dence measure of motion vector.
This was performed over all subblocks in the search region. The matching degrees then passed through fuzzy
reasoning process (Layers 3 and 4) and the defuzzi�cation process (Layer 5) to obtain two crisp outputs;
these outputs indicate the motion vector of the reference subblock in the search region. To train (or, more
precisely, to calibrate) the proposed network, a known, uniformly displaced and=or a�ne modeled frame-to-
frame image was used to get the desired motion vectors for learning the proper parameters of the FMFs.
Moreover, a modi�ed fast search scheme was used in this present system. In both learning or processing, the
fast search scheme increased the learning rate or reduced the search time if it could �nd the global minimum
of the matching criterion correctly in the region-based matching algorithm. Each part of this system will now
be described in greater detail.

2.1. Block-matching Algorithm

A block-matching algorithm attempts to �nd a best �t of a small reference subblock from a previous image
frame in a larger search region from the present image frame as depicted in Fig. 3. As the �gure shows,
this algorithm compares the (M ×M) reference subblock with each of those having the same-sized portions
within the (N ×N ) search region. In general, the size of the search region is larger than the reference’s but
much smaller than the image frame containing it. There are many choices for determining the best match,
e.g., the cross-correlation function; mean square error (MSE); mean absolute di�erence (MAD) [5], etc. If
one chooses the mean square error (MSE) as the matching criterion, one has

MSE(d1; d2)=
1
M 2

M∑
i=1

M∑
j=1

[Is(i + d1; j + d2)− Ir(i; j)]2; (1)

where Ir is the reference subblock in the previous image frame, Is is the search region in the present image
frame, N ×N is the size of search region, and M ×M is the size of reference subblock. The displacement
(d1; d2) which minimizes MSE(d1; d2) is selected as the motion vector.
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Fig. 1. System architecture of the proposed neural fuzzy motion estimator (NFME).

Layer 1 (Input layer): The nodes in this layer just transmit input values to the next layer directly. That is,

f= u(1)i and a=f; (2)

where u(1)i =MSE(d1; d2) and i means the ith compared subblock corresponding to displacement (d1; d2) in
the search region.
Layer 2 (Input term nodes): A single node was used to act as a membership function and a bell-shaped

Gaussian function was selected as the input membership function,

B(x; m)= e−1=2·(x−m)
2=�2 ; (3)

where x is the input to the node from Layer 1, and m and � are the center and width of the bell-shaped
function, respectively. In this layer, the center of the bell-shaped function was set to zero and the width was
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Fig. 2. The functional diagram of the proposed neural fuzzy system for image motion estimation.

Fig. 3. Block-matching algorithm.

tuned in the learning procedure to �t di�erent environments. Hence, we have

f=− 1
2
· MSE(d1; d2)

�2
and a≡member(d1; d2)= ef; (4)

where member(d1; d2) is the membership value representing the con�dence measure of each subblock which
displaces d1 and d2 pixels in horizontal and vertical axes, respectively. If member(d1; d2) is close to 1, then
the subblock’s motion vector probably equals (d1; d2); if member(d1; d2) is close to 0, then the subblock
probably does not have a motion vector equal to (d1; d2).
Layer 3 (Rule nodes): The fuzzy inference rules for generating fuzzy outputs are of this form:

If member(d1; d2) then yx1 =D1 and yx2 =D2;

where member(d1; d2) is given in Eq. (4), Di is the fuzzy number of di (e.g., if d1 = 1, then D1 is the fuzzy
number “1”); yx1 and yx2 are the output linguistic variables representing the displacement (in pixels=time-
step) in the horizontal and vertical axes, respectively. The output membership functions de�ned as uniformly
spaced Gaussian functions with overlap were used in this present system. The membership functions for
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Fig. 4. The output membership functions.

output linguistic variable, yx1 , are depicted in Fig. 4. The membership functions for yx2 are exactly the same.
From the above fuzzy rule, there is only one input for each rule node in Layer 3 (see Fig. 1). Hence, the
(rule) node in this layer just transmits the input values to the next layer directly. That is,

f= u(3)i and a=f: (5)

In total, there are (N −M)2 rules for all possible displacements (disp1, disp2) of the reference subblocks in
the search region. In other words, there are (N −M)2 rule nodes in Layer 3.
Layer 4 (Output term nodes): The links at layer four should perform the fuzzy OR operation to integrate

the �red rules which have the same consequence. Hence, we have

f=
∑

member(d1; d2) and a=f (6)

and the link weight is w(4)i = 1.
Layer 5 (Output nodes): The node at this layer performs the defuzzi�cation process. The following function

can be used to approximate the COA defuzzi�cation method:

f=
∑

w(5)ij u
(5)
i and a=

f∑
u(5)i

; (7)

where w(5)ij is the link weight assigned as displacement value di.

2.2. Learning unit

Gaussian function is used as the fuzzy membership function (FMF) in Layer 2 (see Figs. 1 and 2) with
parameter � to be determined adaptively for various environments. The backpropagation (BP) learning rule
is used to �nd the parameter’s proper value. Consequently, training data indicating desired motion vectors
are required for learning. The training data are obtained from a real-image synthetically displaced with a�ne
motion, which is de�ned by[

d1
d2

]
=
[
1− cos(�r) sin(�r)
− sin(�r) 1− cos(�r)

] [
x1
x2

]
+
[
u1
u2

]
; (8)

where [d1; d2]T is the motion vector of the synthetic image, �r is the clockwise angle of rotation, and u1; u2
are the uniform components of the motion in the x1 (vertical), x2 (horizontal) directions, respectively. The
detailed derivation of the learning algorithm is shown below.
The output error is de�ned as

E= 1
2 [yx1 − ŷx1 ]2 + 1

2 [yx2 − ŷx2 ]2; (9)
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where yx1 ; yx2 are the desired outputs in the x1 and x2 directions, respectively, and ŷx1 ; ŷx2 are the corresponding
actual outputs, which are given by

ŷx1 =

∑
i

∑
j miwaij∑

i

∑
j waij

; (10)

ŷx2 =

∑
i

∑
j mjwaij∑

i

∑
j waij

; (11)

aij = e−(1=2)x
2
ij =�

2
ij ; (12)

x2ij =MSE(i; j); (13)

where MSE(i; j) is the mean square error for determining the matching criterion de�ned in Eq. (1), w is the
width of output membership function, and mi; mj are the centers of output membership functions in the x1
and x2 directions, respectively. The backpropagation learning rule then gives

�′ij = �ij +��ij; (14)

��ij =− � @E
@�ij

(15)

=− �@E
@ŷ

@ŷ
@�ij

(16)

=− �
[
@E
@ŷx1

@ŷx1
@�ij

+
@E
@ŷx2

@ŷx2
@�ij

]
(17)

=��1ij +��
2
ij ; (18)

where ��1ij =− �@E=@ŷx1 · @ŷx1 =@�ij and ��2ij = − �@E=@ŷx2 · @ŷx2 =@�ij which can be calculated as follows:
1.

@E
@ŷx1

@E
@ŷx1

= − [yx1 − ŷx1 ]; (19)

2.
@ŷx1
@�ij

@ŷx1
@�ij

=
@ŷx1
@aij

· @aij
@�ij

= [yx1 − ŷx2 ]
M∑
i=1

M∑
j=1



(∑

i

∑
j mi
)
·∑i

∑
j aij −

∑M
i=1

∑M
j=1miaij∑M

i=1

∑M
j=1 aij

2

× e−(1=2)x2ij =�2ij × x3ij
�3ij


 : (20)

In Eq. (20), the term
∑

i

∑
j mi=0, because the output membership functions are chosen as Gaussian functions

symmetrical with respect to the origin. Hence, ��1ij becomes

��1ij = �[yx1 − ŷx1 ]
M∑
i=1

M∑
j=1


−∑M

i=1

∑M
j=1 miaij∑M

i=1

∑M
j=1 aij

2

× e−(1=2)x2ij =�2ij × x3ij
�3ij


 : (21)
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Similarly, ��2ij can be derived as

��2ij = �[yx2 − ŷx2 ]
M∑
i=1

M∑
j=1


−∑M

i=1

∑M
j=1 mjaij∑M

i=1

∑M
j=1 aij

2

× e−(1=2)x2ij =�2ij × x3ij
�3ij


 : (22)

The �nal update rule is

��ij =��1ij +��
2
ij : (23)

Eq. (23) is an update rule for the width of FMFs. Since objects can move arbitrarily in image sequences,
it is reasonable to let all the FMFs have the same width, �. The common width parameter, �, is updated by
the average value of all ��ij for each epoch of learning.

2.3. Fast search algorithm

In the proposed neural fuzzy motion estimator, the motion vectors in image sequences are determined by
all the con�dence measures of candidate locations in the search region, and especially by those locations with
greater membership values. The greatest membership will fall in the location whose MSE value is the global
minimum in the search region. Moreover, it is reasonable to assume that the signi�cant memberships are at
the locations around that with the greatest membership. Hence, when the global minimum of MSE is found
in the search region, we can use 3× 3; 5× 5; : : : MSEs centered at the global minimum of MSE to calculate
the approximate motion vector, which will be close to the desired motion vector. If the global minimum of
MSE can be found without full search, the search time can be reduced and the learning rate can be increased.
Hence, a modi�ed fast search algorithm is incorporated into the learning unit of this present system to speed
up both the learning and processing.
To reduce the heavy computational cost resulting from the massive number of candidate locations, the

three-step fast block search algorithm [19] searches for the best motion vector in a coarse-to-�ne manner.
Fig. 5 illustrates the procedure of the three-step search with an example of motion vector (−7; 5). In the �rst
step, nine sparsely located candidates are evaluated and the one with a minimal MSE is picked out. In the
second step, the search focuses on the area centered at the winner of the previous step, but distances between
candidate locations are shortened by one-half. In the same manner, the third step compares the MSE’s of
the nine locations around the winner found in the second step and then gives the �nal motion vector. The
three-step search algorithm commonly uses the range of d1 =d2 = 7. In this manner, the number of search
locations will decrease to 1=9 of the number of the full search approach.
In practice, many fast block-matching algorithms are trapped by the local minimum, the three-step search

algorithm included. This paper thus proposes a modi�ed fast search algorithm. In the second and third steps,
coarse-to-�ne search is replaced by full search to reduce the extent to which that searching process is trapped
by local minimum. With this modi�cation, the number of search locations will decrease to 1=5 of the number
of the exhaustive search. Some comparisons of the full search, the original 3-step search, and the modi�ed
3-step search are made in the following.

2.4. Experimental results of learning

The target motion vectors of the image sequences from the a�ne motion equation (Eq. (8)) can be found
for updating the parameter, �, of the fuzzy membership functions. The update rule is given by Eq. (23). Three
cases are considered to show the learning ability of the proposed neural fuzzy motion estimator:
• Learning an image with di�erent motion parameters: The training data are made using a real-image syn-
thetically displaced with a�ne motion equation (Eq. (8)). Di�erent rotation angles �r , 4◦; 8◦;−4◦;−8◦ and
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Fig. 5. Three step fast block search algorithm.

Fig. 6. (a), (b) Two di�erent images for learning. (c), (d) Two rotated images for learning.

di�erent uniform translation components (u1; u2), (2; 2); (− 2; 2); (2; − 2); (− 2; − 2) are used to produce
training patterns representing the general motion of moving objects when they move arbitrarily in the image.

• Learning two di�erent images: replacing the above image with a new one, redoing the same experiment,
and observing the value of �.

• Learning an image using di�erent numbers of rules: Di�erent numbers of rules, 3× 3; (1× 1 is the best
blockmatching), 5× 5; 7× 7, 9× 9, are used for an image to see the value of �.
Two di�erent images and two rotated ones for learning are shown in Fig. 6. Some training patterns repre-

sented as the motion �eld 
ow map are depicted in Fig. 7. The �nal values of � updated by di�erent training
patterns made by a�ne motion from two di�erent images are listed in Table 1.
The average value of � is obtained by averaging all the values learned from di�erent training patterns, and

this average will serve as the width parameter of input membership functions. Two average values of � for
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Fig. 7. The desired motion vectors. (a) (u1; u2) = (2; 2); �r = 4◦. (b) (u1; u2) = (2; 2); �r = 8◦. (c) (u1; u2) = (2; 2); �r =−4◦. (d)
(u1; u2) = (2; 2); �r =−8◦.

two di�erent images are observed in Table 1, indicating that the parameter of fuzzy membership function
must be chosen carefully. Hence, one should tune the parameters of input membership functions to �nd a
proper value for �tting di�erent circumstances in practical applications.
As observed from Table 2, di�erent numbers of rules result in di�erent values of �. That is, if one wants

to produce crisp values of motion estimation using di�erent number of rules, then the value of � must be
chosen properly.

2.5. Comparisons of various fast block-matching algorithms

The performance of fast search algorithms is a�ected by local minima. Hence, an algorithm with a bigger
search range than the original three-step search algorithm was proposed to reduce the error. Using the modi�ed
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Table 2
The learned values of the width parameter � when learning using
di�erent number of rules

Rule no. Image 1 Image 2

3 × 3 5.341 5.92
5 × 5 7.597 6.01
7 × 7 19.91 6.61
3 × 3 19.85 8.43

three-step search algorithm described previously, the number of search locations increased from 1=9 to 1=5 of
the number of the exhaustive approach, compared with the original 3-step search algorithm. Two synthetically
uniform translated images in Fig. 6 were used to examine the performance of the fast search and improve
fast search algorithms. The full search algorithm may be regarded as having the perfect performance (i.e., 0%
error rate) in the searching process, then the error percentage of three-step and modi�ed three-step methods
with respect to the full search algorithm was obtained. The original three-step search scheme had a 54.32%
error rate, while the modi�ed method with bigger search range had about 20.26% error. The local minimum
problem still existed in the improved method. Hence, the learning rate could be increased e�ectively if the
fast search algorithm worked well in the search process.

3. Test and comparisons of synthetic image sequences

This section examines the performance of the proposed and some existing image motion estimation tech-
niques on synthetic image sequences for which 2-D motion �elds have been known. Before discussing the
experimental results, however, it is essential to describe the image sequences used for comparison and the
measures of error.

3.1. Synthetic image sequences

The main advantage of using synthetic inputs is that the 2-D motion �elds and scene properties can be
controlled and tested in a methodical way. One may use the known motion vectors to quantify the performance
of a speci�c algorithm. On the other hand, it must be kept in mind that such inputs are usually clean signals
(involving no specularity, shadowing, transparency, occlusion, etc.) and therefore this measure of performance
should be taken as an optimistic bound on the expected errors with real-image sequences. The synthetic images
are made by means of a�ne motion (shown in Eq. (8)), and the synthetic image sequences include
• Translation sequences: Results of the case with velocity v=(− 3; 2) are reported (see Fig. 8). Hence, the
desired motion vectors will fall in location (− 3; 2) of the 2-D plane if one represents the motion vectors
using Cartesian coordinate system. The better the motion estimation is, the closer the estimated motion
vectors will be to the point (− 3; 2). This phenomenon can be observed from the scatter map of the motion
vectors.

• Rotation sequences: For this experiment, the image is rotated 6◦ clockwise using a�ne modeled motion
to produce the present image frame (see Fig. 8).

3.2. Image motion estimation techniques for comparisons

Synthetic image sequences of moving brightness patterns as mentioned above have been processed by many
di�erent methods including Horn and Schunck’s, FME, Netravali and Robbins’ pel recursive algorithm, best-�t
block-matching, and this paper’s neural fuzzy motion estimator. These methods are described as follows.
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Fig. 8. Testing images. (a) Original image. (b) Image after translation, v= (− 3; 2). (c) Image after rotation, �r = 6◦ clockwise.

• Horn and Schunck (HS) [16]: Horn and Schunck [16] combined the gradient constraint with a global
smoothness term to constrain the estimated velocity �eld C=(u(x; t); v(x; t)) in minimizing the error equa-
tion. The gradient constraint is

5 I(x; t) · v+ It(x; t)= 0; (24)

where It(x; t) denotes the partial time derivative of I(x; t), 5I · v denotes the usual dot product, and
5I(x; t)= (Ix(x; t); Iy(x; t))T. The total error to be minimized is∫

D
[(5I · v+ It)2 + �2(|| 5 u||22 + || 5 v||22)] dx (25)

de�ned over a domain D, where the magnitude of � re
ects the in
uence of the smoothness term. This
study used �=50 because it produced better results in most test cases. Iterative equations are used to
minimize Eq. (25) to obtain motion vectors:

uk+1 = �uk − Ix[Ix �uk + Iy �vk + It]
�2 + I 2x + I 2y

; (26)

vk+1 = �vk − Iy[Ix �uk + Iy �vk + It]
�2 + I 2x + I 2y

; (27)

where k denotes the iteration number, u0 and v0 denote initial velocity estimates (here set to zero), and
�uk ; �vk denote neighborhood averages of uk and vk . At least 100 iterations were used in this present study
to obtain better results. The method with spatiotemporal aliasing was implemented and the subsequent
derivative estimates [16] were also improved.

• Fuzzy logic motion estimator (FME) (Lipp [23]): Based on the block-matching algorithm, this technique
calculates the displaced frame distortion (DFD) using

DFD(d1; d2)=
M∑
i=1

M∑
j=1

[Is(i + d1; j + d2)− Ir(i; j)]2; (28)

where (d1; d2) is the motion vector, M is the reference block size, Ir(i; j) is the reference subblock in
the previous image frame and Is(i; j) is the search region in the present image frame (with origin corre-
sponding to the upper left-hand corner of the subblock in the previous image). The DFD(0; 0) is used as
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a normalization factor in de�ning the following membership value, which plays the same role as that in
Eq. (4):

member(d1; d2)=



1− 5DFD(d1; d2)

DFD(0; 0)
if
5DFD(d1; d2)
DFD(0; 0)

¡ 1;

0 otherwise:
(29)

In defuzzi�cation, uniformly spaced triangular membership functions with little overlap (similar to those
shown in Fig. 4) are used for the output membership functions. The outputs are combined using fuzzy
centroid defuzzi�cation to produce sharp outputs for directions x1 (vertical) and x2 (horizontal).

• Netravali and Robbins’ Pel recursive algorithm (NR) [28]: This motion estimation method attempts to
minimize recursively a certain quantity (function of the motion estimation error). If the changes in successive
image frames are due to translation of an object, then the algorithm iterates in a gradient or steepest descent
direction such that the consecutive estimates converge to an estimate of translation. It is noted that since
the NR approach considers only the point-to-point displacement, it relates to image translation only rather
than to rotation. Assume I(x; t) and I(x; t − �) are the intensity values of the two successive frames as a
function of spatial location x (a two-dimensional vector) at time t. The time between the two frames is �.
If an object moves in translation, then in the moving area one has

I(x; t)= I(x−D; t − �); (30)

where D is the translation vector of the object during the time interval [t − �; t]. The frame di�erence at
spatial position x is given by

FDIF(x) = I(x; t)− I(x; t − �) (31)

= I(x; t)− I(x+D; t): (32)

In the recursive estimation scheme, the displaced frame di�erence DFD(x; D̂
i−1
) analogous to FDIF(x) is

de�ned by

DFD(x; D̂
i−1
)= I(x; t)− I(x− D̂i−1; t − �); (33)

D̂
i
= D̂

i−1
+U i ; (34)

where D̂
i
is the ith displacement estimate, D̂

i−1
is an initial estimate of D̂

i
, and U i is the update of D̂

i−1

for making it more accurate (i.e., the estimate of D − D̂i−1). Then the estimator can be derived as

D̂
i
= D̂

i−1 − �DFD(xa; D̂i−1)5 I(xa − [D̂i−1]; t − �); (35)

where 5 is the gradient with respect to x, � is a positive scalar constant, and a pixel at location xa is

predicted with displacement D̂
i−1
.

• BF (Best-�t block-matching): This technique is widely used for the motion estimation because of its
simplicity and coding e�ciency for motion information. A detailed description of this technique is in
Section 2.

• Neural fuzzy motion estimator (NFME): The authors propose this new technique introduced in Section 2 for
image motion estimation. This system can learn proper system parameters for di�erent circumstances and
has been tuned using various training patterns obtained from a�ne motion equation (Eq. (8)). The rotation
angles �r , 4◦, 8◦, −4◦, −8◦ and the uniform translation components (u1; u2)T; (2; 2); (− 2; 2); (2; − 2);
(− 2; − 2) were used to �nd the proper value of � as described in Section 2.3. From these training data,
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the value �=6:067 was obtained as the parameter of input fuzzy membership functions. Although the
synthetical images for comparisons were displaced uniformly (− 3; 2) and rotated 6◦ clockwise, which
di�ered from training patterns, one will see the more accurate motion estimation resulted from this system
in the following comparisons. The comparisons also show that the proposed system is more robust than
the others.

3.3. Comparison criteria and results

Some criteria must be de�ned to compare the performance of di�erent methods. The �ve criteria used here
are the root-mean-square velocity di�erence in the x1-direction (err1), the root-mean-square velocity di�erence
in the x2-direction (err2), the average angle di�erence (�err) of motion vector, the root-mean-square error of
velocity (RMSE), and the average motion vector ( �Vx1 ; �Vx2 ) in translation test. These �ve criteria are de�ned
as follows:

err1=

√
1

n1 · n2
∑∑

[D−Vx1 − Vx1 ]2; (36)

err2=

√
1

n1 · n2
∑∑

[D−Vx2 − Vx2 ]2; (37)

�err =
1

n1 · n2
∑∑∣∣∣∣tan D−Vx2

D−Vx1
− tan Vx2

Vx1

∣∣∣∣ ; (38)

RMSE=

√
1

n1 · n2
∑∑[√

D−Vx1
2 + D−Vx2

2 −
√
Vx1

2 + Vx2
2
]2
; (39)

( �V x1 ; �V x2 ) =

(
1

n1 · n2
∑
i

∑
j

Vx1 (i; j);
1

n1 · n2
∑
i

∑
j

Vx2 (i; j)

)
; (40)

where D−Vx1 and D−Vx2 are desired motion vectors, Vx1 and Vx2 are actual motion vectors, and n1 × n2
is the size of an image frame. Three types of performance representation are used: (i) motion vector 
ow
map – represents motion vector at every location (x1; x2) by a small arrow whose length and direction are
proportional to the motion vector’s magnitude and angle; (ii) motion vector scatter map – represents motion
vectors on the Cartesian coordinate plane; and (iii) error table – lists of all the errors in Eqs. (36)–(40) for
comparison.
Fig. 9(a) and (b) show the 
ow map and scatter map, respectively, of the desired motion vectors when

the image was uniformly displaced by − 3 pixels in the vertical direction and 2 pixels in the horizontal
direction. Fig. 9(c) is the 
ow map computed by the HS method, and Fig. 9(d) shows its scatter map. The
motion estimation had err1=0:2283 pixels, err2=0:7839 pixels, �err = 20:095 degrees, RMSE=0:7191, and
( �Vx1 ; �Vx2 ) = (− 1:43; 1:35) as shown in Table 3. Figs. 9(e) and (f) indicate the motion estimation computed from
the FME method, which had err1=0:3952 pixels, err2=0:6802 pixels, �err = 12:448 degrees, RMSE=0:7421,
and ( �Vx1 ; �Vx2 ) = (− 2:51; 2:02). Figs. 10(g) and (h) are the 
ow map and scatter map representing the motion
estimation of the NR recursive algorithm, which had err1=0:5009 pixels, err2=0:3555 pixels, �err = 6:258
degrees, RMSE=0:6877, and ( �Vx1 ; �Vx2 ) = (− 2:91; 2:35). These errors are listed in Table 3. Figs. 10(i) and
(j) show the motion estimation resulting from the BF method. The corresponding errors are listed in Table 3.
Fig. 10(j) and Table 3 indicate that the motion estimation computed from the BF method was error-free
in the translation test. This 
awlessness is due to the fact that the signal made from an integer-translated
image is clean (with no shadowing, specularity, transparency, occlusion, etc.); consequently, BF �nds a motion
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Fig. 9. Translation test. (a) Desired 
ow map. (b) Desired scatter map. (c) HS 
ow map. (d) HS scatter map. (e) FME 
ow map.
(f) FME scatter map.

vector which is a perfect match in the search region from the present image. As will be see later, BF showed
its shortcoming when it could not �nd a perfect match in the rotation test. Figs. 10(k) and (l) are the 
ow map
and scatter map representing the motion estimation of the NFME method, which had err1=0:0044 pixels,
err2=0:0042 pixels, �err = 0:065 degrees, RMSE=0:0085, and ( �Vx1 ; �Vx2 ) = (− 3; 1:99). This result was very
close to the desired one.
Fig. 11(a) is the 
ow map representing the desired motion vector when the image is rotated 6◦ clockwise.

Figs. 11(b)–(f) are the estimated 
ow maps using various motion estimation methods. The corresponding
error information is shown in Table 3. As observed from Table 3, the NFME method performs the best
among all the compared methods. It was also found that the motion estimation obtained from the BF method
was not error-free any more: this was because the perfect-match motion vectors did not always exist when
pixels moved in the rotation style. From the comparison results shown as 
ow maps, scatter maps, and an
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Table 3
Error table

Translation (− 3; 2) Rotation 6◦

err1 err2 �err RMSE ( �Vx; �Vy) err1 err2 �err RMSE

HS 0.2283 0.7839 20.095 0.7191 (−1:43; 1:35) 0.8136 1.0729 31.459 1.5315
FME 0.3592 0.6802 12.448 0.7421 (− 2:51; 2:02) 0.8849 0.8789 34.703 1.0837
BF 0 0 0 0 (− 3:2) 0.3251 0.3805 17.556 0.4155
NR 0.5009 0.3555 6.258 0.6877 (− 2:91; 2:35) 2.7433 3.5037 63.68 1.9491
NFME 0.0044 0.0042 0.065 0.0085 (− 3; 1:99) 0.2833 0.3152 12.648 0.3597

3-step 0.9648 0.7344 18.652 1.1971 (− 2:59; 1:85) 0.8094 1.2068 33.657 1.2785
Modi�ed 0.5926 0.5360 12.346 0.7539 (− 2:53; 1:48) 0.6646 0.8984 27.100 0.9192
3-step

Fig. 10. Translation test (continued). (g) NR 
ow map. (h) NR scatter map. (i) BF 
ow map. ( j) BF scatter map. (k) NFME 
ow map.
(l) NFME scatter map.



C.T. Lin et al. / Fuzzy Sets and Systems 114 (2000) 281–304 297

Fig. 11. Rotation test. (a) Desired 
ow map. (b) HS 
ow map. (c) FME 
ow map. (d) NR 
ow map. (e) BF 
ow map. (f) NFME

ow map.

error table in Figs. 9–11, and Table 3, one can infer that the proposed NFME method is very robust and
accurate in both the translation and rotation tests.
Performance comparisons of the three-step fast search and modi�ed three-step fast search algorithms are

shown in Table 3 and Figs. 12(a)–(f). A modi�ed three-step algorithm could reduce the error from the local
minimum. The number of search locations were 1=5 of those from the exhaustive search approach.
A�ne motion with a large rotation angle, �r = 12◦, was also tested in this study. It is noted that this rotation

angle is outside the range of the training data used for training the NFME system in Section 2. The parameter,
reference block size 11× 11, and search region 31× 31 were used to examine the performance of various
methods described in Section 3.2. The results are shown in Fig. 13 and Table 4. The same conclusion was
still reached: the NFME system provides the most accurate estimation when the image is rotated with a large
angle. The average time took by each motion estimation algorithm for computing the motion vectors of an
image is listed in Table 5, where the programs were run on a PC486-66. The table shows that the proposed
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Fig. 12. Tests of fast search algorithms. (a) 3-step 
ow map. (b) 3-step scatter map. (c) Modi�ed 3-step 
ow map. (d) Modi�ed 3-step
scatter map. (e) 3-step 
ow map (rotation test). (f) Modi�ed 3-step 
ow map (rotation test).

NFME system takes the same time as FME and BF methods, longer time than HS and NR methods, but it
reaches the highest accuracy.

4. Applications

4.1. Moving image compression

There are many methods used to compress data for transmission or storage of images. Frame skipping is
one of the simplest methods of data compression for interframe motion images. For simplicity, suppose only
the alternate frames are skipped. With no knowledge of the motion trajectory of the pixels, a skipped frame
is generally reproduced either by repeating the preceding frame or by interpolation between the preceding and
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Fig. 13. A�ne motion with large rotation angle. (a) Desired 
ow map. (b) HS 
ow map. (c) FME 
ow map. (d) NR 
ow map.
(e) BF 
ow map. (f) NFME 
ow map.

the following frames. Both of these methods harm the quality of motion reproduction, however. The former
results in jerkiness in the reproduction of the motion while the latter blurs the moving areas.
Let U2k be the (2k)th frame where frames 2; 4; : : : ; 2k; : : : , have been skipped. Then U∗

2k , the reproduced
value of U2k , is obtained (without motion compensation) as follows:
Frame repetition:

U ∗
2k(m; n)=U2k−1(m; n): (41)

Frame interpolation:

U ∗
2k(m; n)=

1
2{U2k−1(m; n) + U2k+1(m; n)}: (42)

The disadvantages of frame repetition and interpolation can be overcome by predicting or interpolating the
pixels of the skipped frame along its motion trajectory. Hence, with motion compensation, frame repetition
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Table 4 Table 5
The performance of various estimation methods on the a�ne Average time took by each motion estimation algorithm for
motion with large rotation angle computing the motion vectors of an image

Translation (− 3; 2) Rotation 12◦

err1 err2 �err RMSE

HS 2.0931 2.0834 38.616 3.1053
FME 2.0217 1.7948 33.401 3.2401
NR 1.9745 3.1130 49.448 2.6358
BF 0.7207 0.6481 18.618 0.6922
NFME 0.6606 0.6179 15.798 0.6231

HS NR FME BF NFME

Time (s) 15 25 75 75 75

and frame interpolation equations are replaced by

U ∗
2k(m; n)=U2k−1(m+ q; n+ l) (43)

and

U ∗
2k(m; n)=

1
2{U2k−1(m+ q; n+ l) + U2k+1(m+ q′; n+ l′)}; (44)

respectively, where (q; l) and (q′; l′) are the motion vector of U2k relative to the preceding and the following
frames, respectively. It is noted that q; l; q′; l′ in Eqs. (43) and (44) are all integer numbers in the image
coordinates. How does one tackle such a problem if q; l; q′; l′ are not integer numbers as those produced by
the proposed NFME method?
Coding and decoding systems (codecs) that use motion-compensation with fractional-pel accuracy have been

reported in [7,12–15,20,24]. Typically, fractional-pel accuracy is achieved by simple bilinear interpolation
which produces a spatially blurred prediction signal. Improvement gained in this way is referred to as the
“�ltering e�ect”. Sinc-interpolation, bilinear interpolation, and Wiener �ltering were compared at integer-pel,
1=2-pel, 1=4-pel, and 1=8-pel accuracies. Remarkably, for the neural fuzzy motion estimator (NFME), the
motion vector’s accuracy was at in�nitesimal-subpixel. Hence, we propose a compensation method called the
quarter compensation algorithm (QCA), an in�nitesimal-subpixel compensation method, to compensate for
inter-frame of images according to NFME’s motion estimation.
Suppose the origin point of an image is in the left-top corner and the positive directions are rightward and

downward. Assume the motion vector v=(v-row; v-col) in some location (m; n) has been evaluated, and both
v-row and v-col are 
oating numbers. Without loss of generality, it is assumed that both v-row and v-col are
positive; i.e., the point in location (m; n) moves toward the lower-right corner. One distinguishes the integer
part and decimal part of the motion vector as follows:

v-row= q+ d-row; (45)

v-col= l+ d-col; (46)

where (q; l) and (d-row; d-col) are the integer and decimal part of (v-row; v-col), respectively. The square
which was in location (m; n) originally is now situated on the four locations (m+ q; n+ l), (m+ q+1; n+ l),
(m+ q; n+ l+1), and (m+ q+1; n+ l+1). A moved square is thus divided into four portions, with the area
of each portion decided by the decimal part, (drow ; dcol), of the motion vector v. The area of each portion
is viewed as a weighting factor in deciding new gray values. In other words, the gray value of the pixel,
which was originally in location (m; n), is distributed into the new gray values of the four locations (pixels)
according to these weights.
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Hence, for any location (x1; x2) in the compensated image frame, its gray value U ∗
2k(x1; x2) is decided by

the following equation:

U ∗
2k(x1; x2)=

∑
(m;n)∈D w(m;n)→ (x1 ; x2) · U2k−1(m; n)∑

(m;n)∈D w(m;n)→ (x1 ; x2)
; (47)

where (x1; x2) is the image coordinate, D
4
= {(m; n) | one of the four portions of the moved points U2k−1(m; n)

is located in the position (x1; x2)}, w(m;n)→ (x1 ; x2) is the area (weighting factor) of the portion of U2k−1(m; n)
that falls in the location (x1; x2),

∑
D w(m;n)→ (x1 ; x2) is the normalization factor.

For any location (x1; x2) in the compensated image frame, its gray value can be recovered by Eq. (47).
The numerator denotes the sum of product of the weighting factors and the gray values of the moved points
which fall in the location (x1; x2), and the denominator is the sum of all weighting factors, which is used as
the normalization factor in the recovering process.

Experiment. Two real-image frames containing moving objects were tested using the quarter compensation
algorithm (QCA) for interframe motion compensation. The result is compared with that of the integer com-
pensation method described by Eq. (43), and the performance is measured by normalized mean square error
(NMSE):

NMSE=
1

N1×N2
∑
n1

∑
n2

[U2k(n1; n2)− U ∗
2k(n1; n2)]

2; (48)

where U2k(n1; n2) is the original skipped image, U ∗
2k(n1; n2) the compensated image from U2k−1(n1; n2), and

N1×N2 the dimension of image frame.
The results are shown in Fig. 14. By integrating NFME with the QCA to compensate for the interframe

of image, better results than using the integer-compensated method can be found as observed from Fig. 14.
Without motion compensation (i.e., the interframe is skipped), the error (NMSE) is up to 22.514. This error
is reduced to 10.658 using the integer compensation method, to 7.342 using the bilinear interpolation scheme,
and to 2.764 using the proposed QCA.

4.2. Multiple moving object extraction

Letting the computer �nd a speci�c item among many uncertain moving objects is a di�cult task. Human
beings can easily distinguish di�erent moving objects and grab them even when the light is dim or the object’s
outline is vague. However, a computer must have more useful information, such as motion vector, to catch
the moving objects and discard the redundancies in an image frame. It is possible that there is more than one
moving object in an image frame, but only one is sought. How to extract it then becomes an important task
in order to interpret or recognize the object. Obviously, the reasonable motion information can help to extract
a moving object from image sequences. More accurate motion vectors will provide more useful information
about the moving objects. Hence, the proposed NFME can be used to compute motion vectors and extract
moving object because the NFME can provide accurate dynamic information. An experiment on multiple
moving object extraction in this application was conducted.
Two image sequences with two moving objects contained in them are shown in Fig. 15. The motion

estimation computed by the NFME system is shown in Fig. 16, where one can see clearly the two moving
objects. As observed from this diagram, two di�erent regions corresponding to the two di�erent moving
objects can be distinguished and extracted based on the combined information of moving angles and velocities
transformed from the estimated motion vectors. Hence, a moving object toward the North and with a velocity
of about 2 pixels=frame was extracted as shown in Fig. 15(d).
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Fig. 14. Motion estimation and compensation. (a) The previous image. (b) The present image. (c) The compensated image using the
integer compensation method. (d) The compensated image using the QCA.

Fig. 15. The images for multiple moving objects extraction. (a) The previous image. (b) The present image. (c) The moving objects.
(d) The extracted moving object.

5. Conclusions

The neural fuzzy motion estimator presented in this paper has been shown to provide accurate motion
vector estimates for uniform and a�ne modeled object’s motion. Based on block matching, each subblock in
the search region is assigned a similarity membership contributing di�erent degree to the estimated motion
vector in the neural fuzzy motion estimator. This system is more reliable and robust in motion estimation
than other methods such as Horn and Schunck’s optical 
ow, fuzzy logic motion estimator (FME), NR, fast
block-matching, etc. Motion estimation and compensation are an integral part for video compression since it
enables the removal of naturally existing temporal redundancies. In this paper a neural motion compensation
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Fig. 16. The 
ow map of multiple moving objects.

method, the QCA, is proposed. The QCA can perform in�nitesimal-subpixel interframe motion compensation.
This algorithm provides better results than the conventional methods based on integer motion vectors for
the interframe motion compensation. The proposed neural fuzzy motion estimator can be applied in various
dynamic image-related applications where motion information is concerned. The proposed system is espe-
cially e�ective for extracting multiple moving objects. In this application, useful motion-related features were
extracted from the estimated motion vectors. This is an important technique that can be processed at the
earlier stages of vision, prior to higher level tasks such as segmentation, recognition, or interpretation. Motion
information has become a basic knowledge for image understanding, image compression, vision-based control,
etc. The accurate motion �eld estimated by the proposed system can provide useful motion information for
making better decisions.
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