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Tables V–VII that C and D are highly evaluated by all clients. The rank
of E is middle because it is highly evaluated by the clients except the
most credible agent. A and B obtain relatively low evaluations from all
clients so that they are ranked poorly.

V. CONCLUSIONS

In this paper, new fuzzy aggregation operators based on FDEA are
proposed to rank the multi-attribute objects in ACE systems. Different
from the other methods which predetermine the weight factors, the pro-
posed model can find out the optimal weight factors by fuzzy linear pro-
gramming to reflect the inherent preference of clients which give some
evaluation on the attributes of objects evaluated. Because each evalu-
ated object tries to find out its weight factors of attributes to its own ad-
vantage under the same constraints, the proposed aggregation methods
are fair-competition ones with more objectivity for ranking the objects.
Three different models are proposed based on fuzzy inequality relation,
possibility, and necessity measures, respectively. Given a fuzzy con-
straint, there are always different explanations on it because a fuzzy
constraint is a kind of human thinking featured by ambiguity. These
three models are used to characterize the different viewpoints on fuzzy
constraints in FDEA models. Generally speaking, the fuzzy constraint
in the sense of necessity measure is stronger than that in the sense of
possibility measure. Users can choose a suitable model based on his
preference.
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Recurrent Learning Algorithms for Designing Optimal
Controllers of Continuous Systems

Yi-Jen Wang and Chin-Teng Lin

Abstract—This paper proposes the recurrent learning algorithm for
designing the controllers of continuous dynamical systems in the optimal
control problems. The designed controllers are in the form of unfolded
recurrent neural networks embedded with physical laws coming from the
classical control techniques. The proposed learning algorithm is charac-
terized by its double-forward-recurrent-loopsstructure for solving both the
temporal recurrentand thestructure recurrentproblems. The first problem
is resulted from the nature of general optimal control problems, where the
objective functions are often related to (evaluated at) some specific (instead
of all) time steps or system states only, causing missing learning signals
at some time steps or system states. The second problem is due to the
high-order discretization of the continuous systems by the Runge–Kutta
method that we perform to increase the control accuracy. This dis-
cretization transforms the system into several identical subnetworks
interconnected together, like a recurrent neural network expanded in the
time axis. Two recurrent learning algorithms with different convergence
properties are derived; the first- and second-order learning algorithms.
The computations of both algorithms are local and performed efficiently as
network signal propagation. We also propose two new nonlinear controller
structures for two specific control problems:1) two-dimensional (2-D)
guidance problem and 2) optimal PI control problem. Under the training
of the proposed recurrent learning algorithms, these two controllers can
be easily tuned to be suboptimal for given objective functions. Extensive
computer simulations have shown the optimization and generalization
abilities of the controllers designed by the proposed learning scheme.

I. INTRODUCTION

In optimal control problems, the theory of calculus of variations is
often used to find the necessary conditions for designing optimal con-
trollers [1]. However, this approach requires precise system model with
extra system states (called “costates”) and relies heavily on the non-
linear programming techniques, resulting in high computational com-
plexity. To attack these problems, neuro-controllers have recently be-
come popular for suboptimal control of discrete-time dynamical sys-
tems [2]–[4]. Although the controller designed by the theory of cal-
culus of variations is globally optimal, it requires precise modeling of
the controlled system. This is difficult, if not impossible, to attain in the
real world, and thus the suboptimal control is enough for most practical
applications. The existing neuro-controllers are usually designed by ap-
plying the backpropagation (BP) learning algorithm [5] on feedforward
neural networks. However, since the objective function of an optimal
control problem is often related to (evaluated at) some specific (instead
of all) time steps or system states (in words of neural learning, only the
critics or desired values of some system states at some time steps are
available for controller evaluation and learning), the normal supervised
learning schemes such as BP cannot be used directly in such cases. We
call this difficulty of learning astime-recurrentlearning problem.

Several researchers applied the learning algorithms of recurrent
neural networks for designing optimal controllers to solve the
time-recurrent learning problem [6]–[9]. The concept is to expand
the whole system [including the controller and plant model (see
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Fig. 1. (a, left) Block diagram of a continuous system with a zero-order holder (ZOH) and a controller [g(�)]. (a, right) Block diagram of the system in (a, left)
when the continuous system is discretized by Z-transform [denoted by (i)]. (b) The whole system in (a, right) or in (c) [denoted byA(i)] expanded in time
sequences in the temporally optimal control problem. (c) Block diagram of the system in (a, left) when the continuous system is discretized by the four-order
Runge–Kutta method, where (�) is the describing function of the continuous system.

Fig. 1(a)] in the time axis as shown in Fig. 1(b). Since the desired
(critic) values of some system states are available only at specific
time steps [for example, the desired value is available only at the final
time stepT in Fig. 1(b)], a recurrent learning algorithm is required
to assign the critic value to each time step properly for tuning the
parameters of the controller. In the existing recurrent neural learning
approaches for optimal control, the controlled continuous systems
are usually discretized by the Z-transform, and the gradients of error
(objective) function are obtained by using the gradient descent method
recurrently to tune the neuro-controllers. The shortcomings along
with these approaches are the bad modeling precision of Z-transform
discretization and low convergence speed of gradient descent methods.
Although higher order system modeling and higher order learning
scheme can enhance the control accuracy, the corresponding recurrent
learning algorithm is not easy to derive. Another disadvantage of
the normal neuro-controllers is their bad generalization ability for
exterpolation [10] due to the “black-box” structure of normal neural
networks without physical laws embedded. This makes the normal
neuro-controllers less robust. These shortcomings need to be solved
in practical applications, and they are the points we want to attack in
this paper.

To design the optimal controller for a continuous system in this
paper, we shall first apply the classical control techniques (such as
the normal optimal control theory and PID control) to form the basic

structure of the controller, in which the gains are viewed as unknown
parameters. These gains are then tuned to become optimal parameters
for a given objective function of the optimal control problem through a
neural-network-type recurrent learning algorithm derived in this paper.
Such kind of optimal controllers is quite robust, since they embed
physical laws in their network structure [11]. For practical applica-
tions, we consider a controller with zero-order holder. To obtain higher
control accuracy, we apply the Runge–Kutta method [12] to perform
high-order discretization of the continuous plant model directly, and
then view the discretized system as a special neural network [see
Fig. (1)]. Since this discretization process results in several identical
subnetworks interconnected in the way described by the Runge–Kutta
algorithm, the formed network is like a recurrent neural network
expanded in the time axis. The outputs of the subnetworks form the
internal states of the designed optimal controller, which are analogous
to thecostatesin the theory of calculus of variations approach from
the computational complexity point of view. However, instead of
being defined explicitly in the latter approach, the internal states are
obtained from the system states directly through neural learning in our
approach. The learning of the network formed by the Runge–Kutta
method is identified as thestructure-recurrentlearning problem. Due
to both the structure-recurrent and time-recurrent learning problems
faced by our optimal controller, the tuning of the controller gains
(parameters) is a recurrent learning problem. Hence the kernel of



582 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000

this paper is to derive a recurrent learning algorithm for this learning
task. With this learning algorithm, an optimal controller with good
generalization (robustness) capability and high control accuracy can
be obtained for a continuous system.

There are two approaches to deriving the recurrent learning rules;
forward andbackwardrecurrent methods [6]. We adopt the forward
recurrent method in this paper for its less requirement of computer
storage and easy implementation of software program. In deriving
the forward recurrent learning rules, we first use the steepest descent
method [5] for its simple arithmetic operations to get a first-order
recurrent learning algorithm. Since the convergence speed of this
learning algorithm is quite low, we further derive a second-order
recurrent learning algorithm based on the order derivative method [13]
to speed up the convergence. The basic concept of this second-order
learning algorithm is to find the curvature of the error surface for
tuning the learning constants in the algorithm adaptively. This is
very similar to the Newton’s method, but avoids the complexity of
finding the inverse of Hessian matrix. Although similar neural learning
algorithms had been proposed previously [5], few is applied to both
the structure- and time-recurrent learning.

Another major contribution of this paper is in proposing two new
nonlinear controller structures for two specific control problems. They
are two-dimensional (2-D) guidance problem and optimal PI control
problem. The new controller structure for the first problem need not
compute or predict the “time-to-go” (Tgo) value in a guidance problem.
For the second problem, we propose a generalized PI controller which
is a nonlinear controller. Under the training of the proposed recurrent
learning algorithms, these two controllers can be easily tuned to be-
come suboptimal controllers for given objective functions. Such sub-
optimal controllers cannot be designed by using the normal linear con-
trol theory or algorithms.

The rest of this paper is organized as follows. Section II details
the derivation of the first-order and second-order recurrent learning
algorithms for the controller of a Runge–Kutta-type discretized
dynamical system with zero-order holder. Section III presents three
simulation examples to demonstrate the applicability of the proposed
learning scheme. These include a one-dimensional (1-D) boundary
value problem, a 2-D guidance problem, and the optimal PI control
of a nonminimal phase linear dynamical system. In this section, we
also compare the convergence property of the two proposed recurrent
learning algorithms. Finally, conclusions are made in Section IV.

II. RECURRENTLEARNING ALGORITHMS FORDESIGNING OPTIMAL

CONTROLLER

Consider a time-invariant continuous system with a controller and a
zero-order holder described by

_xxx(t) =  (xxx(t); uuu(i)); uuu(i) = g(xxx(i); !!!) (1)

where
xxx 2 <n system states;
uuu 2 <m controller outputs that are functions of system states;
!!! 2 <l controller gains;
i index for sampling timeh, i.e., t 2 [ih; (i + 1)h]; i =

1; � � � ; N .
SupposeE is the performance index of the system in (1) which is a
function ofxxx and!!!. For example,E may represent the total system
input (controller output) energy, or/and the difference between the final
system states (e.g., velocity, position) and their corresponding desired
(target) values. The optimal controller design problem for the system
in (1) is to find!!! that minimizesE.

In this section, we shall find the order derivatives ofE with re-
spective to!!! and then derive recurrent update rules for parameters!!!.

The derivation is similar to that for recurrent learning algorithms in
neural networks [8], [9], [14]. However, to achieve high control accu-
racy, we discretize the continuous system in (1) to become a four-order
Runge–Kutta-type model. This makes the derivation of the recurrent
learning rules less straightforward and some attentions and skills need
to be paid and applied. Two recurrent learning algorithms with dif-
ferent convergence properties are proposed in the following two Sec-
tions II-A and II-B . They are first- and second-order recurrent learning
algorithms, respectively.

A. First-Order Recurrent Learning Algorithm

In this section, we apply the four-order Runge–Kutta method to dis-
cretize the system described by (1), and find the first-order order deriva-
tives of the system to derive the first-order recurrent learning algo-
rithm. By the gradient descent method based on order derivative (i.e.,
first-order order derivative), the forward recurrent learning rule for!!!
in (1) is

!!!j(i) = !!!j(i� 1) + �
@+E

@!!!j
; j = 1; � � � ; l

where

@+E

@!!!j
=

N

i=1

@E

@xxx(i)

@+xxx(i)

@!!!j
+

@E

@uuu(i)

@+uuu(i)

@!!!j
(2)

and
@+xxx(i)

@!!!j
=
@xxx(i)

@!!!j
+

@xxx(i)

@xxx(i� 1)

@+xxx(i� 1)

@!!!j

+
@xxx(i)

@uuu(i� 1)

@+uuu(i� 1)

@!!!j
; (3)

@+uuu(i)

@!!!j
=
@uuu(i)

@!!!j
+
@uuu(i)

@xxx(i)

@+xxx(i)

@!!!j
: (4)

We now use the four-order Runge–Kutta method to compute
(@xxx(i)=@xxx(i � 1)) and (@xxx(i)=@uuu(i � 1)) in (3) to obtain the
forward recurrent computation rule. From the four-order Runge–Kutta
algorithm, we have

xxx(i) = xxx(i� 1) + 1
6
h(kkk0 + 2kkk1 + 2kkk2 + kkk3) (5)

where

kkk0 = (xxx(i); !!!); kkk1 =  xxx(i) + 1
2 hkkk0; !!! ;

kkk2 = xxx(i) + 1
2
hkkk1; !!! ; kkk3 =  (xxx(i) + hkkk2; !!!):

The partial derivative ofxxx(i) with respective toxxx(i� 1) is

@xxx(i)

@xxx(i� 1)
= I +

h

6

@

@xxx(i� 1)
(kkk0 + 2kkk1 + 2kkk2 + kkk3) (6)

where

@kkk0
@xxx(i� 1)

= ; 1j(xxx(i�1);uuu(i�1))

@kkk1
@xxx(i� 1)

= ; 1j(d ;uuu(i�1)) � I +
1

2
h

@kkk0
@xxx(i� 1)

@kkk2
@xxx(i� 1)

= ; 1j(d ;uuu(i�1)) � I +
1

2
h

@kkk1
@xxx(i� 1)

@kkk3
@xxx(i� 1)

= ; 1j(d ;uuu(i�1)) � I + h
@kkk2

@xxx(i� 1)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 5, SEPTEMBER 2000 583

where ; i is the partial derivative of with respective to theith argu-
ment of (i.e., ; 1 � (@ =@xxx);  ; 2 � (@ =@uuu)),

dj =xxx(i� 1) + 1
2
hkkkj�1; j = 1; 2

and

d3 =xxx(i� 1) + hkkk2:

Similarly, the partial derivative ofxxx(i) with respective touuu(i�1) is

@xxx(i)

@uuu(i� 1)
= I +

h

6

@

@uuu(i� 1)
(kkk0 + 2kkk1 + 2kkk2 + kkk3) (7)

where

@kkk0
@uuu(i� 1)

= ; 2j(xxx(i�1);uuu(i�1))

@kkk1
@uuu(i� 1)

= ; 1j(d ;uuu(i�1)) �
h

2

@kkk0
@uuu(i� 1)

+  ; 2j(d ;uuu(i�1))

@kkk2
@uuu(i� 1)

= ; 1j(d ;uuu(i�1)) �
h

2

@kkk1
@uuu(i� 1)

+  ; 2j(d ;uuu(i�1))

@kkk3
@uuu(i� 1)

= ; 1j(d ;uuu(i�1)) � h
@kkk1

@uuu(i� 1)

+  ; 2j(d ;uuu(i�1)):

The complete first-order recurrent learning algorithm is summarized
as follows. First, for time indexi from 1 toN , forward recurrently
compute (6) and (7) and then forward recurrently compute (3) and
(4) (double forward recurrent loops) to obtain @+xxx(i)=@!!!j and
@+uuu(i)=@!!!j sequences forj = 1; � � � ; l. Batch-mode or sequentially
collect all the terms@+uuu(i)=@!!!j); (@

+xxx(i)=@!!!j) for i = 1; � � � ; N ,
and then substitute them into (2) to obtain the gradient directions of
E with respective to!!! parameter space. It worth pointing out that the
computation of order derivatives in the above algorithm [i.e., (6) and
(7)] is completed in the running computation cycle and thus they needs
not be stored. This avoids the requirement of large computer memory
and heavy computation loads accumulated at the final time stepN as
the cases in backward recurrent learning rules [6].

B. Second-Order Recurrent Learning Algorithm

Generally, the first-order recurrent learning algorithm derived in
Section II-A shows low convergence speed. To speed up the conver-
gence, we shall derive a second-order counterpart in this subsection.
This second-order recurrent learning algorithm is also a forward
recurrent rule. Suppose the objective function,E, is a function ofxxx
anduuu. The second-order derivatives ofE with respective to!!!j and
!!!k are derived as follows, where!!!j and!!!k are any two adjustable
parameters of the controller:

@+

@!!!k

@+E

@!!!j

=
@+

@!!!k

; F
@+xxx(1)

@!!!j

; � � � ;
@+xxx(N)

@!!!j

;
@+uuu(1)

@!!!j

;

� � � ;
@+uuu(N)

@!!!j

; xxx(1); � � � ; xxx(N)

uuu(1); � � � ; uuu(N) (8)

wherej; k = 1; � � � ; l andF = (@+E=@!!!).

To compute the curvature ofE (i.e., (@+@+E=@!!!k@!!!j)), we first
compute(@+=@!!!j)xxx(i) and(@+=@!!!j)uuu(i) by (3) and (4). We then
take order derivatives of(@+xxx(i)=@!!!j) and(@+uuu(i)=@!!!j) with re-
spective to!!!k to obtain

@+

@!!!k

@+xxx(i)

@!!!j

=
@+

@!!!k

@xxx(i)

@!!!j

+
@+

@!!!k

@xxx(i)

@xxx(i� 1)

@+xxx(i� 1)

@!!!j

+
@+

@!!!k

@xxx(i)

@uuu(i� 1)

@+uuu(i� 1)

@!!!j

+
@xxx(i)

@xxx(i� 1)

@+

@!!!k

@+xxx(i� 1)

@!!!j

+
@xxx(i)

@uuu(i� 1)

@+

@!!!k

@+uuu(i� 1)

@!!!j

(9)

and
@+

@!!!k

@+uuu(i)

@!!!j

=
@+

@!!!k

@uuu(i)

@!!!j

+
@+

@!!!k

@uuu(i)

@xxx(i)

@+xxx(i)

@!!!j

+
@uuu(i)

@xxx(i)

@+

@!!!k

@+xxx(i)

@!!!j

: (10)

The first term in (9) is zero because (xxx; uuu) in (1) is not explicitly
function of!!!. The first term and first part of the second term in (10)
are computed according to (3), (4), and functiong of (1). The previous
part of the second and third terms in (9) can be computed by finding
the order derivatives of (6) and (7) as

@+

@!!!k

@xxx(i)

@xxx(i� 1)

=
@+

@!!!k

h

6

@

@xxx(i� 1)
(kkk0 + 2kkk1 + 2kkk2 + kkk3) (11)

where

@+

@!!!k

@kkk0
@xxx(i� 1)

=
@+

@!!!k

 ; 1j(xxx(i�1);uuu(i�1))

@+

@!!!k

@kkk1
@xxx(i� 1)

=
@+

@!!!k

 ; 1j(d ;uuu(i�1)) � I +
1

2
h

@kkk0
@xxx(i� 1)

+
h

2
 ; 1j(d ;uuu(i�1))

@+

@!!!k
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@xxx(i� 1)

@+

@!!!k

@kkk2
@xxx(i� 1)

=
@+

@!!!k

 ; 1j(d ;uuu(i�1)) � I +
1

2
h

@kkk1
@xxx(i� 1)

+
h

2
 ; 1j(d ;uuu(i�1))

@+

@!!!k

@kkk1
@xxx(i� 1)
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@+

@!!!k

@kkk3
@xxx(i� 1)

=
@+

@!!!k

 ; 1j(d ;uuu(i�1)) � I + h
@kkk2

@xxx(i� 1)

+ h ; 1j(d ;uuu(i�1))
@+

@!!!k

@kkk2
@xxx(i� 1)

: (12)

Similarly, we have

@+

@!!!k

@xxx(i)

@uuu(i� 1)

=
@+

@!!!k

h

6

@

@uuu(i� 1)
(kkk0 + 2kkk1 + 2kkk2 + kkk3) (13)

where
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=
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 ; 1j(d ;uuu(i�1)) �
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2
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h

2
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+
@+

@!!!k

 ; 2j(d ;uuu(i�1))

@+

@!!!k

@kkk3
@uuu(i� 1)

=
@+
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 ; 1j(d ;uuu(i�1)) � h
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+  ; 1j(d ;uuu(i�1)) � h
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@kkk2
@uuu(i� 1)

+
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 ; 2j(d ;uuu(i�1)): (14)

In the second-order recurrent learning algorithm derived in the
above, the computations are the same as those in the first-order
counterpart derived in Section II-B , except the computations of (11),
(13), and the first and second terms of (10). The results obtained by
(8) indicate the curvature of theE-surface with respective to!!!. This
curvature information can be used to adapt the learning constant�. The
second-order recurrent learning algorithm is a Newton-type algorithm;
the update rule for parameters!!! is �!!! � �H�1(@E=@!!!), where
the update-stepsize factorH is the Hessian matrix corresponding to
the second-order derivative ofE [15]. Notice that (9) and (10) not
only can be applied to continuous systems described by (1), but it

Fig. 2. Geometric relations and definitions of the states of the parabolic
trajectory problem and the flying vehicle problem in Examples A and B of
Section III.

can also be used for discrete-time systems. In the latter case, since
we need not discretize the system using the Runge–Kutta method, we
only need to change the computations of the Runge–Kutta parts in
the proposed algorithms [i.e., (6), (7), (11), and (13)] to the normal
(first-order) difference relations. That’s, the original double forward
recurrent loops is reduced to the single forward recurrent loop. In
other words, we only need to change the formed network structure
from Fig. 1(c)–(a) and then apply the network outputs to (9) and (10).
The rest of computations are the same as the original.

III. A PPLICATIONS

In this section, we shall apply the recurrent learning algorithms de-
veloped in the last section to design optimal controllers for three ap-
plication problems. They are 1-D maximum-rang parabolic trajectory
problem, 2-D guidance problem, and the optimal PI control of a non-
minimal phase linear dynamical system.

Example A (One-Dimensional Boundary Value Problem : Max-
imum–Rang Parabolic Trajectory Problem):Consider a particle with
parabolic motion. Letx1 be the velocity of the particle,x2 the flight
path angle (angle of velocity vector),x3 the down range, andx4 the
altitude. Geometric relations of these states are shown in Fig. 2. By
Newton’s law, the parabolic motion equations of the particle are

_x1 =�g sin(x2); _x2 = �g cos(x2)=x1

_x3 =x1 cos(x2); _x4 = x1 sin(x2) (15)

whereg is the gravitational force.
This example is to find the initial flight path angle of the particle such

that the particle can reach the furthest place for a given particle initial
velocity. More clearly, we want to find the optimal initial flight path
angle [x2(0)] that results in the largest down range (x3) for the given
particle initial velocity,x1 = 100 (ft/s). Although this example can
be solved by the analytic approach to obtain the closed form solution;
the optimal initial flight path angle is 45�, we shall use the proposed
learning algorithms to solve this problem to demonstrate their learning
ability.

Let the performance index of the above problem be

E � (xxx3(T )� 3000)2 (16)

whereT is a free time value indicating the time step at which the par-
ticle falls to the ground. In the above performance index, the constant
3000 (ft) is an arbitrarily chosen large number. Since the down range
of the particle [described by (15)] cannot reach such a big value, mini-
mizing the performance indexE in (16) can make the particle reach the
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Fig. 3. Learning curves of the first-order (—) and second-order (.-) recurrent
learning algorithms for finding the optimal initial flight path angle in Example
A.

furthest place. When apply the proposed first- and second-order recur-
rent learning algorithms to find the optimal initial flight path angle, we
obtain the two learning curves shown in Fig. 3, where the initial flight
path angle before learning is randomly set as 5�. The real computation
time per iteration of the first-order learning algorithm is about half of
that of the second-order one. As comparing the real convergence time,
the first-order learning algorithm took 55 s to get the initial flight path
angle as 37� and 220 s to 43�, whereas the second-order learning algo-
rithm took only 55 s to obtain the optimal initial flight path angle, 45�.

Example B (Two-Dimensional Boundary Value Problem: Guidance
Problem): Consider a vehicle flying in the air. Assume that only the
lateral direction of the flying vehicle is controllable by means of the
air dynamic force caused by relative motion or by the dynamic force of
the lateral engine in the vehicle. The axis direction of the flying vehicle
is uncontrollable and has only inertial motion. We further assume that
the motion drag of the flying vehicle is proportional to the square of
velocity, and the other drag forces can be ignored. Since the gravity
acceleration is assumed to be constant, its effect can be compensated
directly by the controller according to the vehicle flight angle, and thus
the gravity acceleration is not considered in the following analysis. The
problem now is to design a controller that can let the vehicle move from
point A in a 2-D space to the circumference of 500 feet of point B (i.e.,
a circle centered at point B with radius of 500 feet, calledboundary
surface). The additional requirements for the controller in achieving
the above task are that it should make the energy of the total lateral
forces smallest, and let the flying vehicle meet the desired boundary
flight path angle and reach the maximum flight speed at the final point
(i.e., at the boundary surface around point B). This problem belongs to
the final state lying on surface problem and free final time problem in
classical optimal control [1], [16].

By Newton’s law and the above assumptions, the motion equations
of the flying vehicle are simplified as

_x1 = c1 expf�c2x4gx
2

1; x1 _x2 = �NVM?

_x3 = x1 cosx2; _x4 = x1 sinx2 (17)

wherex1 is the velocity of the vehicle,x2 is the flight path angle,x3
represents the down range,x4 is the height of the vehicle (altitude),
NVM? is the lateral acceleration command from the controller,c1 is
the drag coefficient, andexpf�c2x4g represents the air density. The
geometric relations and definitions of these states are shown in Fig. 2.

The control objectives of this problem mentioned above can be de-
scribed by the following performance index:

E =
t

t

NVM?(t)dt+ g1(x2 � rf )
2 + g2(x1 � vf )

2 (18)

whererf is the desired final flight path angle,vf is an arbitrary big
velocity for achieving the maximum final velocityx1, andg1 andg2
are weighting factors ofE. In (18),t0 is the initial time, andtf is the
time at which the vehicle arrives on the boundary surface. Hence the
valuetf is unknown in designing the controller.

To design arobustoptimal controller for this guidance problem, the
structure of our controller is based on that designed by the classical
analysis approach, the theory of calculus of variations [16], [17]. The
classical analysis approach aims at letting the vehicle reach the final
point B exactly (instead of reaching the boundary surface around point
B) with an expected flight path angle. It thus minimizes the following
performance index

E =
t

t

j~NNN(t)j2 dt; (19)

where~NNN(t) represents the lateral acceleration command from the con-
troller. The obtained optimal controller by the classical analysis ap-
proach (called “classical optimal controller”) is [17]

~NNN(t) =
!!!1

Tgo
[~VVV 1 � ~VVV (t0)] +

!!!2

T 2
go

f~rrr1 �~rrr(t)� ~VVV (t0)Tgog (20)

for each time interal,t0 � t � t0+ht, where~NNN(t) is the acceleration
command from the controller,~VVV (t) is the velocity vector of the vehicle,
~rrr(t) is the position vector of the vehicle,~rrr1 is the final position of the
vehicle,~VVV 1 is the final velocity of the vehicle, andTgo is the flight time
from position~rrr(t) to ~rrr1 (time-to-go). There are some difficulties in
using this classical optimal controller; it requires that the flying vehicle
is controllable in all directions (instead of the lateral direction only),
the air density must be constant (i.e., not function ofx4), and more
importantly, we need to perform a precise estimation of the time-to-go
value (Tgo) at each time step [18], [19]. These requirements are relaxed
in the optimal controller design in this paper. Also, (20) is singular
whenTgo approaches zero (i.e., when the vehicle is close to the final
point B). Hence the classical optimal controller cannot really lead the
vehicle to arrive in point B exactly.

Although the assumptions made in the classical analysis approach
in solving the guidance problem are not all the same as those made in
this paper, we shall properly adopt the form of the controller in (20) to
build the structure of our controller. In our approach, we first formulate
the variable,Tgo (time-to-go), in (20) as a function of states (see the
Appendix). This avoids the need to estimateTgo and thus simplifies the
structure of our controller. We then formulate (17) and the controller
as a neural network as that shown in Fig. 1(b), where the external com-
mandI(t) is neglected. The parameters!!!1 and!!!2 in (20) are viewed
as the weights of the network. Then the recurrent learning algorithms
derived in Section II are used to find the optimal weights that mini-
mizes (18).

More clearly, according to the derivations in the Appendix, the struc-
ture of our controller is

NVM?(t) = !!!1

x21(x2 � rf )

R
+ !!!2

x21 sin �

R
(21)

where � = x2 + tan�1((x4 � zd)=(xd � x3)), R =
(x3 � xd)2 + (x4 � zd)2, and (xd; zd) = ~rrr1 is the desired

position. The controller in (20) is then substituted by (21), and then the
whole system is discretized by the four-order Runge–Kutta method to
form a network as the one in Fig. 1(c). We then apply the proposed
first- and second-order recurrent learning algorithms to find the
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Fig. 4. Vehicle flying trajectories guided by the classical optimal controller
(� � �) (!!! = �2; !!! = 6), and by the proposed recurrently learned optimal
controller (—) (!!! = �2:247; !!! = 5:919) for three different testing points
with the desired final flight path angle beingr = 0 and the desired final flight
height beingx = 3000 feet in Example B.

optimal controller gains,!!!1 and!!!2. To simplify the computations
of the second-order learning algorithm, only the second-order terms,
(@+@+E=@!!!21) and (@+@+E=@!!!22) (instead of the whole Hessian
matrix ofE), are calculated and used to change the learning constant
adaptively.

In simulations, a total of ten training points are selected for the
network learning;(xd; zd; rf ) = (20 000; 5000 or 0; 0.2 or�0.4),
(35 000; 5000 or 0; 0.3 or�0:5), (50 000; 5000; 0.4 or�0.6). The
training data are chosen from the boundaries of a vehicle’s flight
envelop, which is decided by the average speed of the vehicle. For
testing the generalization ability after network learning, we choose
six testing points;xd = 25000 or 35 000 or 50 000, zd = 3000 or
7000, rf = 0 or 0:8. The final learned optimal controller gains by the
second-order learning algorithm are!!!1 = �2:247 and!!!2 = 5:919.
For comparison, we also use the classical analysis method (the
theory of calculus of variations) to minimize (19) to find the optimal
controller gains as!!!1 = �2 and!!!2 = 6. We then compare the
guidance ability of the learned controller [i.e., the controller in (21)
with !!!1 = �2:247 and!!!2 = 5:919] to that of the classical optimal
controller [i.e., the controller in (21) with!!!1 = �2 and!!!2 = 6]. The
vehicle flight trajectories under the control of these two controllers for
the six testing points are plotted in Figs. 4 and 5. These two figures
show that the learned optimal controller produces better final flight
path angle (see the solid curves) than the classical optimal controller
(see the dotted curves), when the vehicle reaches the boundary surface
around point B. Notice that the desired final flight path angle in Fig. 4
is rf = 0�, and that in Fig. 5 isrf = 46�; the desired final flight
height in Fig. 4 isx4 = 3000 feet, and that in Fig. 5 isx4 = 7000
feet. The performance index (error) values are listed in Table I.
From Table I, it is clear that the learned optimal controller is much
better than the classical optimal controller in guidancing the vehicle.
Since some testing points are exterpolation of the training points,
the learned optimal controller shows superior generalization ability.
Fig. 6 shows the convergence curves on the weight space for the first-
and second-order learning algorithms with different initial weights
(controller gains), where the first-order learning algorithm is run for
250 iterations, and the second-order learning algorithm is run for 150
iterations. We find the second-order learning algorithm has much
higher learning speed than the first-order one. In Fig. 6, there appears

Fig. 5. Vehicle flying trajectories guided by the classical optimal controller
(� � �) (!!! = �2; !!! = 6), and by the proposed recurrently learned optimal
controller (—) (!!! = �2:247; !!! = 5:919) for three different testing points
with the desired final flight path angle beingr = 46 and the desired final
flight height beingx = 7000 feet in Example B.

TABLE I
PERFORMANCEINDEX (ERROR) VALUES FOR THREE DIFFERENT

CONTROLLERSUNDER SIX TESTING CASES IN THE GUIDANCE

PROBLEM OF FLYING VEHICLE IN EXAMPLE B OF SECTION III,
WHERE CASE-1: (x = 25000; z = 3000; r = 0),
CASE-2: (x = 35000; z = 3000; r = 0), CASE-3:

(x = 50000; z = 3000; r = 0), CASE-4:
(x = 25000; z = 7000; r = 0:8), CASE-5:
(x = 35000; z = 7000; r = 0:8), CASE-6:

(x = 50000; z = 7000; r = 0:8)

a long flat valley in the error surface (E) on the weight (!!!1 � !!!2)
space (the long straight line in the figure). This greatly limits the
convergence speed of the first-order recurrent learning algorithm.In
another simulation, we try to add more adjustable parameters (gains)
to the controller described by (21) to see if the controller can be further
improved. The new controller is designed as

NVM?(t) = d1
x21(x2 � rf )

R
+ d2

x21 sin �

R
(22)

where

d1 = !!!1 1 +
!!!2
R

; d2 = !!!3 1 +
!!!4
R

(23)

where the gainsd1 andd2 are functions of rangeR in (21). By using the
first-order recurrent learning algorithm, we perform the same learning
process as that mentioned in the above to minimize (18) to find the
optimal controller gains as!!!1 = �2:243, !!!2 = 8:213, !!!3 = 5:988,
!!!4 = �42:10. The guidance results of this newly learned controller
are also shown in Table I. The results indicate that the generalization
ability of the controller in (22) is not better than that of the controller
in (21). Once again, this shows the good robustness of the controller in
(21), since the controller gains need not be tuned for differentR values.

Example C (Optimal PI Control Problem: Generalized PI Con-
troller): Consider a nonminimal phase linear dynamical system,
P (s) = ((s� 3))=((s� 2)(s� 1)), controlled by a PI controller. The
states feedback from the linear system to the controller are the error
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Fig. 6. Convergence curves on the weight space for the first-order (� � �)
and second-order (the curves other than the dotted curves) recurrent learning
algorithms with different initial weights (controller gains) in Example B, where
the first-order learning algorithm is run for 250 iterations, and the second-order
learning algorithm is run for 150 iterations. (The circle indicates the starting
point of a curve.)

signale(t) and the integral error signalt
0
e(t). Assume the system

external input command is in the form of pulses, whose magnitudes
and pulse widths are adaptable. The problem now is to design an
optimal PI controller to minimize the overshoot of the system step
response. Our design procedure is first using the PI control law as the
basic structure of the optimal controller. The gains of the controller
are then tuned by the proposed recurrent learning algorithms. We use
the unit step commands to the system as training data, and set the
performance index as

E =
t

t

(1� y(t))2 dt; (24)

wherey(t) is the output ofP (s). This performance index takes care of
both the overshoot and tracking errors, wheret0 is set as15h (h = 0:1
s) andtf as 15 s. As did in the previous examples, we use the four-order
Runge–Kutta method to model the overall system, and then apply the
recurrent learning algorithms derived in Section II to search the optimal
PI gains. The performance of the learned classical PI controller in the
generalization tests is shown in Fig. 7(b), which appears about 8.2%
overshoot on the system step response.

We now propose a new PI controller, called generalized PI controller,
which is a classical PI controller with adaptivePI gains. This con-
troller allows itsPI gains to be changed adaptively according to the
system states,e and t

0
e dt, in the transient period. The adaptivePI

gains in the generalizedPI controller are given by

kkkp =kkkp0 exp !!!1

t

0

e(t)dt
2

:

kkkI =kkkI0 expf!!!2e(t)
2g:

Hence, theP gain,kkkp, is a function of t

0
e(t)dt, and theI gain,kkkI ,

is a function ofe(t). Notice that when the system arrives in steady
states (i.e.,e! 0;

t

0
e dt! constant) or when!!!1 and!!!2 are set as

zero, thePI gains of the controller are fixed and the generalizedPI

controller is reduced to a classical one.
To train the generalized PI controller, we again use the four-order

Runge–Kutta method to discretize the whole system [including the
plant P (s) and the generalized PI controller], and then apply the
proposed recurrent learning algorithms to minimize the performance
index E in (24). The learning speed of the first order and second

Fig. 7. Performance of the PI controllers in Example C. (a) Convergence
curves of the first-order (—) and second-order (� � �) recurrent learning
algorithms in tuning the classical PI controller. (b) Step responses of the
system controlled by the learned classical PI controller (- - -) and the learned
generalized PI controller (—), where the desired step response is indicated by
the dotted (� � �) line.

order learning algorithms are illustrated in Fig. 7(a), showing again
the higher convergence speed of the second-order learning algorithm.
The obtained optimal gains arekkkp = �0:9265, !!!1 = �2:366,
kkki = �0:5859, and!!!2 = 0:9158 by the second-order learning
algorithm. Fig. 7(b) shows the step responses of the system under
the control of the learned classical PI controller and the learned
generalized PI controller for comparison. The figure shows that
the generalized PI controller causes the system to have only 1.5%
overshoot, and have a faster response than the classical PI controller.
It is noted that since the generalized PI controller is a nonlinear con-
troller, state transformation should be performed properly by viewing
the current state as the equilibrium state for each step command.
Although the generalized PI controller is a nonlinear controller,
its optimal controller gains can be easily obtained by the recurrent
learning algorithms proposed in this paper. The learned generalized PI
controller dose reduce the system overshoot efficiently as compared to
the learned classical PI controller in this example.

IV. CONCLUSION

This paper proposes neural-network-type recurrent learning algo-
rithms for designing optimal controllers of continuous systems, which
are modeled (discretized) by the high-order Runge–Kutta method. As
shown in the paper, the derived learning algorithms are in forward
recurrent form, and are easy to implement. Especially, the proposed
second-order recurrent learning algorithm shows superior convergence
speed and accuracy. To achieve good generalization capability, the
structures of the controllers designed in this paper are all based on
the form of classical controllers. It is straightforward to extend the
proposed recurrent learning algorithms to train the neuro-controllers
that are general neural networks (such as multilayer perceptrons). We
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Fig. 8. Geometric relations of parameters�,R, and ^Los in the Appendix for
the guidance problem of Example B.

also propose two new controllers in this paper, the guidance controller
of the flying vehicle without the need of estimating the time-to-go
parameter, and the generalized PI controller with adaptive gains.
These two controllers show better performance than their traditional
counterparts. However, their properties such as stability and robustness
need further studies.

APPENDIX

This Appendix is to formulate the variable,Tgo (time-to-go), in (20)
as a function of system states to avoid the estimation ofTgo and thus
simplifies the structure of our controller. Consider a vehicle at position
rrr with velocityVVV in Fig. 8. Let

� =xxx2 + �; where� = tan�1
xxx4 � zzzd

xxxd � xxx3
(25)

and

R = (xxx3 � xxxd)2 � (xxx4 � zzzd)2: (26)

From the figure, the time-to-go value,Tgo, can be estimated by

Tgo �
R

jVVV j cos �
: (27)

Then the second term of (20) can be approximated by

rrr1 � rrr(t)� VVV (t)Tgo
T 2
go

�
(jVVV (t)j sin �)Tgo

T 2
go

� L̂os?

=
jVVV (t)j2 � sin �(t)

R
cos � � L̂os? (28)

whereL̂os? is the unit vector perpendicular torrr1 � rrr. Also, the first
term of (20) can be approximated by

VVV 1(t)� VVV (t)

Tgo
�

jVVV (t)j2(x2 � rf )

R
cos � � L̂os?: (29)

From (28) and (29), we can obtain a guidance controller which need
not explicitly computeTgo as

~N(t) =!!!1

jVVV (t)j2(x2 � rf )

R
cos �

+ !!!2

jVVV (t)j2 � sin �(t)

R
cos �: (30)

The direction of the control output,~N(t), is parallel toL̂os?. Since we
assume that only the lateral direction of the flying vehicle is control-
lable, the control command to the vehicle at its lateral direction should
be

NVM?(t) = !!!1

jVVV (t)j2(x2 � rf )

R
+ !!!2

jVVV (t)j2 sin �

R

which is (21). It is noted that the projection of the above control com-
mand in the direction ofL̂os? is equal to (30). This is exactly what we
want.
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