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Tables V-VII that C and D are highly evaluated by all clients. The rank Recurrent Learning Algorithms for Designing Optimal

of E is middle because it is highly evaluated by the clients except the Controllers of Continuous Systems
most credible agent. A and B obtain relatively low evaluations from all
clients so that they are ranked poorly. Yi-Jen Wang and Chin-Teng Lin

V. CONCLUSIONS . . .
Abstract—This paper proposes the recurrent learning algorithm for

In this paper, new fuzzy aggregation operators based on FDEA dgsigning the controllers of continuous dynamical systems in the optimal
proposed to rank the multi-attribute objects in ACE systems. Diﬁeremntrol problems. The designed controllers are in the form of unfolded

. . . recurrent neural networks embedded with physical laws coming from the
from the other methods which predetermine the weight factors, the PE%ssical control techniques. The proposed learning algorithm is charac-

posed model can find out the optimal weight factors by fuzzy linear prerized by its double-forward-recurrent-loopstructure for solving both the
gramming to reflect the inherent preference of clients which give sortemporal recurrentand the structure recurrentproblems. The first problem
evaluation on the attributes of objects evaluated. Because each evil(fsulted from the nature of general optimal control problems, where the

ated object tries to find out its weight factors of attributes to its own adiéctive functions are often related to (evaluated at) some specific (instead
) time steps or system states only, causing missing learning signals

vantage under the same constraints, the proposed aggregation metgga e time steps or system states. The second problem is due to the
are fair-competition ones with more objectivity for ranking the objectsigh-order discretization of the continuous systems by the Runge—Kutta
Three different models are proposed based on fuzzy inequality relatiorgthod that we perform to increase the control accuracy. This dis-
possibility, and necessity measures, respectively. Given a fuzzy cGfftization transforms the system into several identical subnetworks

traint. th | diff t | ti it b f interconnected together, like a recurrent neural network expanded in the
straint, there are always diflerent explanations on It because a Tugge axis. Two recurrent learning algorithms with different convergence

constraint is a kind of human thinking featured by ambiguity. Theggoperties are derived; the first- and second-order leaming algorithms.
three models are used to characterize the different viewpoints on fuZie computations of both algorithms are local and performed efficiently as

constraints in FDEA models. Generally speaking, the fuzzy constraliftwork signal propagation. We also propose two new nonlinear controller

in the sense of necessity measure is stronger than that in the Sens'sér%?tures for two specific control problems:1) two-dimensional (2-D)
iIdance problem and 2) optimal Pl control problem. Under the training

o . g
possibility measure. Users can choose a suitable model based OnoH{ﬁe proposed recurrent learning algorithms, these two controllers can
preference. be easily tuned to be suboptimal for given objective functions. Extensive
computer simulations have shown the optimization and generalization
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Fig. 1. (a, left) Block diagram of a continuous system with a zero-order holder (ZOH) and a cony©liér (@, right) Block diagram of the system in (a, left)
when the continuous system is discretized by Z-transform [denotegl. by)]. (b) The whole system in (a, right) or in (c) [denoted HAyi)] expanded in time
sequences in the temporally optimal control problem. (c) Block diagram of the system in (a, left) when the continuous system is discretized -oydée four
Runge—Kutta method, whetg(-) is the describing function of the continuous system.

Fig. 1(a)] in the time axis as shown in Fig. 1(b). Since the desiresructure of the controller, in which the gains are viewed as unknown
(critic) values of some system states are available only at specifiarameters. These gains are then tuned to become optimal parameters
time steps [for example, the desired value is available only at the firfal a given objective function of the optimal control problem through a
time stepT in Fig. 1(b)], a recurrent learning algorithm is requirecheural-network-type recurrent learning algorithm derived in this paper.
to assign the critic value to each time step properly for tuning thguch kind of optimal controllers is quite robust, since they embed
parameters of the controller. In the existing recurrent neural learnipgysical laws in their network structure [11]. For practical applica-
approaches for optimal control, the controlled continuous systemisns, we consider a controller with zero-order holder. To obtain higher
are usually discretized by the Z-transform, and the gradients of ermamtrol accuracy, we apply the Runge—Kutta method [12] to perform
(objective) function are obtained by using the gradient descent methudh-order discretization of the continuous plant model directly, and
recurrently to tune the neuro-controllers. The shortcomings alotiien view the discretized system as a special neural network [see
with these approaches are the bad modeling precision of Z-transfdfig. (1)]. Since this discretization process results in several identical
discretization and low convergence speed of gradient descent methedenetworks interconnected in the way described by the Runge—Kutta
Although higher order system modeling and higher order learnirdgorithm, the formed network is like a recurrent neural network
scheme can enhance the control accuracy, the corresponding recuegpanded in the time axis. The outputs of the subnetworks form the
learning algorithm is not easy to derive. Another disadvantage iofternal states of the designed optimal controller, which are analogous
the normal neuro-controllers is their bad generalization ability fao the costatesn the theory of calculus of variations approach from
exterpolation [10] due to the “black-box” structure of normal neurahe computational complexity point of view. However, instead of
networks without physical laws embedded. This makes the norniaing defined explicitly in the latter approach, the internal states are
neuro-controllers less robust. These shortcomings need to be solebthined from the system states directly through neural learning in our
in practical applications, and they are the points we want to attackapproach. The learning of the network formed by the Runge—Kutta
this paper. method is identified as th&tructure-recurrentearning problem. Due

To design the optimal controller for a continuous system in thi® both the structure-recurrent and time-recurrent learning problems
paper, we shall first apply the classical control techniques (such fased by our optimal controller, the tuning of the controller gains
the normal optimal control theory and PID control) to form the basigarameters) is a recurrent learning problem. Hence the kernel of
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this paper is to derive a recurrent learning algorithm for this learnirighe derivation is similar to that for recurrent learning algorithms in
task. With this learning algorithm, an optimal controller with goodheural networks [8], [9], [14]. However, to achieve high control accu-
generalization (robustness) capability and high control accuracy aaey, we discretize the continuous systemin (1) to become a four-order
be obtained for a continuous system. Runge—Kutta-type model. This makes the derivation of the recurrent
There are two approaches to deriving the recurrent learning rulésarning rules less straightforward and some attentions and skills need
forward and backwardrecurrent methods [6]. We adopt the forwardo be paid and applied. Two recurrent learning algorithms with dif-
recurrent method in this paper for its less requirement of compuferent convergence properties are proposed in the following two Sec-
storage and easy implementation of software program. In derivitigns II-A and 1I-B . They are first- and second-order recurrent learning
the forward recurrent learning rules, we first use the steepest desadgbrithms, respectively.
method [5] for its simple arithmetic operations to get a first-order
recurrent learning algorithm. Since the convergence speed of thjs First-Order Recurrent Learning Algorithm

learning algorithm is quite low, we further derive a second-order In this section, we apply the four-order Runge—Kutta method to dis-

recurrent learning algorithm based on the order derivative method [13Lt|zethe system described by (1), and find the first-order order deriva-
to speed up the convergence. The basic concept of this second- o’['ves of the system to derive the first-order recurrent learning algo-

learning algorithm is to find the curvature of the error surface foIthm By the gradient descent method based on order derivative (i.e.,

tuning the leaming constants in the algorithm adaptively. This ﬂrst -order order derivative), the forward recurrent learning rulexfor
very similar to the Newton’s method, but avoids the complexity a (1) is

finding the inverse of Hessian matrix. Although similar neural Iearnlng
algorithms had been proposed previously [5], few is applied to both otE
the structure- and time-recurrent learning. wi(i)=wi(i—1)+7 I

Another major contribution of this paper is in proposing two new ’
nonlinear controller structures for two specific control problems. Thynere
are two-dimensional (2-D) guidance problem and optimal PI control

j=1,---,1

problem. The new controller structure for the first problem need not E)+E N o/ OE (i) OE otu(i)

compute or predict the “time-to-goT{,) value in a guidance problem. Z <8x(¢ EPP Juli) 0w, - ) (2

For the second problem, we propose a generalized Pl controller which =1 J !

is a nonlinear controller. Under the training of the proposed recurreift ‘. i ) .

learning algorithms, these two controllers can be easily tuned to be- 9"=(i) _ 0=(i) + Ox(i) 9"=(i—1)

come suboptimal controllers for given objective functions. Such sub- Ow, Ow, Ox(i— 1) w,

optimal controllers cannot be designed by using the normal linear con- dz(i) otu(i—1)

trol theory or algorithms. Buli—1) 0w, 3)
The rest of this paper is organized as follows. Section Il details

the derivation of the first-order and second-order recurrent learning o u(i) _ ou(d) N du(i) 0" =(i) @

algorithms for the controller of a Runge—Kutta-type discretized dw;  Ow, ox(i) Ow;

dynamical system with zero-order holder. Section Il presents three

simulation examples to demonstrate the applicability of the proposed/Ve now use the four-order Runge-Kutta method to compute
learning scheme. These include a one-dimensional (1-D) boundéfF(i)/dx(i — 1)) and (9=(i)/0u(i — 1)) in (3) to obtain the
value problem, a 2-D guidance problem, and the optimal Pl contri@irward recurrent computation rule. From the four-order Runge—Kutta
of a nonminimal phase linear dynamical system. In this section, v¥gorithm, we have

also compare the convergence property of the two proposed recurrent

learning algorithms. Finally, conclusions are made in Section IV. x(i) = x(i — 1)+ § h(ko + 2k1 + 2k2 + k) (5)

Il. RECURRENTLEARNING ALGORITHMS FORDESIGNING OPTIMAL where
CONTROLLER , 1
ko =¢(x(i); w), k1= (x(i) + § hko; w),

Consider a time-invariant continuous system with a controller and a ) | .
ky = (a:(t) + 5 hki; w) s ks = Y(x(i) + hka; w).

zero-order holder described by

() = v(xt), w(i), u(i)=g(z(i), w) 1) The partial derivative of(i) with respective ta:(i — 1) is
where ox(i) juh 3] )
=T = (ko + 2k + 2k2 + k: 6
z € R™ system states; dz(i — 1) 6 dx(i—1) " ! 2 k) (O
u € R controller outputs that are functions of system states;
w e R controller gains; where
i index for sampling timéh, i.e.,t € [ih, (i + 1)h], i = ko ’
.-, N. m Iw,1|(x(z‘71),u(z‘71))
SupposeE is the performance index of the system in (1) which is a
function ofz andw. For example F may represent the total system Ok

. 1 Oko
input (controller output) energy, or/and the difference between the final dz(i —1) Vil ug-n) <I t3 2 oz (i — 1))
system states (e.g., velocity, position) and their corresponding desired ok ok,
(target) values. The optimal controller design problem for the system v =, 1(do, ui—1)) * <I + 5 7>
in (1) is to findew that minimizesk. 0x(i = 1) 2 0x(i-1)
In this section, we shall find the order derivatives Bfwith re- Oks ‘ Oko
spective tav and then derive recurrent update rules for parameters ox(i—1) =V 1l(as, uii-1) - <I+ ha x(i — 1))
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wherey ; is the partial derivative of with respective to théth argu- To compute the curvature @ (i.e., (019" E/0widw;)), we first
ment of (i.e.,v 1 = (9v/0x), .o = (9/du)), compute(d™ /dw;)x(i) and (87 /dw;)u(i) by (3) and (4). We then
take order derivatives dfdtx(i)/0w;) and (8T u(s)/dw;) with re-
dj=ax(i—=1)+ L hk; 1, j=1,2 spective taw, to obtain
and
ds =x(i — 1) + hks. O 9T =(i)
Owy  Owj
Similarly, the partial derivative ai(¢) with respective ta(i — 1) is ot [ox(i) ot dx(i) o z(i —1)
T Owi < Ow; ) dwy <8:l:(i - 1)) Ow;
L(i)—u-’—lL(k + 2k + 2k2 + k3)  (7) + . (i
Juli—1) 6 Juli = 1) 0 1 2 3 +8_ 0x(7) OTu(i — 1)
Owy, \ Ju(i —1) Ow;
where dx(i) 9 (9ta(i-1)
ko 0x(i — 1) dwy, Ow;
. 1] - .
du(i—1) Vozl@ii-n,ui-1) ox(i) ot [otu(i—1)
du(i — 1) dwy, dw; ®)
Ok, ho ko . u(i wi w;
u(i—1) e (3 Gy - an
w(i = 1) wi=1) ot [ otu(i)
+ U, 2l(ay, wii—1y) o O,
Ok: h Ok
4015@' j 0 =14 |((12,u(i—1ﬁ)) . <§1 —Gu(i i 1)) _ ﬂ Ou(i) n i ouli) 3+1:(i)
Owi \ Owj dwp \0z(i) ) Ow;
+ ) i
¥, 2](dy, w(i-1)) N du(d) i (i) 10)
_ Oks = R PR 0x(i) Owy \ Ow; )~
du(i—1) M BE=) T A Mgy (72T

+ U, 2|(dy, w(i—1))- The first term in (9) is zero becausgz, ) in (1) is not explicitly
function ofw. The first term and first part of the second term in (10)
The complete first-order recurrent learning algorithm is summarizéde computed according to (3), (4), and functjoof (1). The previous
as follows. First, for time index from 1 to NV, forward recurrently part of the second and third terms in (9) can be computed by finding
compute (6) and (7) and then forward recurrently compute (3) aife order derivatives of (6) and (7) as
(4) (double forward recurrent loopsto obtain 7 =(i)/dw; and

ot u(i)/dw; sequences fgi = 1, - - -, 1. Batch-mode or sequentially ot (i)
collect all the term® ™ u (i) /0w;), (81 x(i)/Ow,;) fori =1, ---, N, o <m>
and then substitute them into (2) to obtain the gradient directions of k )
E with respective tav parameter space. It worth pointing out that the _ ot [h 17, )
computation of order derivatives in the above algorithm [i.e., (6) and " Owip \ 6 9x(i — 1) (ko + 2k1 + 2k + ks) 11
(7)] is completed in the running computation cycle and thus they needs
not be stored. This avoids the requirement of large computer memorx
and heavy computation loads accumulated at the final time/Stag where
the cases in backward recurrent learning rules [6].
ot ok
B. Second-Order Recurrent Learning Algorithm Owy \ 0z(i — 1)
Generally, the first-order recurrent learning algorithm derived in ot
Section II-A shows low convergence speed. To speed up the conver- = Owr (“ﬂ 1|(17(i71),U(i71)))
gence, we shall derive a second-order counterpart in this subsection. N
This second-order recurrent learning algorithm is also a forward o < 6'k1 )
recurrent rule. Suppose the objective functién,is a function ofz Owp \ O0x(i — 1)
andu. The second-order derivatives &f with respective tav; and +
. . 3} 1 ko
wy, are derived as follows, wheee; andw;. are any two adjustable = ('U’,1|(d1,’u,(i—l))) AT+ She—F—
parameters of the controller: ’ Feon 2 9a(i—1)
h 8+ 6k0
—ah . R R —
ot O'E _ ot L (0t=(1) ota(N) otu(1) +aalaue-ma <a$u— 1))
dwp Ow;  Owy’ dw; 7 Ow; T Ow,; ot ok
+ 7 — | =
. 881‘@)"’”(1)"”"’”(‘/\7) dwy, <ax(i—1))
! _ ot Lol Ok
w(l), -, u<N>) (®) = gwp Wil wen) (T4 3hg

ho. A Ok
wherej, k =1, .-, landF = (0" E/0w). MR TC R ol W e 1)
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ot (oK
(9L'Jk 01‘(7 — 1)

at ko
= W0 i A4+ ph—
dwr (¢’1|(1131'”'( 1))) < + la (l—l))
ot Ok>
W . - "=
+ h1~,1|(d3,u(171))8wk <E)z(1ﬁ — 1)> . 12)
Similarly, we have
X5(t
ot dx(i) X, 2(te)
awk 0u(z - 1) down range
o hL(k + 2k1 + 2ks + k3) (13) igi
= B \ 6 Juli ) 0 1 2 3 ox;g;ixr??l X3
where
ot ko Fig. 2. Geometric relations and definitions of the states of the parabolic
e <87) trajectory problem and the flying vehicle problem in Examples A and B of
Wk u(i—1) Section Il
a+
= awk“ﬂ(z(i*l)”"“*l)) can also be used for discrete-time systems. In the latter case, since
ot 9% we need not discretize the system using the Runge—Kutta method, we
Y <—1) only need to change the computations of the Runge—Kutta parts in
Owy \Ou(i —1) the proposed algorithms [i.e., (6), (7), (11), and (13)] to the normal
ot ho Oko (first-order) difference relations. That's, the original double forward
= a—v tl(ay, wii-1)) - <§ m) recurrent loops is reduced to the single forward recurrent loop. In

other words, we only need to change the formed network structure
L ot < Ok ) from Fig. 1(c)—(a) and then apply the network outputs to (9) and (10).

ol ug-n) - 2 Jwr \Ou(i— 1) The rest of computations are the same as the original.

+

+ —08 ¥, 2l(dy, u(i=1)) Il. A PPLICATIONS
Wi,

In this section, we shall apply the recurrent learning algorithms de-

i <L> veloped in the last section to design optimal controllers for three ap-
dwi \du(i—1) plication problems. They are 1-D maximum-rang parabolic trajectory
ot Lo Ok problem, 2-D guidance problem, and the optimal PI control of a non-

= ajk’l/),lkdz,u(i—l)) : <§ m) minimal phase linear dynamical system.

Example A (One-Dimensional Boundary Value Problem : Max-

0y wty) h i < Ok, ) imum-Rang Parabolic Trajectory Problem)Consider a particle with
ez B 2 Qwy \Ou(i—1) parabolic motion. Let:; be the velocity of the particle;. the flight

path angle (angle of velocity vector); the down range, and, the

altitude. Geometric relations of these states are shown in Fig. 2. By

+
Newton’s law, the parabolic motion equations of the particle are
< 1)) i1 =—gsin(xe), do = —gcos(xa)/a
(i —

F3 =w1 cos(x2), &4 = 1 sin(rs) (15)

B 1/) 2|(dy, w(i=1))

Ok2 . .
= a—tp (s, wii=1) - <hm> whereg is the gravitational force. _
This example is to find the initial flight path angle of the particle such
, ot Ok> that the particle can reach the furthest place for a given particle initial
+ U1 (s, uii—1)) - hm <m> velocity. More clearly, we want to find the optimal initial flight path
angle [¢2(0)] that results in the largest down range ) for the given
o |y i) (14) particle initial velocity,xy = 100 (ft/s). Although this example can
Dwy o be solved by the analytic approach to obtain the closed form solution;
In the second-order recurrent learning algorithm derived in tiBe optimal initial flight path angle is 45 we shall use the proposed
above, the computations are the same as those in the first-org@rning algorithms to solve this problem to demonstrate their learning
counterpart derived in Section II-B , except the computations of (1Bbility.
(13), and the first and second terms of (10). The results obtained byet the performance index of the above problem be
(8) indicate the curvature of thE-surface with respective w. This _ 2
curvature information can be used to adapt the learning congtd@he E = (5(T) - 3000) (16)
second-order recurrent learning algorithm is a Newton-type algorithmhereT is a free time value indicating the time step at which the par-
the update rule for parametatsis Aw ~ —H '(9E/dw), where ticle falls to the ground. In the above performance index, the constant
the update-stepsize factdf is the Hessian matrix corresponding to3000 (ft) is an arbitrarily chosen large number. Since the down range
the second-order derivative df [15]. Notice that (9) and (10) not of the particle [described by (15)] cannot reach such a big value, mini-
only can be applied to continuous systems described by (1), butriizing the performance indeX in (16) can make the particle reach the

a+
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60 T ot The control objectives of this problem mentioned above can be de-
5 - second order scribed by the following performance index:
sok i - fiirst order ]
DA 'ty 9 5
E= / Nyya(t)dt + gi(za —rg)” + go(xr —vg)”  (18)
to
40} |

wherer; is the desired final flight path angley is an arbitrary big
velocity for achieving the maximum final velocity,, andg, andg»

T are weighting factors aoF. In (18),t; is the initial time, and ; is the

time at which the vehicle arrives on the boundary surface. Hence the
1 valuety is unknown in designing the controller.

To design aobustoptimal controller for this guidance problem, the
structure of our controller is based on that designed by the classical
analysis approach, the theory of calculus of variations [16], [17]. The
classical analysis approach aims at letting the vehicle reach the final
% m m m ym = P -~ 20 point_ B exactly (instea_d of reaching the bounda_ry_ sgrface around point

B) with an expected flight path angle. It thus minimizes the following
no. iteration performance index

degree

10+ :

Lf N 5
N (1) dt, (19)

0

Fig. 3. Learning curves of the first-order (—) and second-order (.-) recurrent "
learning algorithms for finding the optimal initial flight path angle in Example E= /
t

whereN (t) represents the lateral acceleration command from the con-

furthest place. When apply the proposed first- and second-order redi@ller. The obtained optimal controller by the classical analysis ap-
rent learning algorithms to find the optimal initial flight path angle, wéroach (called “classical optimal controller”) is [17]
obtain the two learning curves shown in Fig. 3, where the initial flight =, .. w1 = -~ o o O ;
path angle before learning is randomly set asThe real computation N = fjo[vl ~V(to)l+ 7o {7 = 7(t) = V(to)Toe} (20)
time per iteration of the first-order learning algorithm is about half of o L )
that of the second-order one. As comparing the real convergence tififé €ach time interakiy < # < #o + ht, whereN (7) is the acceleration
the first-order learning algorithm took 55 s to get the initial flight patfomMmand from the controlle¥;(7) is the velocity vector of the vehicle,
angle as 37and 220 s to 43 whereas the second-order learning algdi(?) 1S the position vector of the vehiclg, is the final position of the
rithm took only 55 s to obtain the optimal initial flight path angle®45 Vehicle,V: is the final velocity of the vehicle, ariy,, is the flight time-
Example B (Two-Dimensional Boundary Value Problem: GuidandE?m Position7(#) to 7, (time-to-go). There are some difficulties in
Problem): Consider a vehicle flying in the air. Assume that only th&!SINg this class_lcal oppma! contr_oller; it requires that thgflylr_\g vehicle
lateral direction of the flying vehicle is controllable by means of th& controllable in all directions (instead of the lateral direction only),
air dynamic force caused by relative motion or by the dynamic force B¢ @ density must be constant (i.e., not function-ef, and more
the lateral engine in the vehicle. The axis direction of the flying vehiclgPortantly, we need to perform a precise estimation of the time-to-go
is uncontrollable and has only inertial motion. We further assume th4tlUe (s.) at éach time step [18], [19]. These requirements are relaxed
the motion drag of the flying vehicle is proportional to the square df the optimal controller design in this paper. Also, (20) is singular
velocity, and the other drag forces can be ignored. Since the graWf)enZs. approaches zero (i.e., when the vehicle is close to the final
acceleration is assumed to be constant, its effect can be compensBfit B)- Hence the classical optimal controller cannot really lead the
directly by the controller according to the vehicle flight angle, and théhicle to arrive in point B exactly. _ _
the gravity acceleration is not considered in the following analysis. The/Although the assumptions made in the classical analysis approach
problem now is to design a controller that can let the vehicle move frdfy SOIving the guidance problem are not all the same as those made in
point A in a 2-D space to the circumference of 500 feet of point B (i.&hiS Paper, we shall properly adopt the form of the controller in (20) to
a circle centered at point B with radius of 500 feet, calbedindary build th_e structure_of our contrpller. In ourappro_ach, we first formulate
surfacd. The additional requirements for the controller in achievingg variableTy, (time-to-go), in (20) as a function of states (see the
the above task are that it should make the energy of the total laterRPeNdix). This avoids the need to estimée and thus simplifies the
forces smallest, and let the flying vehicle meet the desired bound&ucture of our controller. We then formulate (17) and the controller
flight path angle and reach the maximum flight speed at the final poifit & neural network as that shown in Fig. 1(b), where the external com-
(i.e., at the boundary surface around point B). This problem belongst6"dZ (#) is neglected. The parameters andw in (20) are viewed

the final state lying on surface problem and free final time problem & the weights of the network. Then the recurrent learning algorithms
classical optimal control [1], [16]. derived in Section Il are used to find the optimal weights that mini-

ws

TZ

go

By Newton’s law and the above assumptions, the motion equatio'f%'Zes (18). . L . .
of the flying vehicle are simplified as More clearly, according to the derivations in the Appendix, the struc-

ture of our controller is

i1 =crexp{—cawa}al, @iz = —Nva Nvami(t) =w zile: = 1) + w2 zisin 6 (21)
T3 =x1COST2, L4 = x1SIDT2 a7 R R
where § = 2o + tan_l((}m - za)/(za — z3)), R =
wherez; is the velocity of the vehicley, is the flight path angleys /(s — 24)? + (24 — z4)?, and (z4. z4) = 71 is the desired

represents the down range, is the height of the vehicle (altitude), position. The controller in (20) is then substituted by (21), and then the
Nv s is the lateral acceleration command from the controllelis ~ whole system is discretized by the four-order Runge—Kutta method to
the drag coefficient, andxp{—c2x4} represents the air density. Theform a network as the one in Fig. 1(c). We then apply the proposed
geometric relations and definitions of these states are shown in Figfiesst- and second-order recurrent learning algorithms to find the
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Fig. 4. Vehicle flying trajectories guided by the classical optimal controlleFig. 5. Vehicle flying trajectories guided by the classical optimal controller
(--+) w1 = =2, ws, = 6), and by the proposed recurrently learned optimg{. . .) (w; = —2, w, = 6), and by the proposed recurrently learned optimal
controller (—) 1 = —2.247, w, = 5.919) for three different testing points controller (—) v, = —2.247, w. = 5.919) for three different testing points
with the desired final flight path angle being = 0° and the desired final flight with the desired final flight path angle being = 46° and the desired final

height beingr, = 3000 feet in Example B. flight height beingrs = 7000 feet in Example B.

. . N . TABLE |
optimal controller gainsw: andws. To simplify the computations PERFORMANCE INDEX (ERROR) VALUES FOR THREE DIFFERENT
of the second-order learning algorithm, only the second-order terms,  CoNTROLLERS UNDER Six TESTING CASES IN THE GUIDANCE
(0T0t E/ow?) and (070" E/0w3) (instead of the whole Hessian PROBLEM OF FLYING VEHICLE IN EXAMPLE B OF SECTION I,

matrix of E), are calculated and used to change the learning constant ~ WHERE CASE'L: (vu = 25000, z¢ = 3000, r, = 0),
CASE-2: (x4 = 35000, z4 = 3000, 7, = 0), CASE-3:

adaptively. N _ (ra = 50000, 24 = 3000, 7, = 0), CASE-4:
In simulations, a total of ten training points are selected for the (xa = 25000, 2, = 7000, r, = 0.8), CASE5:

network learningyzq; z4; r#) = (20000; 5000 or 0; 0.2 o+0.4), (e = 35000, z4 = 7000, 7, = 0.8), CASE6:

(35000; 5000 or 0; 0.3 0+0.5), (50000; 5000; 0.4 of-0.6). The (r4 = 50000, za = 7000, r; = 0.8)

training date} are cho§en from the boundaries of a vehicle‘.s flight ool Toves —
envglop, which is o!emqled by_ _the average speed of_the vehicle. F W= 3w, =6 800 1350 8910 1095 1483 1003

testing the generalization ability after network learning, we choos ¢y, = —2247,w, = 5919 192.6 219.6 2659 6429 4439 396.6

six testing pointsyzqs = 25000 or 35000 or 50000, z, = 3000 or optimal dy,dy of Eq. (22) 1922 220.0 264.1 6549 42512 375.9

7000, ry = 0 or 0.8. The final learned optimal controller gains by the

second-order learning algorithm are = —2.247 andw-> = 5.919. ) .

For comparison, we also use the classical analysis method (fh&Nd flat valley in the error surfaceZ] on the weight &1 — w2)
theory of calculus of variations) to minimize (19) to find the optimafPace (the long straight line in the figure). This greatly limits the
controller gains ass; = —2 andws = 6. We then compare the COnvergence speed of the first-order recurrent learning algorithm.In

guidance ability of the learned controller [i.e., the controller in (213"0ther simulation, we try to add more adjustable parameters (gains)
with wy = —2.247 andw-. = 5.919] to that of the classical optimal Fo the controller described by (_21) to_see if the controller can be further
controller [i.e., the controller in (21) witl, = —2 andws = 6]. The MpProved. The new controller is designed as

vehicle flight trajectories under the control of these two controllers for

the six testing points are plotted in Figs. 4 and 5. These two figures
show that the learned optimal controller produces better final flighfere
path angle (see the solid curves) than the classical optimal controller
(see the dotted curves), when the vehicle reaches the boundary surface di = wy (1 + ﬂ) . do = ws (1 + ﬂ) (23)
around point B. Notice that the desired final flight path angle in Fig. 4 R R

isry = 0°, and that in Fig. 5 i3y = 46°; the desired final flight where the gaind; andd. are functions of rang® in (21). By using the
height in Fig. 4 ise4 = 3000 feet, and that in Fig. 5 i+ = 7000 first-order recurrent learning algorithm, we perform the same learning
feet. The performance index (error) values are listed in Table grocess as that mentioned in the above to minimize (18) to find the
From Table |, it is clear that the learned optimal controller is mucbptimal controller gains as; = —2.243, w, = 8.213, w3 = 5.988,
better than the classical optimal controller in guidancing the vehickes, = —42.10. The guidance results of this newly learned controller
Since some testing points are exterpolation of the training pointge also shown in Table I. The results indicate that the generalization
the learned optimal controller shows superior generalization abiligbility of the controller in (22) is not better than that of the controller
Fig. 6 shows the convergence curves on the weight space for the fiistf21). Once again, this shows the good robustness of the controller in
and second-order learning algorithms with different initial weight&1), since the controller gains need not be tuned for diffeRevilues.
(controller gains), where the first-order learning algorithm is run for Example C (Optimal Pl Control Problem: Generalized PI Con-
250 iterations, and the second-order learning algorithm is run for 180ller): Consider a nonminimal phase linear dynamical system,
iterations. We find the second-order learning algorithm has muéh(s) = ((s —3))/((s—2)(s — 1)), controlled by a PI controller. The
higher learning speed than the first-order one. In Fig. 6, there appestates feedback from the linear system to the controller are the error

T2 —Tf) td xisin 6

2
r a7 (

Nvapo(t)y=d
vm(t) =d 7 T

(22)
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Fig. 6. Convergence curves on the weight space for the first-orde) (
and second-order (the curves other than the dotted curves) recurrent learn )
algorithms with different initial weights (controller gains) in Example B, where I
the first-order learning algorithm is run for 250 iterations, and the second-ord
learning algorithm is run for 150 iterations. (The circle indicates the startin 0
point of a curve.)
2
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signale(t) and the integral error sugn:;j[J e(t). Assume the system

external input command is in the form of pulses, whose magnitude .
and pulse widths are adaptable. The problem now is to design an

. L Fig. 7. Performance of the Pl controllers in Example C. (a) Convergence
optimal PI controller to minimize the overshoot of the system st€p, .. of the first-order (—) and second-order -f recurrent learning

response. Our design procedure is first using the PI control law as #iuorithms in tuning the classical Pl controller. (b) Step responses of the
basic structure of the optimal controller. The gains of the controllsystem controlled by the learned classical PI controller (- - -) and the learned

are then tuned by the proposed recurrent learning algorithms. We @gggeralized PI controller (—), where the desired step response is indicated by
the unit step commands to the system as training data, and set {fifedotted (- ) line.
performance index as

(b): time index

s ‘ order learning algorithms are illustrated in Fig. 7(a), showing again
E= / (1 —y(t)* dt, (24) the higher convergence speed of the second-order learning algorithm.
to The obtained optimal gains afg,, = —0.9265, wy = —2.366,
wherey(t) is the output of°(s). This performance index takes care of;, = —0.5859, andw> = 0.9158 by the second-order learning

both the overshoot and tracking errors, whigres set asl5h (h = 0.1  algorithm. Fig. 7(b) shows the step responses of the system under
s)and ; as 15 s. As did in the previous examples, we use the four-ordee control of the learned classical Pl controller and the learned
Runge—Kutta method to model the overall system, and then apply tieneralized Pl controller for comparison. The figure shows that
recurrent learning algorithms derived in Section Il to search the optinthk generalized PI controller causes the system to have only 1.5%
PI gains. The performance of the learned classical Pl controller in tbeershoot, and have a faster response than the classical Pl controller.
generalization tests is shown in Fig. 7(b), which appears about 8.2¢4s noted that since the generalized PI controller is a nonlinear con-
overshoot on the system step response. troller, state transformation should be performed properly by viewing

We now propose a new PI controller, called generalized Pl controlléiie current state as the equilibrium state for each step command.
which is a classical Pl controller with adaptivel gains. This con- Although the generalized Pl controller is a nonlinear controller,
troller allows itsPI gains to be changed adaptively according to thigs optimal controller gains can be easily obtained by the recurrent
system states, and j;f edt, in the transient period. The adaptif  learning algorithms proposed in this paper. The learned generalized PI
gains in the generalizeBI controller are given by controller dose reduce the system overshoot efficiently as compared to
the learned classical PI controller in this example.

2

k, =kpo exp {wl |:/t (3(7‘)(]7‘:|d} .
0

kr =k exp{wge(t)z}.

IV. CONCLUSION

This paper proposes neural-network-type recurrent learning algo-
Hence, theP gain,k,, is a function ofjg’ e(t) dt, and thel gain,k;, rithms for designing optimal controllers of continuous systems, which
is a function ofe(¢). Notice that when the system arrives in steadgre modeled (discretized) by the high-order Runge—Kutta method. As
states (i.e.¢ — (),fot edt — constant) or whenw, andw, are setas shown in the paper, the derived learning algorithms are in forward
zero, thePI gains of the controller are fixed and the generaliz&d recurrent form, and are easy to implement. Especially, the proposed
controller is reduced to a classical one. second-order recurrent learning algorithm shows superior convergence
To train the generalized PI controller, we again use the four-ordgpeed and accuracy. To achieve good generalization capability, the
Runge—Kutta method to discretize the whole system [including tis¢ructures of the controllers designed in this paper are all based on
plant P(s) and the generalized PI controller], and then apply thine form of classical controllers. It is straightforward to extend the
proposed recurrent learning algorithms to minimize the performanpeoposed recurrent learning algorithms to train the neuro-controllers
index E in (24). The learning speed of the first order and secortfiat are general neural networks (such as multilayer perceptrons). We
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want.
(1]
X
4
(2]
(3]
e
original X

point 3 [4]

Fig. 8. Geometric relations of parametérsz, andLos, inthe Appendix for
the guidance problem of Example B. (5]
(6]

also propose two new controllers in this paper, the guidance controller
of the flying vehicle without the need of estimating the time-to-go 7]
parameter, and the generalized Pl controller with adaptive gains.
These two controllers show better performance than their traditional
counterparts. However, their properties such as stability and robustnes$]
need further studies.

(9]
[10]

APPENDIX

This Appendix is to formulate the variabl&,, (time-to-go), in (20)
as a function of system states to avoid the estimatidf,ofand thus
simplifies the structure of our controller. Consider a vehicle at positior{11]
r with velocity V' in Fig. 8. Let

[12]
§=xzo+0, wheref = tan™! <M) (25) [13]
Lq — T3
and [14]
R=+/(z3 —24)2 — (x4 — 24)2. (26)

From the figure, the time-to-go valug,., can be estimated by [15]

R
Then the second term of (20) can be approximated by [17]
1 —71(t) = V() Tgo  (JV(#)|sin 6)Tyo - (18]
. ~ . -Los |
1%, Tz,
2 .
_ [V (1) Bsm 5(t) cos & Los. 28) [19]

whereLos_ is the unit vector perpendicular g — r. Also, the first
term of (20) can be approximated by

Vi) =V() _ [V (xa —ry)
Tyo - R

From (28) and (29), we can obtain a guidance controller which need
not explicitly computely, as

o V@R = 1)

cos & - Los .

(29)

N(t)

+ wo cos 6. (30)
The direction of the control outpul (¢), is parallel toLos , . Since we
assume that only the lateral direction of the flying vehicle is control-
lable, the control command to the vehicle at its lateral direction should

be

V()| (22 — 1y V(1) sin &
[Vl (E- IR ()IRsm

Ny (t) = wy
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which is (21). It is noted that the projection of the above control com-
mand in the direction oLos is equal to (30). This is exactly what we

REFERENCES

D. E. Kirk, Optimal Control Theory: An Introduction Englewood
Cliffs, NJ: Prentice-Hall, 1970.

W. T. Miller, R. S. Sutton, and P. J. Werbdseural Networks for Con-
trol. Cambridge, MA: MIT Press, 1990.

K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical system using neural networkEEEE Trans. Neural Networks
vol. 1, no. 1, pp. 4-27, 1990.

—, “Gradient methods for the optimization of dynamical systems con-
taining neural network,/EEE Trans. Neural Networksol. 2, no. 2, pp.
252-262, 1991.

C.T.Linand C. S. G. Led\eural Fuzzy Systemser. NJ.
Cliffs: Prentice-Hall, 1996.

S. W. Piche, “Steepest descent algorithms for neural network controllers
and filters,”|IEEE Trans. Neural Networksol. 5, no. 2, pp. 198-212,
1994.

G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of nonlinear dynam-
ical system with Kalman filter trained recurrent network&EE Trans.
Neural Networksvol. 5, no. 2, pp. 279-297, 1994.

R. J. Williams and D. Zipser, “A learning algorithm for continually run-
ning fully recurrent neural networksiNeural Comput.vol. 1, no. 2, pp.
270-280, 1989.

——, “Experimental analysis of the real-time recurrent learning algo-
rithm,” Connect. Scitatiorvol. 1, no. 1, pp. 87-111, 1989.

H. Drucker and Y. LeCun, “Improving generalization performance using
double backpropagation|EEE Trans. Neural Networkwol. 3, no. 6,

pp. 991-997, 1994.

A. Weinmann,Uncertain Models and Robust ControlNew York:
Spring-Verlag, 1992.

E. D. SontagMathematical Control Theory: Deterministic Finite-Di-
mensional Systems New York: Spring-Verlag, 1990.

P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE vol. 78, no. 10, pp. 1550-1560, 1990.

R. J. Williams and J. Pieng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectories|&ural Comput.vol.

2, pp. 490-501, 1990.

Y. J. Wang and C. T. Lin, “A second-order learning algorithm for multi-
layer networks based on block Hessian matriXgural Networksvol.

11, no. 9, pp. 1607-1622, 1998.

A. E. Bryson and Y. C. HoApplied Optimal Contral Bristol, PA:
Hemisphere, 1975.

R. H. Battin,An Introduction to the Mathematics and Methods of Astro-
dynamicsser. AIAA Education Series, 1987, ch. 11.

T. Riggs, “Linear optimal guidance for short range air-to-air missiles,”
in AIAA Nat. Meet. August 1978, (also available as 1979 NAECON,
May 1979).

R. J. York, “Improved time-to-go estimation for an optimal control law,”
Adv. Anal. Future Missilegp. 323-384, November 21, 1979.

Englewood




