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Both numerical and subdivision methods are widely used approaches for ray tracing

parametric surfaces. However, the expense of ®nding the ray±surface intersection points is

a major drawback. Thus, simpler and less memory-intensive strategies are needed to

improve these methods without further complicating them. This work presents an ef®cient

algorithm for enhancing the performance of both numerical and subdivision methods. The

proposed technique can be extended to most applications based on these two methods. The

computational time of both approaches is improved by 16±40%. Copyright # 2000 John

Wiley & Sons, Ltd.
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Introduction

Ray tracing parametric surfaces suffers from lengthy

computation time, both in calculating the ray±surface

intersection points and locating the closest intersection

point. To improve performance, the time spent on both

parts of the algorithm must be reduced as much as

possible. However, researchers seldom consider redu-

cing both factors simultaneously. In this paper, we

present an ef®cient rendering technique for improving

numerical methods and subdivision methods by redu-

cing these two factors.

Newton's method is conventionally used to calculate

the ray±surface intersection points, and researchers

have always focused on how to locate the initial points

ef®ciently. Toth1 performed interval analysis to ®nd

the initial points. Meanwhile, Lischinski and Gonczar-

owski2 later proposed an improved technique based on

Toth's results. Other researchers3±8 subdivided sur-

faces into patches and used various data structures to

organize these patches. The initial points are obtained

by traveling rays through the data structures and

®nding the intersections of rays and bounding volumes

that enclose the patches. Although these methods3±8

can accelerate the calculation of the intersection point

by selecting suitable initial points, the computational

cost of ®nding the initial points remains high. Joy and

Bhetanabhotla9 ®rst adopted the ray coherence prop-

erty for selecting initial points. They took the closest

intersection point of an adjoining ray previously

calculated as the initial point, but faced the problems

that an intersection point found through this method

might not be the closest one, since not all of the

ray±surface intersection points are checked.

Due to the basic process of subdivision methods,10±12

all the ray±surface intersection points are found by

recursively subdividing the surfaces. The closest one is

obtained after calculating all of them. That is, subdivi-

sion methods do not attempt to reduce the time spent

on selecting the closest intersection points.

The ray coherence property is important in accel-

erating the calculation of the intersection points. For

numerical methods, the closest intersection point of an

adjoining ray previously calculated can be taken as the

initial point for Newton's method. If an intersection

point found in this manner can be veri®ed to be the

closest, the computational cost of calculating the others

can be eliminated.

Ray coherence can also be incorporated into sub-

division methods to assist intersection calculation.

During subdivision, it is preferable to subdivide the

region containing the intersection point found by the

previously traced ray. After an intersection point is

obtained from this region, whether this point is the

closest one is then veri®ed. In this case, the remaining

subdividing processes can be avoided. Namely, the
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closest intersection point can be located ef®ciently

without ®nding the other points. Until now, no

researchers have attempted to realize this idea to

accelerate subdivision methods.

The following paragraphs describe a rendering

technique that combines the ideas of improving both

numerical methods and subdivision methods.

Given a surface that will be tested along a scan line,

the ®rst ray that intersects the surface along the scan

line is located. The closest intersection point is then

located and marked. For the next ray, an intersection

point is ®rst found by ray coherence and then whether

this point is the closest one is veri®ed. If it is the closest

point, it is not necessary to calculate all the other

intersection points for this ray. Otherwise, all the other

intersection points must be found and the closest one

selected. This process continues for the succeeding rays

along the scan line that intersect the surface.

This rendering technique is advantageous in that it

not only reduces time spent on calculating the inter-

section points but also locates the closest intersection

points without ®nding all the other intersection points.

The foundation of this rendering technique is how to

verify whether an intersection point is the closest one.

Originally, it was planned to follow up the operation of

these two methods to modify the process of ®nding the

intersection points without tremendous extra memory

storage. With minor adjustment of these two methods

to ®t the proposed rendering technique, the executive

performance could be enhanced. Since numerical and

subdivision methods have been applied widely in

many practical directions, enhancing performance

ef®ciency with the rendering technique proposed in

this paper would be quite appropriate.

Since both numerical and subdivision methods have

their own scheme to locate ray±surface intersections, it

is dif®cult to create a general improvement scheme. To

verify whether an intersection point is the closest,

individual schemes are proposed for numerical and

subdivision methods, respectively. Both schemes are

based on the basic processes of numerical and

subdivision methods, respectively. Two algorithms, a

subdivision method and a numerical method, are

modi®ed and implemented. Experimental results indi-

cate that the improved algorithms can reduce total

rendering time by 16±40%.

The rest of this paper is organized as follows. First,

the improvement of numerical methods is described

and applied to the algorithm proposed by Barth and

StuÈ rzlinger.4 Then, how to enhance the subdivision

method and apply the improvement to BeÂzier clipping

is discussed. Finally, experimental results and discus-

sions are presented.

Numerical Methods

Numerical methods are a suitable and direct way

to ®nd ray±surface intersection points. This section

focuses on improving the algorithms3±8 that adopt

Newton's method but not utilize the ray coherence

property. The algorithm proposed by Barth and

StuÈ rzlinger4 is taken as an example to demonstrate

how numerical algorithms can be improved with the

novel rendering technique. Meanwhile, the problem of

how to verify whether a found intersection point is the

closest one should be solved. A scheme based on the

subdivision strategy and veri®cation method is sug-

gested, as originally proposed by Barth and StuÈ rzlin-

ger.4 The objective is to make the novel rendering

technique more ¯exible, suitable and easier to incorpo-

rate into numerical methods, because many algo-

rithms3,5,6 are based on this algorithm.

The following discussion ®rst reviews Barth and

StuÈ rzlinger's algorithm. Since this algorithm can deal

with both BeÂzier and B-spline surfaces, BeÂzier surfaces

are selected as an example for explanation. Then, how

to enable this algorithm to render an environment with

the proposed technique is discussed.

Barth and StuÈrzlinger's Algorithm

Barth and StuÈ rzlinger's algorithm consists of two steps.

In the preprocessing step, the surface is subdivided

adaptively into patches until each patch can be approxi-

mated well enough using a plane parallelogram. The

plane parallelogram is de®ned by two vectors,~v1 and~v2,

as illustrated in Figure 1. In each step of the subdivision,

a patch is subdivided into halves and the decision

whether to halve along the u- or v-axis is based on the

curvature in the u- and v-direction. During the subdivi-

sion, these patches are arranged in a binary tree. The root

encloses the entire surface and the leaves contain the

almost plane parts of the surface.

To ef®ciently detect whether a patch is intersection

free, a bounding volume called the enclosing paral-

lelepiped is constructed for each patch stored in the

binary tree. The enclosing parallelepiped of a patch is

spanned by~v1,~v2, and~v3 where~v3 is obtained from the

cross-product of ~v1 and ~v2. Information of the corre-

sponding patch, including the enclosing parallel-
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epiped, is stored in each node of the binary tree, and is

employed for the intersection tests or for calculating

the initial point. For each leaf node, the parametric

domain, and approximating parallelogram are also

stored. The following Newton iteration works on the

whole surface rather than merely the patch under

consideration.

In the rendering step, a ray is traced through the

binary tree of a tested surface. The traversal process

starts from the root of the tree. If the ray strikes the

enclosing parallelepiped, the traversal process con-

tinues to the children and the same test is performed

again. The above process locates all the leaf nodes

whose parallelepipeds are intersected by the ray. For

each node, an initial point is generated from the

intersection between the ray and the corresponding

parallelogram. If Newton's method converges, an

intersection point is obtained. Barth and StuÈ rzlinger

considered that only one intersection point exists

between the ray and the patch. If Newton's method

fails to converge, a second iteration process is initiated

with the entrance point into the parallelepiped as the

initial point. Furthermore, a third iteration will be

performed after an unsuccessful second iteration. If

these three iteration processes fail to converge, the ray

is considered not to intersect the patch.

Attention is also paid to the critical case in which a

ray is nearly tangential to the part of the surface. Here,

multiple intersections likely exist. This critical case is

easily recognized because it occurs only when a ray

passes through the parallelepiped approximately par-

allel to the larger face, as shown in Figure 2. The

following inequality is proposed to determine this

critical case.

tan a >
b

h
�1�

If equation (1) holds, the entrance point of the ray

into the parallelepiped is taken as the initial point.

Hence, the iteration is more likely to converge to the

®rst intersection. However, `equation (1) does not hold'

is not a crucial condition for the patch being free of the

intersections, or the located point being the closest one.

Some artifacts may appear, but they are not easily

noticeable in the anti-aliased picture.

Improvement of Barth and
StuÈrzlinger's Algorithm

Closely examining the basic process of this algorithm

reveals that the primary function of the binary tree

is to provide an ef®cient structure for ®nding the

ray±patch pairs. In addition to providing the same

capability, regular grids also offer a good mechanism

for verifying whether an intersection point is the closet

one. Unfortunately, the inherent property of the binary

tree cannot provide such a mechanism. Regular grids

are used to organize a surface instead of the corre-

sponding binary tree. Details of the modi®ed algorithm

are described as follows.

In the preprocessing step, each surface is subdivided

according to the rules proposed by Barth and StuÈ rzlin-

ger. A regular grid associated with each surface is then

constructed to organize these patches. The regular grid

is created by applying the uniform space subdivision

technique13 to the bounding volume of each surface.

The bounding volume used herein is an axis±aligned

parallelepiped. Although the essential information of

each ¯at patch is stored in the corresponding voxels,

the binary tree does not need to be constructed.

In the rendering step, the primary rays are traced

through the regular grids of the tested surfaces and the

ray±surface intersection points are calculated accord-

ing to the proposed rendering technique. Given a

surface that will be tested along a scan line, the ®rst

ray that intersects the surface along the scan line is

located. Then the closest intersection point is found

and marked. The following ray±surface intersection

points are calculated using ray-to-ray coherence along

a scan line. Once an intersection point is found via ray

Figure 2. The critical case that a ray is nearly tangential to

the part of the surface.

Figure 1. A part of a BeÂzier surface. The patch is de®ned

over [u, u]r[v,v].
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coherence, a testing ray is traced from the intersection

point toward the origin of the current traced ray. This

testing ray is traced to verify whether the intersection

point is the closest one by examining the intersection of

the testing ray and the visited patches.

While the testing ray is traversing the regular grid, a

list of patches whose enclosing parallelepipeds are hit

by the testing ray is obtained. Then, equation (1) is

checked for the testing ray and the patch containing

the intersection point to be veri®ed. If this inequality

does not hold, we regard that only one intersection of

the testing ray and the patch exists according to the

rule proposed by Barth and StuÈ rzlinger. Otherwise, the

entrance point of the testing ray into the parallelepiped

is used as the initial point for iteration, and a closest

intersection point is sought.

Next, if no other patches exist in the list, the veri®ed

intersection point is regarded as the closest one.

Otherwise, Newton's method is employed to ®nd the

intersection points with the initial points obtained from

the intersections of the testing ray and the intersected

parallelepipeds. The detection process can either

determine whether an intersection point is the closest

or locate the real closest intersection point for the

current traced ray.

The details of this process are illustrated with an

example in Figure 3, where the dotted grids represent

the regular grid and the curved segments represent the

patches. Assume that P1 is the intersection point found

by Newton's method without applying ray coherence

and P2 is the point found using P1 as the initial point.

We conclude that P2 is the closest intersection point

because the testing ray TL4 only intersects with the

patch containing the point P2. Regardless, if P3 is the

intersection point found with P2 as the initial point,

the closest intersection point P4 will be obtained,

because the testing ray TL5 will intersect with the

patch containing the point P4.

The above improvement has two advantages. First,

this improvement reduces the time spent on both

®nding the initial points and locating the closest

intersection point. Second, this improvement can

easily be extended to the previous algorithms.3,5,6 For

example, to render triangular trimmed free-form

surfaces, surfaces can be subdivided and the bounding

volumes (tripipeds) for patches calculated using the

methods proposed by StuÈ rzlinger.6 Then, all patches

are stored in the corresponding regular grids. The

improved rendering procedure mentioned above can

be used to locate the ray±surface intersection points.

Subdivision Methods

Now we discuss the improvement of subdivision

methods. We ®rst review the concept of subdivision

methods. Most subdivision methods are based on a

variation of the same idea. The domains that may

contain intersection points are subdivided recursively

and those without solutions are pruned. However,

each method has a different means of ®nding the

ray±surface intersection points. In this section, BeÂzier

clipping is chosen as the method to be improved to

illustrate how almost all the subdivision methods can

adopt the proposed rendering technique to trace

primary rays.

Compared with numerical methods, subdivision

methods are not easily able to exploit ray coherence.

The detailed processes of subdivision methods must be

analyzed to achieve this goal. This section ®rst details

the clipping process of BeÂzier clipping, and then

discusses how to improve BeÂzier clipping.

Clipping Process of BeÂzier Clipping

The clipping process10 for ®nding the ray±surface

intersection points can be classi®ed into two types:

straight-forward and bisection. For the straight-forward

case, the u and v axes are clipped alternatively, each

step achieves a considerable processing of void parts,

and exits with `no intersections' or `one intersection'. In

Figure 4, uj (vj) represents that the jth clipping stage is

Figure 3. An example of verifying the closest intersection

point.
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performed along the u axis (v axis). For example, u1

denotes that the u axis is clipped at step 1 and

v4 denotes that the v axis is clipped at step 4. In this

example, after six steps of clippings, the intersection

point is obtained. Of course, this simple method cannot

work if there is more than one intersection point in the

patch.

For a bisection case, consider Figure 5, where

Figure 5(a) illustrates the third clipping step (termed

the bisection step). The clipping process fails to reduce

the interval width of parameter u to a given threshold.

Nishita et al.10 suggested a threshold value of 20% of

the interval width. Then the parametric space is split

into halves and the clipping process is performed on

each half. These two parts are denoted herein as ulow

and uhigh as illustrated in Figure 5(a). The clipping

process is ®rst performed on ulow. Then an intersection

point is found. On dealing with the uhigh part, the

clipping process also fails to reduce the interval width

of parameter v to a given threshold, as illustrated in

Figure 5(b). Hence, the uhigh part is again divided into

halves, uhighvlow and uhighvhigh. After recursively follow-

ing several steps, the other two intersection points are

obtained, as presented in Figure 5(c).

An Improvement of BeÂzier Clipping

The characteristic feature of BeÂzier clipping, as intro-

duced in the above section, is that the domains

generated from the bisection steps are processed

randomly and all the ray±surface intersection points

are found to obtain the closest one. To improve BeÂzier

clipping in accordance with the rendering technique,

the aim herein is to clip the domains generated from

the bisection steps in a reasonable order based on the

ray coherence property. In this order, it is preferable to

deal with the domain that contains or neighbors on the

parameters of the closest intersection point found by

the previously traced ray. After an intersection point is

obtained from some domain, whether this point is the

closest one will be veri®ed. If it is the closest,

computations of clipping the remaining domains do

not need to be performed. Namely, the closest inter-

section point can be obtained without ®nding all the

others. The following discussion ®rst describes a

procedure for verifying whether an intersection point

is the closest one. Details of the modi®ed algorithm are

given as well.

In fact, while improving Barth and StuÈ rzlinger's

algorithm, a procedure for either verifying whether an

intersection point is the closest one or locating the real

closest one has already been proposed. In this paper,

the aim herein is to enable the subdivision methods to

solve the verifying problem in accordance with the

algorithms themselves. Without introducing further

complex methodology to help, the action that uses

Figure 4. The clipping process of the straight-forward case

on ®nding the ray±surface intersection point.

Figure 5. The clipping process of a bisection case.
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Newton's method to locate the intersection points is

removed from the procedure and make the resulting

procedure answer `yes' or `no' only. Details of the

modi®ed procedure are stated below.

On verifying whether an intersection point is the

closest, a testing ray is traced through the point toward

the viewpoint as usual. This process obtains a list of

patches whose enclosing parallelepipeds are hit by the

testing ray. The patch containing the intersection point

is ®rst located and equation (1) is then checked for the

testing ray and the patch. If this inequality holds, it is

reported that this intersection point may not be the

closest one, because more than one intersection is very

likely to exist. Otherwise, the veri®cation process is

continued for other patches of the list. If no other

patches exist in the list, it is reported that this point is

the closest. If other patches do exist in the list, it is

reported that this point may not be the closest one.

The improved algorithm consists of two steps: the

preprocessing step and rendering step. In the prepro-

cessing step, the regular grid used to improve Barth

and StuÈ rzlinger's algorithm is naturally constructed for

each surface. In the rendering step, the primary rays

are traced in the scan line order according to the

proposed rendering technique. Figure 6 illustrates the

process in detail. The dashed lines denote shooting

rays from the view point. The black dots indicate that

the traced ray intersects the surface S and the closest

intersection point is found. B denotes that the closest

intersection point is found by direct BeÂzier clipping. B1

denotes that the clipping process is the straight-forward

case and Bm represents that the clipping process is the

bisection case.

Given a surface that will be tested along a scan line,

the ray (the 3rd ray in Figure 6) that intersects with the

surface S along the scan line is ®rst located, and then

the closest intersection point is found by direct BeÂzier

clipping. For the succeeding rays that intersect with the

surface S, if the ray±surface intersection is the straight-

forward case, for example, the 4th, 5th, and 6th rays in

Figure 6, BeÂzier clipping is applied to locate the

intersection point directly.

For bisection cases, for example, the 7th or 8th rays in

Figure 6, the bisection steps will produce some regions.

First, the region that contains parameters of the closest

intersection point found by the ray previously traced is

dealt with; this region is called the prior region. Once the

®rst intersection point is found in this region, whether or

not this point is the closest one can be veri®ed. If this

point is the closest one, the computation is stopped.

Otherwise, BeÂzier clipping is used to ®nd the remaining

intersection points.

If no intersections could be obtained from the prior

region, dealing with the region that adjoins the prior

region is preferable. That is, the parameter domains of

this region are beside those of the prior region because

the intersection point obtained from the region tends to

be the closest intersection point. This process is

illustrated with an example shown in Figure 7. No

intersection points are obtained from the prior region,

hence the clipping process is applied to region R1 and

the intersection point is found, indicated by a black

dot. This intersection point is then veri®ed. If this point

is the closest, the computation is stopped. Otherwise,

BeÂzier clipping is used to ®nd the other intersection

points.

Figure 6. The process of the modi®ed BeÂzier clipping on ®nding the ray±surface intersection points along a scan line. The dash

lines represent shooting rays from the view point.
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During veri®cation, an alternative approach exists.

That is, BeÂzier clipping can be used to locate the

ray±patch intersection points directly rather than

reporting that the intersection point is not the closest.

In the present implementation it is found that

the performance of applying this approach could

accelerate restricted performance with the cost of

extensive extra memory space to store patches. Hence,

this approach is not adopted to improve BeÂzier

clipping.

The major contributions of this improvement are that

the number of subdividing processes can not only be

reduced, but also that the closest intersection point can

be located without ®nding all of the ray±surface

intersection points.

Experimental Results

This section discusses the implementation results and

compares them with previous approaches. The pro-

posed algorithm and traditional algorithms are imple-

mented in C programming language. All the results

are run on the platform of a Pentium II 300 MHz CPU

and 128 MB RAM under a Windows NT 4.0 environ-

ment. Photographs for four different scenes were

created, Figures 8±11, for performance comparison.

The resolution of each image is 1024r1024 and all of

the scenes displayed in this paper are generated using

anti-aliasing (four rays per pixel) and a ray depth of

two. The spectral sampling approach14 is also

employed to produce more realistic color in metals.

The implementation herein uses nine spectral samples.

Moreover, the ¯at surfaces, such as a ¯oor or a ¯at

mirror, displayed in this work are created by polygons

rather than parametric surfaces.

Uniform space subdivision13 and simple min±max

bounding volume (axis-aligned parallelepiped) are

used to reduce unnecessary ray±surface intersection

tests. Tables 1 and 2 display the results from perform-

ing the proposed approach and traditional algorithms

on rendering all four distinct scenes. The data included

are the sum of rendering a whole scene (not including

the shading time) with 512r512 resolutions. Attention

is only paid to the total execution time involved in

®nding ray±surface intersection points. The time units

are in seconds.

Performance Comparison of Barth and
StuÈrzlinger's Algorithm

On implementing Barth and StuÈ rzlinger's algorithm,

the ray±surface intersection points on the two-

dimensional space are calculated. First, a BeÂzier surface

is projected according to two orthogonal planes

representing the traced ray. The projection process

is identical to that of BeÂzier clipping.10 Then

Newton's method is applied to solve the two-

dimensional non-linear system. For B-spline surfaces,

the method proposed by Yang8 could be used for the

projection.

Table 1 presents the total rendering time and total

number of intersection points found with the improved

Barth and StuÈ rzlinger's algorithm and original algo-

rithm on tracing the primary rays. According to the

Figure 7. An example of ®nding the intersections from the non-prior regions. (a) White dot represents the parameters of the

closest intersection point found by the previous ray. Black and gray dots represent the parameters of the intersection points

between the current ray and the surface. (b) We show the corresponding intersections between two adjoining rays and a surface.
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experimental results, the proposed method improved

the performance by 16±40%. The more high-curvature

surfaces that a scene contains, the more computation

time is saved. This phenomenon occurs because high-

curvature surfaces induce more multiple intersections

between the ray and surface. For example, in Figures 9

and 10, most of the rays intersect the surfaces at two

intersection points.

Performance Comparison of BeÂzier
Clipping

Table 2 summarizes experimental results of the

improved BeÂzier clipping and original BeÂzier clipping

Figure 9. Five toruses with 40 surfaces. Each torus is created

by 8 BeÂzier surfaces.

Figure 10. Twenty-four rings with 288 surfaces. Each ring

is constructed by 12 BeÂzier surfaces.

Figure 11. A highly re¯ective and complex environment

with 340 surfaces. The backdrop of the scene consists of

curved mirrors. Two mirrors are perpendicular to the ¯oor

and located on opposite sides of the ¯oor, which cannot be

seen in this rendering view.

Figure 8. Newell's teapot with 32 surfaces.
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on rendering four distinct scenes for the primary ray.

Notably, in the present implementation, BeÂzier clip-

ping was modi®ed according to the schemes suggested

by Campagna et al.15 According to the experimental

results, the proposed method improved the perfor-

mance of BeÂzier clipping by 6±28%. The unsatisfactory

performance in rendering Figure 8 is due to the body

of the teapot. Most of the intersections between the

body and traced rays are the straight-forward case. The

execution ef®ciency can be obviously revealed from the

number of intersection points found by the proposed

method. The larger the number of intersection points

implies a more ef®cient proposed method.

Comparing Tables 1 and 2 reveals two interesting

results. The ®rst result is that Barth and StuÈ rzlinger's

algorithm ®nds the ray±surface intersection points

faster than BeÂzier clipping. This phenomenon occurs

because the computation cost of ®nding an intersection

point of Newton's method is potentially lower than

that of BeÂzier clipping. It must be emphasized that this

paper aims to propose a rendering technique for

improving these algorithms, not to compare the

difference and superiority of these algorithms. Each of

these algorithms has its own advantages in ®nding the

ray±surface intersection points.

The second result is that the total number of

intersection points found by Barth and StuÈ rzlinger's

algorithm and BeÂzier clipping differ from each other,

particularly on rendering Figures 9 and 10. This

phenomenon occurs because if a ray is (or nearly)

tangential to the part of a surface, BeÂzier clipping will

locate many intersection points that are close to each

other. This phenomenon occurs in many algorithms,

such as the eigenvalue computation or Barth and

StuÈ rzlinger's algorithm3.

The Performance of Nonuniform
Sampling

According to the experimental results, the proposed

rendering technique works well in the case in which an

image plane is uniformly sampled. However, nonuni-

form sampling also plays an important role in many

Barth and StuÈrzlinger's algorithm

Rendering time No. of intersection points

Figure
No. of patches/
No. of surfaces

Original
algorithm

Improved
algorithm

Improved
performance

Original
algorithm

Improved
algorithm

8 7594/32 10.7 8.57 20% 110169 100337
9 13872/40 36.8 21.9 40% 583972 302183

10 39042/288 16.7 13.3 20% 207517 157295
11 39358/340 31.5 26.5 16% 470133 260384

Table 1. Experimental results of the improved Barth and StuÈrzlinger's algorithm and original
algorithm

BeÂzier clipping

Rendering time No. of intersection points

Figure
No. of patches/
No. of surfaces

Original
algorithm

Improved
algorithm

Improved
performance

Original
algorithm

Improved
algorithm

8 7594/32 32.9 30.8 6% 146910 102677
9 13872/40 128 101 21% 585952 329157

10 39042/288 66.5 50.3 24% 439421 198208
11 39358/340 145 105 28% 1170938 556281

Table 2. Experimental results of the improved BeÂzier clipping and original algorithm
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applications, such as anti-aliasing,18 parallel16 and

progressive17 ray tracing. To demonstrate the capabil-

ity of the proposed rendering technique to deal with

nonuniform sampling, these four scenes are rendered

with a jittered sampling19 (four rays per pixel) In our

implementation, each pixel is subdivided into four

subpixels and each sample point is located randomly

within its subpixel. Table 3 displays the experimental

results from the performance of the improved Barth

and Sturzlinger's algorithm.

The above ®nding indicates that the performance of

rendering the jittered sampling is only 2% less than

that of rendering the uniform sampling. The same tests

were also performed for the improved BeÂzier clipping,

with similar results.

However, the rendering technique proposed herein

may be inappropriate for distributed sampling, such as

parallel and progressive ray tracing. For parallel ray

tracing, the samples are selected adaptively from the

image plane, which is based on the balanced load

distribution. Furthermore, progressive ray tracing gen-

erates the sample location in an order that images may

be reconstructed from these samples. The adaptive

stochastic sampling of the image plane that the

algorithms adopted causes the proposed rendering

technique to spend more time on ®nding the ray±sur-

face intersection points. A similar problem is faced

when dealing with the shadow rays, because shadow

rays are lack of ray coherence. In our implementation,

the improvement of performance for shadow rays is

insigni®cant. Nevertheless, the shadow map19 is a

conventional means of accelerating shadow testing,

and can also be applied to ray tracing parametric

surfaces. The notion of constructing a shadow map is

similar to that of rendering an image plane. Hence, the

proposed approach is appropriate for generating

shadow maps to accelerate shadow testing.

Conclusions

This paper presents a rendering technique for improv-

ing both numerical methods and subdivision methods

on rendering BeÂzier surfaces and B-spline surfaces.

Our major contribution is that individual schemes are

designed for both the numerical and subdivision

methods to ®nd the ray±surface intersection points

and locate the closest intersection points ef®ciently.

Simplicity, reduced memory requirements, and en-

hanced execution are the main characteristics of the

proposed rendering technique. The results demon-

strate that the improved algorithms can reduce total

rendering time by 16±40%. The present implementa-

tion only deals with the primary rays. However, the

rendering technique can easily be extended to deal

with secondary rays by applying the cone tracing20 or

beam tracing21 technique. In these techniques, rays are

traced in a group rather than scan line order.
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