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The previous results about the parametric solutions of eigenstructure assignment
for singular systems applied by pure proportional or proportional-plus-derivative
state feedback can only apply to controllable systems. It is because the parametric
solutions of the right generalized eigenvectors corresponding to the infinite and
uncontrollable finite eigenvalues have still not been found. In this paper, the

Žparametric solutions of the right generalized eigenvectors for finite controllable or
. Ž .uncontrollable eigenvalues and infinite controllable or uncontrollable eigenval-

ues, when the system is applied by pure proportional or proportional-plus-deriva-
tive state feedback, are given. Hence, the parametric solution of eigenstructure
assignment can be used to design the state feedback of both the controllable and
uncontrollable systems. The condition for detecting the regularity of the resulting
system is also given. � 2000 Academic Press

1. INTRODUCTION

The parametric solutions of eigenstructure assignment for normal sys-
� � � �tems 1 have been studied by many researchers 2�9 . If the state feedback

is designed by eigenstructure assignment, not only the eigenvalues but also
the right generalized eigenvectors can be assigned. These solutions have

� �been further generalized to singular systems 10�14 of the type

Ex t � Ax t � Bu t , 1Ž . Ž . Ž . Ž .˙
Ž . n Ž . m n�n n�mwhere x t � R , u t � R , E, A � R , B � R , and Rank E �

Ž .q, q � n. The regularity of A 	 �E is assumed. Normal systems are
Ž .special cases of 1 where q � n.
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Singular systems have the ability to capture the dynamic behavior of
many physical phenomena, so they are applied in many fields, such as
network theory, robotics, and economics. In the research about linear
controller design of singular systems, two types of feedback are frequently
used. One is the pure proportional state feedback

u t � K x t , K � Rm� n , 2Ž . Ž . Ž .1 1

and the other is proportional-plus-deri�ati�e state feedback

u t � K x t 	 K x t , K , K � Rm� n . 3Ž . Ž . Ž . Ž .˙1 2 1 2

Among those who have researched the parametric solutions of the
eigenstructure problem for singular systems applied by pure proportional

� �state feedback, Fahmy and O’Reilly 10 developed solutions that were
applicable only to the controllable system and the eigenvalues of the
resulting system cannot coincide with those of the original system. Duan
� �11 gave a parametric solution calculated by the Smith form of the matrix
pencil; however, his solutions were not parametric if the system was

� �uncontrollable. Chen and Chang 12 generalized the results of Fahmy and
� �O’Reilly 10 to the strongly controllable system. This condition was more

Ž � �.general than the controllable system see 15�17 . But their results cannot
be applied to the strongly uncontrollable systems.

� � � �Chen and Chang 13 and Jing 14 have developed the parametric
solutions of eigenstructure assignment for singular systems applied by the

Ž .special case of proportional-plus-derivative state feedback 3 where K �2
Ž .�K i.e., the constant-ration-proportional-derivative state feedback .1

However, their solutions also can only be applied to controllable systems.
Furthermore, in all of the previous research, the parametric solutions of

the eigenstructure assignment problem for infinite eigenvalues have never
been considered.

Therefore, if a system is uncontrollable, its state feedback cannot be
designed using the previous results about the parametric solutions of
eigenstructure assignment. In this paper, we obtain parametric solutions of
eigenstructure assignment that can be used to design the pure propor-
tional state feedback and proportional-plus-derivative state feedback for
both controllable and uncontrollable singular systems. The parametric

Žsolutions of right generalized eigenvectors for finite controllable or un-
. Ž .controllable eigenvalue and infinite controllable or uncontrollable

eigenvalues, when the system is applied by pure proportional and propor-
tional-plus-derivative state feedback, are all obtained. For ensuring the

Ž .uniqueness of the state responses x t , the singular system should be
regular. In this paper, the condition for detecting the regularity of the
resulting systems is also given.
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The organization of this paper is as follows. In Section 2, some concepts
and notations about the controllability and uncontrollability of finite and
infinite eigenvalues are discussed. The eigenstructure assignment problem
and a condition for detecting the regularity of the resulting system are
stated in Section 3. In Section 4, the parametric solutions of right general-
ized eigenvectors for controllable and uncontrollable finite eigenvalues are
given. The parametric solutions of right generalized eigenvectors for the
controllable and uncontrollable infinite eigenvalues are given in Section 5.
In Section 6, we give an example where the proportional-plus-derivative
feedback is designed for an uncontrollable system. The state feedback
design in this example cannot be achieved by any previous results about
the parametric solutions of eigenstructure assignment. Section 7 concludes
the paper.

2. SOME CONCEPTS AND NOTATIONS ABOUT
CONTROLLABILITY AND UNCONTROLLABILITY

Ž .If the system 1 is uncontrollable, the uncontrollable eigenvalues of
Ž .A 	 �E and some left generalized eigenvectors with these uncontrol-

Ž . Ž .lable eigenvalues cannot be altered by any state feedback 2 or 3 .
� �However, by a similar reason as stated by Moore 2 , the right generalized

eigenvectors with the uncontrollable eigenvalues still can be changed by
the state feedback. The uncontrollable left generalized eigenvectors are
important for the development of our solutions. So they are first discussed
in this section.

� �By 1, p. 29, Theorem 2-2.1 , whether the system is controllable can be
characterized as follows:

Ž . �LEMMA 2.1. The system 1 is controllable if and only if Rank A 	
� � ��E B � n, �� � C, � is finite, and Rank E B � n.

Two nonsingular matrices Q, P � Rn�n can be selected to consider the
Ž . Ž . Ž . Ž .uncontrollability of the system 1 . if x t � Px t and we left multiply 1

Ž .by Q, then 1 can be transformed into the form

E E A Ac 12 c 12 Bcẋ t � x t � u t ,Ž . Ž . Ž .
00 E 0 Ac c

n �n n �nc c c c Ž .where E , A � R , E , A � R , n � n � n, and E , A , B isc c c c c c c c c
Ž .controllable. The uncontrollable eigenvalues of A 	 �E are the eigen-

Ž . Ž � � .values of A 	 �E . For details, see 1, pp. 50�55 . Assume thatc c
Ž .A 	 �E has infinite eigenvalue and � distinct finite eigenvalues � �c c i
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ˆkC, i � 1, . . . , � , and it also has the left generalized eigenvectors h �i j
1�n c ccC , i � 1, . . . , � , �; j � 1, . . . , � ; k � 1, . . . , � , satisfying the relationsi i j

k k	1 0 cˆ ˆ ˆh A 	 � E � h E , h � 0, i � 1, . . . , � ; j � 1, . . . , � ;ž /i j c i c i j c i j i

ck � 1, . . . , � ,i j

k k	1 0 c cˆ ˆ ˆh E � h A , h � 0, j � 1, . . . , � ; k � 1, . . . , � .� j c i j c � j � � j

c c� � c � ci �It is satisfied that Ý Ý � � Ý � � n . Then by the theory ofi�1 j�1 i j j�1 � j c
linear algebra, the following lemma can be obtained.

Ž .LEMMA 2.2. The system 1 has uncontrollable eigen�alues as stated abo�e
if and only if there are a series of linear independent row �ectors hk � C1�n,i j

c ci � 1, . . . , � , �; j � 1, . . . , � ; k � 1, . . . , � , that satisfy the relationsi i j

k � � k	1� � 0h A 	 � E B � h E 0 , h � 0, i � 1, . . . , � , 4Ž .i j i i j i j

k � � k	1� � 0h E B � h A 0 , h � 0. 5Ž .� j � j � j

By Lemma 2.2, the following definition can be given.

DEFINITION 2.1. A series of row vectors hk � C1�n, i � 1, . . . , � ; j �i j
c c Ž .1, . . . , � ; k � 1, . . . , � , satisfying 4 are called uncontrollable left gener-i i j

alized eigenvectors with the finite eigenvalues. Also, a series of vectors
k 1�n c c Ž .h � C , j � 1, . . . , � ; k � 1, . . . , � , satisfying 5 are called uncon-� j � � j

k Žtrollable left generalized eigenvectors with the infinite eigenvalues. h alli j
.possible values of i are 1, . . . , � , � is called an uncontrollable left general-

ized eigenvector of grade k. For hk , if there exists a row vector hk�1 suchi j i j
k�1 k Ž . Ž . kthat both h and h satisfy 4 or 5 , then we say that h has a nexti j i j i j

uncontrollable left generalized eigenvector, otherwise, we say that hk hasi j
no next uncontrollable left generalized eigenvector.

The following notation is defined within i � 1, . . . , � , �, i.e., for finite
c cand infinite uncontrollable eigenvalues. Assume that � � � � 			 �i1 i2

c
c� . Denote 
 as the number of all distinct element of the set4bi� ii
c c c 1 2 
 1 2i� 4c� , � , . . . , � . The notations � , � , . . . , � , satisfying � � � �i1 i2 i� i i i i ii


 c c ci � 4c			 � � , represent all distinct elements of the set � , � , . . . , � .i i1 i2 i� i

Assume that there are � elements with value � l, l � 1, . . . , 
 , in the seti l i i
c c c k� 4c� , � , . . . , � . Then � � � � 			 �� � � . Denote H as the ma-i1 i2 i� i1 i2 i
 i i li i

trix whose row vectors are the uncontrollable left generalized eigenvectors
of grade k with the uncontrollable eigenvalue � in all the chains withi
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length � l. i.e.,i

khiŽ� � 	 	 	 �� �1.i1 iŽ l	1.

khiŽ� � 	 	 	 �� �2.i1 iŽ l	1.k lH � , k � 1, . . . , � ; l � 1, . . . , 
 and � � 0.i l i i i0...
khiŽ� � 	 	 	 �� �� .i1 iŽ l	1. i l

Ž . Ž .Then by 4 and 5 , we have

k � � k	1� �H A 	 � E B � H E 0 ,i l i i l

k � 1, . . . , � l , H 0 � 0, i � 1, . . . , � , 6Ž .i i l

k � � k	1� � l 0H E B � H A 0 , k � 1, . . . , � , H � 0. 7Ž .�l �l � �l

A series of matrices H 1, H 2, . . . , H � i group those chains of uncontrollablei l i l i l
left generalized eigenvectors with the same length � l, l � 1, . . . , 
 .i i

Let

1� iHi1
..U � , l � 1, . . . , 
 .i l i.

l� iHil

U comprises all the last uncontrollable left generalized eigenvectors ini l
the chains with length less than or equal to l. It can be seen that

UiŽ l	1.
U � .li l � iHil

The following example is given to show the meaning of the above
notations.

EXAMPLE 2.1. Consider an uncontrollable system which has an uncon-
c c c ctrollable finite eigenvalue � , with � � 3, � � 2, � � 2, � � 4,1 1 11 11 12

c� � 4. The related notations about the uncontrollable generalized eigen-13
vectors are showing in the diagram

1st chain: h1 h2 � 1 � 2, � � 1,11 11 1 11
1 2 3 4h h h h12 12 12 122nd chain: 2� � 4, � � 2.1 121 2 3 4 53rd chain: h h h h13 13 13 13
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Since there are two different lengths 2 and 4, we have 
 � 2. The related1
matrices are

1 1 2 2H � h , H � h11 11 11 11

1 2 3 4h h h h12 12 12 121 2 3 4H � , H � , H � , H � ,12 12 12 121 2 3 4h h h h13 13 13 13

and

2h11

42 2 4 hU � h , U � .1211 11 12
4h13

3. THE EIGENSTRUCTURE ASSIGNMENT PROBLEM

For considering the pure proportional and proportional-plus-derivative
state feedback simultaneously, we use a feedback of the type

u t � K x t 	  K x t , K , K � Rm� n ,  � R , 8Ž . Ž . Ž . Ž .˙1 2 1 2

 is an auxiliary number to distinguish different types of feedbacks. If
Ž . Ž . Ž . � 0, 8 is a pure proportional state feedback 2 . If  � 1, 8 is a

Ž . Ž . Ž .proportional-plus-derivative state feedback 3 . When 8 is applied to 1 ,
the resulting system becomes

E �  BK x t � A � BK x t . 9Ž . Ž . Ž . Ž . Ž .˙2 1

Ž . Ž .Eigenstructure Assignment Problem. For system 1 and feedback 8 , the
problem of eigenstructure assignment is to select appropriate state feed-

ŽŽ . Žback gains K and K that will make the matrix pencil A � BK 	 � E1 2 1
.. Ž .�  BK in 9 have admissible eigenvalues and right generalized eigen-2

vectors.

Ž .Assume that the assigned eigenvalues in the resulting system 9 are � ,i
i � 1, . . . , �, �, where � represents the infinite eigenvalue. The geometric�

multiplicity of � is denoted by � , and the lengths of those � chains ofi i i
generalized eigenvectors with � are denoted by � , j � 1, . . . , � . It isi i j i
satisfied that Ý� Ý� i � � Ý�� � � n. Note that the uncontrollablei�1 j�1 i j j�1 � j
finite and infinite eigenvalues should be included in the assigned eigenval-

cues; i.e., if � is an uncontrollable eigenvalue, it should hold that � 
 �i i i
c cand there are � chains whose lengths satisfy � 
 � .i i j i j
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Ž .The right generalized eigenvectors of the resulting system 9 with � arei
denoted by � k , i � 1, . . . , �, �; j � 1, . . . , � ; k � 1, . . . , � . Then theyi j i i j
satisfy that

A � BK 	 � E �  BK � k � E �  BK � k	1 ,Ž . Ž . Ž .Ž .1 i 2 i j 2 i j

� 0 � 0, k � 1, . . . , � , 10Ž .i j i j

E �  BK � k � A � BK � k	1 , � 0 � 0, k � 1, . . . , � . 11Ž . Ž . Ž .2 � j 1 � j � j � j

Let w k � K � k and y k � K � k , i � 1, . . . , �, �; j � 1, . . . , � ; k �i j 1 i j i j 2 i j i
Ž . Ž .1, . . . , � . Then 10 and 11 can be rewritten asi j

A � � E � k � Bw k 	 �  By k � E� k	1 �  By k	1 ,Ž .i i j i j i i j i j i j

� 0 � 0, y0 � 0, k � 1, . . . , � , 12Ž .i j i j i j

E� k �  By k 	 Bw k	1 � A� k	1 , � 0 � 0, w0 � 0, k � 1, . . . , � .� j � j � j � j � j � j � j

13Ž .

� 1 � i j � �The notations are defined as V � � 			 � , V � V 			i j i j i j i i1
� � � � 1 �� j � � �V , V � V 			 V , V � � 			 � , V � V 			 V ,i� f 1 � � j � j � j � �1 ��i �� � k kV � V V . The set of w and y is defined in a manner similar to thef � i j i j

set of � k .i j
� �By a similar method as used by Kleion and Moore 3 , the following

theorem stating the existing condition of real K and K can be obtained.1 2

THEOREM 3.1. The assigned eigen�alues are gi�en as abo�e. Assume that
they are symmetric with respect to the real axis. There exist feedback matrices

Ž . Ž .K , K , of real number, such that 10 and 11 hold, if and only if the1 2
following three conditions are satisfied.

Ž . k k kC1 For each i, j, there exist a set of �ectors � , w , y , k � 1, . . . , � ,i j i j i j i j
Ž . Ž .satisfying 12 or 13 .

Ž . � �C2 V V is nonsingular.f �

Ž . Ž . Ž Ž . .C3 If � � conj � conj x means the complex conjugate of x theni i1 2
k Ž k .� � � , � � � and � � conj � , j � 1, . . . , � ; k � 1, . . . , � .i i i j i j i j i j i i j1 2 1 2 1 2 1

Ž .For ensuring the uniqueness of the state response x t , the singular
� �system should be regular 17, p. 6 . For considering the regularity of the

resulting system, the following lemma is given.

Ž . � �LEMMA 3.1. If C2 is satisfied, i.e., V V is nonsingular, then thef �

Ž . � �resulting system 9 is regular if and only if EV �  BY AV � BW isf f � �

nonsingular.
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Proof. See Appendix A.

So, in Theorem 3.1, if the resulting system is required to be regular, the
following condition should be added:

Ž . � �C4 EV �  BY AV � BW is nonsingular.f f � �

Therefore, all possible solutions of the assignable right generalized
k Ž . Ž . Ž . Ž . Ž .eigenvectors � are those satisfying 12 , 13 , and C2 , C3 , C4 .i j

Ž .Equation 12 demonstrates the relation of the assignable right generalized
Ž .eigenvectors with the finite eigenvalue and 13 demonstrates the relation

of the assignable right generalized eigenvectors with the infinite eigen-
k k k Ž . Ž . Ž .value. If the solutions of � , w , and y in 12 and 13 satisfying C2 ,i j i j i j

Ž . Ž . Ž .C3 , and C4 have been found, then K V � W and K V � Y. By C2 ,1 2
det V � 0, the feedback gains can be obtained by K � WV	1 and K �1 2
YV	1.

� � � � � �Fahmy and O’Reilly 10 , Duan 11 , and Chen and Chang 12 have
Ž .given the parametric solutions of 12 in the case  � 0, i.e., the pure

proportional state feedback, and the eigenvalues must be controllable. In
all previous research, the infinite eigenvalue was never considered. So the

Ž .parametric solutions of 13 have not been discussed.
In the following, we obtain the more general parametric solutions of � k ,i j

k k Ž . Ž .w , and y in 12 for controllable or uncontrollable finite eigenvalues ini j i j
k k k Ž .Section 4. The parametric solutions of � , w , and y in 13 for control-� j � j � j

Ž .lable or uncontrollable infinite eigenvalues are given in Section 5. With
these parametric solutions, we can select the right generalized eigenvectors

Ž . Ž . Ž .by choosing the free parameters that satisfy C2 , C3 , and C4 , and
obtain the feedback gains by K � WV	1 and K � YV	1.1 2

4. MAIN RESULTS FOR THE FINITE EIGENVALUES

The relation demonstrating the assignable right generalized eigenvectors
Ž .with the finite eigenvalues is 12 . Our main work in this section is to find
k k k Ž .the parametric solutions of � , y , and w , k � 1, . . . , � , in 12 , wherei j i j i j i j

Ž .the uncontrollability information of E, A, B stated in Section 2 is as-
sumed.

� � � �By Lemma 2.2, Rank A 	 � E B 	�  B � Rank A 	 � E B �i i i
r, r � n, where r depends on the controllability of � . So the followingi
relation holds,

i i iP P P11 12 13iL I 0 01 ri i i� � P P PA 	 � E B 	�  B � , 14Ž .21 22 23i ii 0 0 0L2 i i iP P P31 32 33
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where Li � C r�n, Li � C Žn	r .�n, P i � C n� r, P i , P i � C m� r, P i �1 2 11 21 31 12
C n� Žm�n	r ., P i , P i � C m� Žm�n	r ., P i � C n�m, P i , P i � C m� m. I is22 32 13 23 33 r
the r � r identity matrix. The matrices

i i iP P P11 12 13 iL1i i ii iP P PP � and L �21 22 23 iL2i i iP P P31 32 33

Ž .are nonsingular and they can be obtained by elementary column or row
operations.

If � is a controllable eigenvalue, then r � n and both L2 and thei i
uncontrollable left generalized eigenvector do not exist. On the other
hand, if � is an uncontrollable eigenvalue, then r � n, and both Li andi 2
the uncontrollable left generalized eigenvector exist. In the later case, we
can obtain the following lemma.

� i i �LEMMA 4.1. If the finite eigen�alue � is uncontrollable, U E P Pi il 12 13
is of full row rank, for any l � 1, . . . , 
 .i

Proof. See Appendix B.

� iBy Lemma 4.1, if the finite eigenvalue � is uncontrollable, then U E Pi il 12
i � � �P is of full row rank, so it can be transformed into I 0 by13 Ž� � 	 	 	 �� .i1 i l

column operations, i.e.,

i l i lS S11 12i iU E P P � I 0 , l � 1, . . . , 
 , 15Ž .i l 12 13 Ž� � 	 	 	 �� . ii l i l i1 i lS S21 22

where Sil � C Žm�n	r .�Ž� i1� 	 	 	 �� i l ., Sil � C Žm�n	r .�Ž� iŽ l�1.� 	 	 	 �� i
 i
�2 m.,11 12

Sil � C m� Ž� i1� 	 	 	 �� i l ., Sil � C m� Ž� iŽ l�1.� 	 	 	 �� i
 i
�2 m. and the matrix21 22

i l i lS S11 12

i l i lS S21 22

is nonsingular.
The following theorem for the parametric solutions of � k , y k , andi j i j

k Ž .w , k � 1, . . . , � in 12 can be given now:i j i j
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Ž .THEOREM 4.1. 1 If � is a controllable eigen�alue, all possible solu-i
Ž .tions of 12 are

k� i i i� P P Pi j 11 12 13k	1� i jk i i i1 k	1w � �P P P� L E  B � z ,i j 21 22 23i ik	1� y 16Ž .i ji i ik P P Py 31 32 33i j

0 0� � 0, y � 0, k � 1, . . . , � .i j i j i j

Ž .2 If � is an uncontrollable eigen�alue, then the following holds:i
Ž . 1 Ž .a If � � � , all possible solutions of 12 arei j i

k� i i i� P P Pi j 11 12 13k	1� i jk i i i1 k	1w � �P P P� L E  B � z ,i j 21 22 23i ik	1� y 17Ž .i ji i ik P P Py 31 32 33i j

0 0� � 0, y � 0, k � 1, . . . , � .i j i j i j

Ž . b b�1 
 i�1b If � � � � � for some b and � � �, let c � 1, ei i j i i 1 1
Ž b. Ž b	 l�2 . Ž b	 l�1.� � 	 � , c � � 	 � � 1, and e � � 	 � , l �i j i l i j i l i j i

Ž .2, . . . , b, all possible solutions of 12 can be represented as

k� i i i� P P Pi j 11 12 13 iŽb	l�1.S11k i i i i 1w P P P� 	 U EP Li j 21 22 23 iŽb	l�1. 11 iiŽb	l�1.S21i i i	 0k P P Py 31 32 33i j

� i i 18Ž .P P12 13k	1 iŽb	l�1.� Si j 12i i k	1� � P PE  B � z ,22 23 ik	1 iŽb	l�1.� Si j 22i iP P32 33

0 0 � � 0, y � 0, k � c , . . . , e , l � 1, . . . , b ,i j i j l l

k� i i i� P P Pi j 11 12 13k	1� i jk i i i1 k	1w � �P P P� L E  B � z ,i j 21 22 23i ik	1� y 19Ž .i ji i ik P P Py 31 32 33i j

1k � � 	 � � 1, . . . , � .Ž .i j i i j

z k	1 is a column �ector with appropriate dimension, representing the freei
parameters.
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Proof. See Appendix C.
i i i Ž .Note that if  � 0, P , P , and P in 14 are any matrices with31 32 33

appropriate dimensions which make P i nonsingular. So by Theorem 4.1,
k Ž .y may have many solutions. This reflects the fact that if  � 0, y in 12i j i j

is undetermined. In this case, the pure proportional state feedback is used.
So only � k and w k are considered, and the value of y k is not important.i j i j i j
Also, it can be seen in Theorem 4.1 that if  � 0, the value of � k and w k

i j i j
are not affected by the value of y k	1.i j

5. MAIN RESULTS FOR THE INFINITE EIGENVALUES

The relation demonstrating the assignable right generalized eigenvectors
Ž .with the infinite eigenvalues is 13 . Our main work in this section is to

k k k Ž .find the parametric solutions of � , y and w , k � 1, . . . , � , in 13� j � j � j � j
Ž .where the uncontrollability condition of E, A, B stated in Section 2 is

assumed.

1. The Solution for k � 1

Ž . 1 1When k � 1, 13 becomes E� �  By � 0. We can find matrices Q� j � j 1
and Q satisfying the relation2

�Q1� �E  B � 0, 20Ž .�Q2

where
�Q1
�Q2

� �is of full column rank and its columns span the null space of E  B .
Then all possible solutions of � 1 and y1 are� j � j

1 �� Q� j 1 0� z , 21Ž .� � j1 Qy 2� j

where z 0 is a free parameter.� j

2. The Solutions for k 
 2

� � � �By Lemma 2.2, Rank E  B 	B � Rank E B � r, r � n, where r
depends on the controllability of the infinite eigenvalue. So the following
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relation exists,

� � �P P P11 12 13�L I 0 01 � � � rP P P� �E  B 	B � , 22Ž .21 22 23�L 0 0 02 � � �P P P31 32 33

where L� � Rr�n, L� � RŽn	r .�n, P� � Rn� r, P� , P� � Rm� r, P� �1 2 11 21 31 12
Rn� Žm�n	r ., P� , P� � Rm� Žm�n	r ., P� � Rn�m, P� , P� � Rm� m. The22 32 13 23 33
matrices

� � �P P P11 12 13 �L1� � �� �P P PP � and L � 23Ž .21 22 23 �L2� � �P P P31 32 33

are nonsingular.
If the infinite eigenvalue is uncontrollable, the following lemma similar

to those for the finite eigenvalue can be obtained.

� � � �LEMMA 5.1. For any l � 1, . . . , 
 ; U A P P is of full row rank.� �l 12 13

� � � �By Lemma 5.1, U A P P is of full row rank, so it can be trans-�l 12 13
� �formed by column operations into I 0 , i.e.,Ž� � 	 	 	 �� .�1 �l

�l �lS S11 12� �U A P P � I 0 , l � 1, . . . , 
 , 24Ž .�l 12 13 Ž� � 	 	 	 �� . ��l �l �1 �lS S21 22

where S�l � RŽm�n	r .�Ž��1� 	 	 	 ���l ., S�l � RŽm�n	r .�Ž��Ž l�1.� 	 	 	 ���
�
�2 m.,11 12

S�l � Rm� Ž��1� 	 	 	 ���l ., S�l � Rm� Ž��Ž l�1.� 	 	 	 ���
�
�2 m., and the matrix21 22

�l �lS S11 12

�l �lS S21 22

is nonsingular.
By a similar method for finite eigenvalues, the following theorem

concerning the parametric solutions with the infinite eigenvalue when
k 
 2 can be obtained.
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Ž .THEOREM 5.1. 1 If the infinite eigen�alue is controllable, all possible
Ž .solutions of 13 are

k� � � ��� j P P P11 12 13
� � �k 1 k	1 k	1P P Py � L A� � z ,21 22 23� j � � j �� 25� � � Ž .k	1 P P P31 32 33w� j

1 1 � � j� and y are gi�en in 21 , k � 2, . . . , � , and w is free.Ž .� j � j � j � j

Ž .2 If the infinite eigen�alue is uncontrollable, the following holds:
Ž . 1 Ž .a If � � � , all possible solutions of 13 are� j �

k� � � ��� j P P P11 12 13
� � �k 1 k	1 k	1P P Py � L A� � z ,21 22 23� j � � j �� 26� � � Ž .k	1 P P P31 32 33w� j

1 1 � � j� and y are gi�en in 21 , k � 2, . . . , � , and w is free.Ž .� j � j � j � j

Ž . b b�1 
��1 Ž b.b If � � � � � , � � �, let c � 2, e � � 	 �� � j � � 1 1 � j �

Ž b	 l�2 . Ž b	 l�1.and c � � 	 � � 1, e � � 	 � , l � 2, . . . , b, and alll � j � l � j �

Ž .possible solutions of 13 can be represented as

k� � � ��� j P P P11 12 13 �Žb	l�1.S11� � �k P P Py � 	 U21 22 23� j �Žb	l�1.�Žb	l�1.S� � � 21	 0k	1 P P P31 32 33w� j� � � 27Ž .P P12 13 �Žb	l�1.S12� �� 1 k	1 k	1P P	AP L A� � z ,22 2311 � � j ��Žb	l�1.S� � 22P P32 33

1 1� and y are gi�en in 21 , k � c , . . . , e ; l � 1, . . . , b ,Ž .� j � j l l

k� � � ��� j P P P11 12 13
� � �k 1 k	1 k	1P P Py � L A� � z ,21 22 23� j � � j �� � � � 28Ž .k	1 P P P31 32 33w� j

1 � � jk � � 	 � � 1, . . . , � , and w is free.Ž .� j � � j � j

z k	1 is a column �ector with appropriate dimension, representing the freei
parameters.
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6. EXAMPLE

Consider the system

	1 2 	1 1 2 1 	2 1 	2 0
1 	1 0 0 1 	1 2 0 0 0

E � , A � ,	1 2 	1 1 0 2 	3 1 	1 1
0 	1 0 0 	1 	1 0 0 1 0
1 1 	1 1 1 2 	2 1 	1 0

	1
0

B � .0
0
1

This system has uncontrollable finite eigenvalue 	1, controllable finite
eigenvalue 1, and uncontrollable infinite eigenvalue. For the uncontrol-

c clable finite eigenvalue � � 	1, � � 1, � � 2, and1 1 11

2 2 � �U � H � h � 0.5 0 0 0.5 0.5 .11 11 11

c cFor the uncontrollable infinite eigenvalue, � � 1, � � 2, and� �1

2 2 � �U � H � h � 0 0 0 	1 0 .�1 �1 �1

Since the system contains the uncontrollable finite and infinite eigen-
value, pure proportional or proportional-plus-derivative state feedback
cannot be designed by the previous research about the parametric solu-
tions of eigenstructure assignment. However, they can be designed by our
solutions.

The eigenvalue 1 is unstable. We want to use the pure proportional-
plus-derivative state feedback to stabilize the system. We prepare to move
the unstable finite eigenvalue 1 to the stable finite eigenvalue 	1. Then
the resulting system would have infinite eigenvalue where � � 1, � � 2,� �1
and finite eigenvalue � � 	1 where � � 2, � � 2, and � � 1.1 1 11 12

According to our solutions, the assignable right generalized eigenvectors
are as follows.



EIGENSTRUCTURE ASSIGNMENT 563

cŽ .1 Since � , � � � , the assignable right generalized eigenvec-11 12 11
tors for the uncontrollable finite eigenvalue � � 	1 are1

0.5 0 0 0 0 w 	 0.5
0.75 	1 0.5 	0.5 0 0.25k� 1 j k	10 0 0 0 0 0 � 1 jkw � 1.5 	2 0 0 0 0.51 j k	1y1 j0.25 0 	0.5 0.5 1 	0.25ky1 j 0 0 0 0 0 0
0 0 0 0 0 0

0 	0.5 	0.5
0 	0.25 	0.25
1 0 0

k	1� z ,0 	0.5 	0.5 1 j

0 0.25 0.25
0 1 0
0 0 1

k � 1, . . . , � , j � 1, 2.1 j

cŽ .2 Since � � � , the assignable right generalized eigenvectors are�1 �1

0 	1
0 	0.5

1��1 1 0 0� z ,�11 1 0y�1
0 0.5
0 1

1 0 0 0 0
1.5 	0.5 0 	0.5 0.52��1 0 2 	1 0 0

2 1y � �0 0 0 0 0�1 �1
1 	0.5 0.5 0 	0.5 	0.5w�1 0 0 0 0 0

0 0 0 0 0

0 	1 1
0 	0.5 0.5
1 0 0

1� z .1 0 0 �1

0 0.5 	0.5
0 1 0
0 0 1
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Suppose the free parameters are chosen as

0 1 1 10 1 0 0z � , z � , z � , z � ,2 2 111 11 12 �1 02 2 	1

1
1 2z � , w .0�1 �1�1

1

Then the assigned right generalized eigenvectors are

	2 	2 0 0 1
	1 0 0 0 0

� �V � , W � 2 2 1 1 1 ,0 1 1 1 0
	2 	2 0 1 1

1 0 0 0 	1

� �Y � 2 2 	1 0 0 ,

and the feedback gain is

� �K � ,	0.5 	2.5 1 0 	1.51

� �K � .	2.5 	0.5 	1 1 	1.52

Then the resulting system is

1.5 2.5 0 0 3.5
1 	1 0 0 1

x tŽ .	1 2 	1 1 0 ˙
0 	1 0 0 	1

	1.5 0.5 	2 2 	0.5

1.5 0.5 0 	2 1.5 	1
	1 2 0 0 0 0

� x t � u t .Ž . Ž .2 	3 1 	1 1 0
	1 0 0 1 0 0

1.5 	4.5 2 	1 	1.5 1

This system contains the infinite eigenvalue, the finite eigenvalue 	1, and
the assigned right generalized eigenvectors V.
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7. CONCLUSION

The parametric solutions of the right generalized eigenvectors for finite
Ž . Žcontrollable or uncontrollable eigenvalues and controllable or uncon-

.trollable infinite eigenvalues, when the system is applied by pure propor-
tional or proportional-plus-derivative state feedback, are given. By these
results, the parametric solution of eigenstructure can be used to design the

Ž .state feedback of controllable or uncontrollable systems. A condition for
detecting the regularity of the resulting system is also given, which is
explicitly represented in terms of the possible solutions. After the uncon-
trollability information is obtained, only elementary column and row
operations are needed to construct the solutions.

APPENDIX

A. Proof of Lemma 3.1. Let

J 0 			 0� 1 			 0 i1i

0 J 			 00 � 			 0 i2i
. . . .J � , J � ,. . . .i j i . . . .. . . . . . . .. . . .
0 0 0 J0 0 0 � i�i i

J 0 			 01

0 J 			 02
J � ,. . . .. . . .. . . .

0 0 0 J�

N 0 			 010 1 			 0
0 N 			 00 0 			 0 2

. . . . . . . .N � , N � ,j . . . . . . . .. . . . . . . .
0 0 0 0 0 0 0 N��

where J � R � i j�� i j is in Jordan form with eigenvalue � and N � R �� j��� j
i j i j

is in Jordan form with eigenvalue 0. Then it can be shown that

A � BK 	 � E �  BK V VŽ . Ž .Ž .1 2 f �

J 	 �I 0� EV �  BY AV � BW 29Ž .f f � �
0 I 	 �N

for all � � C.
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ŽŽ . Ž ..Necessity. If A � BK 	 � E �  BK is regular, a number � � C1 2
ŽŽ . Ž .. ŽŽcan be found such that det A � BK 	 � E �  BK � 0, i.e., A �1 2

. Ž .. Ž . � �BK 	 � E �  BK is nonsingular. By C1 , V V is also nonsingu-1 2 f �

Ž .lar, so the left hand side of 29 is nonsingular. Therefore the right hand
Ž . �side of 29 is also nonsingular. This implies that EV �  BY AV �f f �

�BW is nonsingular.�

Sufficiency. Because J is in Jordan form with eigenvalues � , i �i
1, . . . , �, and N is in Jordan form with eigenvalue 0, if � � 0 and � � � ,i

Ž ŽŽ . Ž ... �i � 1, . . . , �, then det diag J 	 � I , I 	 � N � 0. If EV �  BYp p f f
� Ž .AV � BW is nonsingular, the right hand side of 29 is nonsingular. So� �

Ž . ŽŽ .the left hand side of 29 is also nonsingular. This implies that A � BK1
Ž .. ŽŽ . Ž ..	 � E �  BK is nonsingular, so A � BK 	 � E �  BK is regu-p 2 1 2

lar.

B. Proof of Lemma 4.1. Before proving Lemma 4.1, two lemmas are
first given. They can be derived by the property of generalized eigenvec-
tors.

LEMMA B.1. h is a linear combination of some uncontrollable lefti
cgeneralized eigen�ectors of grade smaller than or equal to d, d � max � ,j i j

with the same eigen�alue � , and the coefficients of the uncontrollable lefti
generalized eigen�ectors of grade d are not all zero if and only if h is ani
uncontrollable left generalized eigen�ector of grade d with eigen�alue � .i

LEMMA B.2. If h satisfies the same conditions which are gi�en in Lemmai
B.1 and all the uncontrollable left generalized eigen�ectors of grade d with
nonzero coefficients ha�e no next uncontrollable left generalized eigen�ectors,
then h also has no next left uncontrollable generalized eigen�ector.i

Proof of Lemma 4.1. The mathematical induction is used to prove this
lemma. First, the case l � 1 is proved. It can be seen that U � H � 1

i . Ifi1 i1
� 1

i � i i � 1� f i1H E P P is not full rank, a nonzero vector f � R satisfiesi1 12 13
� 1

i � i i � � 1
ifH E P P � 0. Let h � fH . Because f � 0, by Lemmas B.1 andi1 12 13 i1

B.2, h is an uncontrollable left generalized eigenvector of grade � 1 andi
has no next uncontrollable generalized eigenvector.

1� i ii � �Because fH E P P � 0. There is a row vector h satisfyingi1 12 13
i i iŽ . � �h diag I 0 � hE P P P . If both sides of this relation are leftr�r 11 12 13	1i � � � �multiplied by P , then hL A 	 � E 	 � B B � h E 0 . It impliesi i i

� � � �that hL A 	 � E B � h E 0 . So hL is the next uncontrollablei i n�m i
� ileft generalized eigenvector of h. This is a contradiction. So U E Pi1 12

i �P is full row rank.13
� i i �Assume that U E P P is full row rank where d � 
 . IfiŽd	1. 12 13 i

� i i �U E P P is not full rank, then there is a row vector f �i d 12 13
1� Ž� i1� 	 	 	 �� i d . � i i � � �R satisfying fU E P P � 0. Let f � f f , wherei d 12 13 1 2

1� Ž� i1� 	 	 	 �� iŽd	1.. 1�� i d � i i �f � R and f � R . Then fU E P P �1 2 i d 12 13
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Ž � d
i . � i i � Žf U � f H E P P � 0 and f � 0. Let h � f U �1 iŽd	1. 2 i d 12 13 2 1 iŽd	1.

� d
i .f H . By Lemmas B.1 and B.2, h is an uncontrollable left generalized2 i d

eigenvector of grade � d and has no next uncontrollable left generalizedi
eigenvector.

i i� �Because fU E P P � 0, there is a row vector h satisfyingi d 12 13
i i iŽ . � �h diag I 0 � hE P P P . If both sides of this relation arer�r 11 12 13

	1i � � � �right multiplied by P , then hL A 	 � E 	 � B B � h E 0 . It im-i i i
� � � �plies that hL A 	 � E B � h E 0 . So hL is the next uncontrollablei i i

� ileft generalized eigenvector of h. This is a contradiction. So U E Pid 12
i �P is also of full row rank.13

C. Proof of Theorem 4.1. Necessity. A variable transformation is
adopted as

k ki i i� �̃P P Pi j i j11 12 13
k ki i iw wP P P ˜� , k � 0, . . . , � , 30Ž .i j i j21 22 23 i j

i i ik kP P Py ỹ31 32 33i j i j

where � k � C r�1, w k � C Žm�n	r .�1, y k � C m� 1.˜ ˜ ˜i j i j i j
Ž . Ž .If both sides of 12 are left multiplied by L and we substitute 30 intoi

Ž .12 , then

� k � Li EP i �  BP i � k	1 � Li EP i �  BP i w k	1˜ ˜ ˜Ž . Ž .i j 1 11 31 i j 1 12 32 i j

� Li EP i �  BP i y k	1 , 31Ž .˜Ž .1 13 33 i j

0 � Li EP i �  BP i � k	1 � Li EP i �  BP i w k	1˜ ˜Ž . Ž .2 11 31 i j 2 12 32 i j

� Li EP i �  BP i y k	1 , 32Ž .˜Ž .2 13 33 i j

P i � 0 � P i w0 � P i y0 � 0, P i � 0 � P i w0 � P i y0 � 0,˜ ˜ ˜ ˜ ˜ ˜11 i j 12 i j 13 i j 31 i j 32 i j 33 i j

k � 1, . . . , � . 33Ž .i j

Ž . Ž . Ž . Ž .Since 30 is invertible and L is nonsingular, 31 , 32 , and 33 in thei
domain of � k , w k , and y k , represent the equivalent algebraic relation of˜ ˜ ˜i j i j i j
Ž . k k k Ž .12 in the domain of � , w , y . Equation 31 is a dynamic constraint ofi j i j i j

k k k Ž . k k k� , w , and y . Equation 32 is a static constraint of � , w , and y .˜ ˜ ˜ ˜ ˜ ˜i j i j i j i j i j i j
Ž .Equation 33 is the initial condition.

Ž . Ž .Taking the inverse transform of 30 into the right hand side of 31 , we
Ž .can obtain that 31 is equivalent to the relation

� k � Li E� k	1 �  By k	1 , k � 1, . . . , � . 34Ž .˜ Ž .i j 1 i j i j i j
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Ž . i Ž .1 If � is controllable, L does not exist, nor does 32 . Accordingi 2
Ž . Ž . kto 31 or 34 , � is dependent on the variables of its previous step, i.e.,ĩ j
Ž .the k 	 1 st step, and

kw̃i j

kỹi j

is independent on the variables of its previous step. So we have

kw̃i j k	1� z , 35Ž .i jkỹi j

k	1 Ž . Ž . Ž .where z is a free parameter vector. Substituting 34 and 35 into 30 ,i j
Ž .16 is obtained.

Ž . i Ž . Ž .2 If � is uncontrollable, L exists and so does 32 . By 14 , thei 2
row space of Li is the orthogonal complement of the column space of2
� 2 � Ž .A 	 � E B 	�  B . By 6 , the space generated by the row vectors ofi i
all the matrices H 1, l � 1, . . . , 
 is the orthogonal complement of thei l i

� �column space of A 	 � E B . Therefore, the space is the same as thei
i 1 Ž .row space of L . Also, it can be seen that H B � 0. Therefore, 32 is2 i l

equivalent to the relation

1Hi1
. i k	1 i k	1 i k	1. E P � � P w � P y � 0, k � 1, . . . , � . 36Ž .˜ ˜ ˜. ž /11 i j 12 i j 13 i j i j
1Hi
 i

Ž . k� � k	1�By 6 , we can obtain that H A 	 � E B 	�  B � H E 0i l i i i l
� l 00 , k � 1, . . . , � , H � 0, i � 1, . . . , � . If both sides of this relation arei i l

right multiplied by

t� i j

tw ,i j

tyi j
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k t	1 k	1 t Ž .then H E� � H E� . Substituting 30 into this relation, the follow-i l i j i l i j
ing can be obtained,

H 1 E P i � t	1 � P i w t	1 � P i y t	1˜ ˜ ˜ž /i l 11 i j 12 i j 13 i j

� l l l l� i Ž t	� . i Ž t	� . i Ž t	� .i i i iH E P � � P w � P y ,˜ ˜ ˜i l 11 i j 12 i j 13 i jž /
lif t � � ,i�� l � 1, . . . , 
 .i

t i 0 i 0 i 0H E P � � P w � P y � 0,˜ ˜ ˜ž /i l 11 i j 12 i j 13 i j

l if t � � ,i

37Ž .

Ž . 1 Ž . Ž . Ž .a If � � � , by 36 and 37 , all constraints in 32 are trivial.i j i

Ž . Ž . Ž . Ž .Substituting 34 and 35 into 30 , 17 is obtained.
Ž . b b�1 
 i Ž . Ž .b If � � � � � for some b and � � �, by 36 and 37 ,i i j i i

Ž .32 is equivalent to the relation

0 � U E P i � k � P i w k � P i y k ,˜ ˜ ˜ž /iŽb	l�1. 11 i j 12 i j 13 i j

where k � c , . . . , e , l � 1, . . . , b. 38Ž .l l

If we view
kw̃i j

kỹi j

Ž . k Ž .in 38 as unknown variables and � as known variables, then by 15 ,ĩ j

kiŽb	l�1. w̃S i j11 i k	 U EP � is a particular solution of ,˜iŽb	l�1. 11 i jiŽb	l�1. kž /S ỹ21 i j

and
iŽb	l�1.S12 k	1zi jiŽb	l�1.S22

Ž .generates all the m � � � 			 �� -dimension homogeneous solu-iŽ l�1. i
 i

tions of
kw̃i j

kỹi j
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by the free parameter z k	1 where z k	1 � RŽm�� iŽ l�1.� 	 	 	 �� i
 i
. is a freei j i j

Ž .column vector. So 38 is equivalent to

k iŽb	l�1. iŽb	l�1.w̃ S Si j 11 12i k k	1� 	 U EP � � z . 39Ž .˜iŽb	l�1. 11 i j i jk iŽb	l�1. iŽb	l�1.y S Sĩ j 21 22

Ž 1. k Ž . Ž .For k � 1, . . . , � 	 � , replacing � of 39 by 34 and substituting˜i j i i j
Ž . Ž . Ž . Ž .34 and 39 into 30 , 18 is obtained.

Ž l. Ž .For k � � 	 � � 1, . . . , � , by 38 ,i j i i j

kw̃i j
is free.

kỹi j

Ž . Ž . Ž . Ž .Substituting 34 and 35 into 30 , 19 is obtained.

Sufficiency. The variable

k�̃ i j

kw̃i j

kỹi j

Ž .is introduced by 30 .

Ž .1 If � is controllable, r � n. Since the transformation is invertible,i
Ž . Ž . Ž . Ž . Ž . Ž .by 16 and 30 , 34 , 35 , and 33 can be obtained. If both sides of 34

	1 Ž .are left multiplied by L and the inverse transformation of 30 isi
Ž . Ž .adopted, then by 14 , 12 is obtained.

Ž .2 If � is uncontrollable, we consider the following cases:i

Ž . 1 Ž .a Since � � � and the transformation is invertible, by 17 andi j i
Ž . Ž . Ž . Ž . Ž . Ž . Ž .30 , 34 , 35 , and 33 can be obtained. Also, 34 implies 31 . By 36

Ž . Ž . Ž . Ž . Ž .and 37 , 35 implies 32 . Equations 31 and 32 can be rewritten as

k�̃ i j 1LI 0 0 ikr�r i i k	1w̃ � EP �  BP �̃Ž .Ži j 11 31 i j20 0 0 Likỹi j

� EP i �  BP i w k	1 � EP i �  BP i y k	1 ,˜ ˜Ž . Ž . .12 32 i j 13 33 i j

k � 1, . . . , � . 40Ž .i j

Ž . 	1If both sides of 40 are left multiplied by L and the inverse transforma-i
Ž . Ž . Ž .tion of 30 is adopted, then by 14 , 12 is obtained.
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Ž . b b�1b Since � � � � � for some b and the transformation isi i j i
Ž . Ž . Ž . Ž . Ž . Ž .invertible, 34 , 38 , and 33 can be obtained by 18 , 19 , and 30 . Also,

Ž . Ž . Ž . Ž . Ž . Ž . Ž .34 implies 31 . By 36 and 37 , 38 implies 32 . Equations 31 and
Ž . Ž . Ž .32 can be rewritten as 40 . Hence, 12 is obtained.
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