
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000 349

Identification and Control of Dynamic Systems Using
Recurrent Fuzzy Neural Networks

Ching-Hung Lee and Ching-Cheng Teng

Abstract—This paper proposes a recurrent fuzzy neural net-
work (RFNN) structure for identifying and controlling nonlinear
dynamic systems. The RFNN is inherently a recurrent multilayered
connectionist network for realizing fuzzy inference using dynamic
fuzzy rules. Temporal relations are embedded in the network by
adding feedback connections in the second layer of the fuzzy neural
network (FNN). The RFNN expands the basic ability of the FNN
to cope with temporal problems. In addition, results for the FNN-
fuzzy inference engine, universal approximation, and convergence
analysis are extended to the RFNN. For the control problem, we
present the direct and indirect adaptive control approaches using
the RFNN. Based on the Lyapunov stability approach, rigorous
proofs are presented to guarantee the convergence of the RFNN
by choosing appropriate learning rates. Finally, the RFNN is ap-
plied in several simulations (time series prediction, identification,
and control of nonlinear systems). The results confirm the effec-
tiveness of the RFNN.

Index Terms—Control, fuzzy logic, fuzzy neural network (FNN),
identification, neural network.

I. INTRODUCTION

RECENTLY, feedforward neural networks have been
shown to obtain successful results in system identi-

fication and control [10]. Such neural networks are static
input/output mapping schemes that can approximate a con-
tinuous function to an arbitrary degree of accuracy. Results
have also been extended to recurrent neural networks [6]–[8].
For example, Jinet al. [7] studied the approximation of
continuous-time dynamic systems using the dynamic recurrent
neural network (DRNN) and a Hopfield-type DRNN was
presented by Funahashi and Nakamura [6]. Recurrent neural
network systems learn and memorize information implicitly
with weights embedded in them.

As is widely known, both fuzzy logic systems and neural net-
work systems are aimed at exploiting human-like knowledge
processing capability. Moreover, combinations of the two have
found extensive applications. This approach involves merging
or fusing fuzzy systems and neural networks into an integrated
system to reap the benefits of both. For instance, Lin and Lee
[9] proposed a general neural network model for a fuzzy logic
control and decision system, which is trained to control an un-
manned vehicle. In previous literature, we presented a fuzzy

Manuscript received December 2, 1999; revised March 16, 2000. This work
was supported by the National Science Council, Taiwan, R.O.C., under contract
NSC 89-2213-E009-126.

C.-H. Lee is with the Department of Electronic Engineering, Lunghwa Insti-
tute of Technology, Taoyuan 333, Taiwan, R.O.C.

C.-C. Teng is with the Department of Electrical and Control Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.

Publisher Item Identifier S 1063-6706(00)06585-1.

neural network (FNN) to establish a model reference control
structure and verified that our FNN is a universal approximator
[4], [5]. The design process for the FNN in [4] and [5] combined
tapped delays with the backpropagation (BP) algorithm to solve
the dynamic mapping problems. However, a major drawback of
the FNN is that its application domain is limited to static prob-
lems due to its feedforward network structure. Processing tem-
poral problems using the FNN is inefficient. Hence, we propose
a recurrent fuzzy neural network (RFNN) based on supervised
learning, which is a dynamic mapping network and is more suit-
able for describing dynamic systems than the FNN. Of partic-
ular interest is that it can deal with time-varying input or output
through its own natural temporal operation [16]. For this ability
to temporarily store information, the structure of the network is
simplified. That is, fewer nodes are required for system identi-
fication.

In this paper, the proposed RFNN, which is a modified version
of the FNN, is used to identify and control a nonlinear dynamic
system. The RFNN is a recurrent multilayered connectionist
network for realizing fuzzy inference and can be constructed
from a set of fuzzy rules. The temporal relations embedded in
the RFNN are developed by adding feedback connections in the
second layer of the FNN.This modification provides the memory
elements of the RFNN and expands the basic ability of the FNN
to include temporal problems. Since a recurrent neuron has an
internal feedback loop, it captures the dynamic response of a
system, thus the network model can be simplified. We show that
all the characteristics of the FNN—fuzzy inference, universal
approximation, and convergence properties—are extended to
the RFNN. We also study the proposed RFNNs approximation
and dynamics mapping abilities. For the control problem, we
present the direct and indirect adaptive control approaches
using the RFNN. In addition, to guarantee the convergence
of the RFNN, the Lyapunov stability approach is applied
to select appropriate learning rates. Finally, the proposed
RFNN is applied to some numerical examples: time sequence
prediction, identification of nonlinear systems without tapped
delays, identification of a chaotic system, and adaptive control
of a nonlinear system.

The paper is organized as follows. In Section II, an RFNN
structure is developed and the universal approximation of the
RFNN is studied. The comparison between the FNN and the
RFNN is also described. The training architectures for identi-
fication and control and the learning algorithm are presented
in Section III. Section IV presents the stability analysis of the
RFNN, which is based on the Lyapunov approach to show the
convergence of the RFNN. Simulation results are discussed in
Section V. Section VI gives the conclusion of this paper. Note

1063–6706/00$10.00 © 2000 IEEE



350 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Fig. 1. The configuration of the proposed RFNN.

that all proof of theorems and lemmas are presented in Ap-
pendix.

II. RECURRENTFUZZY NEURAL NETWORKS(RFNNs)

In this section, the proposed recurrent fuzzy neural network
(RFNN) is presented to show that the RFNN is a system gen-
eralized from the FNN. The key aspects of the RFNN—dy-
namic mapping capability, temporal information storage, uni-
versal approximation, and the fuzzy inference system—are dis-
cussed here. The RFNN will be shown to possess the same ad-
vantages over recurrent neural networks [8] and extend the ap-
plication domain of the FNN to temporal problems.

A. Structure of the RFNN

This section presents a fuzzy inference system implemented
by using a multilayer recurrent neural network, called a RFNN.
A schematic diagram of the proposed RFNN structure is shown
in Fig. 1, which is organized into input variables, -term
nodes for each input variable,output nodes, and rule
nodes. This RFNN system thus consists of four layers and

nodes, where denotes the rule number.
Layer 1 accepts input variables. Its nodes represent input lin-
guistic variables. Layer 2 is used to calculate Gaussian mem-
bership values. Nodes in this layer represent the terms of the
respective linguistic variables. Nodes at layer 3 represent fuzzy
rules. Layer 3 forms the fuzzy rule base. Links before layer 3
represent the preconditions of the rules, and the links after layer
3 represent the consequences of the rule nodes. Layer 4 is the
output layer, where each node is for an individual output of the
system. The links between layer 3 and layer 4 are connected by
the weighting values .

B. Layered Operation of the RFNN

Next, we shall indicate the signal propagation and the oper-
ation functions of the nodes in each layer. In the following de-
scription, denotes theth input of a node in theth layer;
denotes theth node output in layer.

Layer 1: Input Layer: The nodes in this layer only transmit
input values to the next layer directly, i.e.,

(1)

From this equation, the link weight at layer 1 () is unity.
Layer 2: Membership Layer:In this layer, each node per-

forms a membership function and acts as a unit of memory. The
Gaussian function is adopted here as a membership function.
Thus, we have

(2)

where and are the center (or mean) and the width (or
standard deviation—STD) of the Gaussian membership func-
tion. The subscript indicates the th term of the th input .
In addition, the inputs of this layer for discrete timecan be
denoted by

(3)

where and denotes the link weight
of the feedback unit. It is clear that the input of this layer con-
tains the memory terms , which store the past infor-
mation of the network. This is the apparent difference between
the FNN and RFNN. Each node in this layer has three adjustable
parameters: , , and .



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 351

Layer 3: Rule Layer:The nodes in this layer are called rule
nodes. The following AND operation is applied to each rule
node to integrate these fan-in values, i.e.,

(4)

where diag ,
, and .

The output of a rule node represents the “firing strength”
of its corresponding rule.

Layer 4: Output Layer:Each node in this layer is called an
output linguistic node. This layer performs the defuzzification
operation. The node output is a linear combination of the con-
sequences obtained from each rule. That is

(5)

where and (the link weight) is the output action
strength of the th output associated with theth rule. The
are the tuning factors of this layer.

Finally, the overall representation of input and the th
output is

(6)

where , , , and are the tuning parameters
and

. Obviously, using the RFNN, the same inputs at
different times yield different outputs. As above, the number of
tuning parameters for the RFNN is .

Recall that the FNN, proposed in [4], has the following
input/output representation:

(7)

Clearly, the RFNN features dynamic mapping with feedback
and more tuning parameters than the FNN. In the above for-
mulas, note that if the weights in the feedback unitare all
equal to zero, then the RFNN reduces to an FNN.

The proposed RFNN can be shown to be a universal uniform
approximator for continuous functions over compact sets if it

satisfies a certain condition. The condition is described as

for all (8)

Then we have the following result.
Theorem 1: Universal approximation theorem—for any real

function : which is continuous on a compact set
and for any given there is an RFNN system

that satisfies condition (8), such that

Here can be any norm.
This theorem shows that if the RFNN has a sufficiently large

number of fuzzy logical rules (or neurons), then it can approxi-
mate any continuous function in over a compact subset
of . For system identification, the theorem means that for
any given continuous output trajectory of any nonlinear dy-
namic system over any compact time-interval , the
output of the RFNN can approximate uniformly with
arbitrarily high precision.

C. Fuzzy Reasoning

For a multi-input single-output RFNN system, let be the
th input linguistic variable and define as the firing strength

of rule , which is obtained by the product of the grades of the
membership functions in the antecedent. If rep-
resents the th consequence link weight, the inferred value
is then obtained by taking the weighted sum of its inputs, i.e.,

. This is the so-called area defuzzification process.
The proposed RFNN realizes fuzzy inference as follows:

IF is is then

where for , , are
fuzzy sets, is a fuzzy singleton, andis the number of inputs.
That is, the input of each membership function is the network
input plus the temporal term . Therefore, a connection
structure based on the fuzzy rule can be illustrated as in Fig. 2.
This fuzzy system, with its memory terms (feedback units), can
be considered adynamic fuzzy inference systemand the inferred
value is given by

where .
From the above description, it is clear that the RFNN is a

fuzzy logic system with memory elements. Given that the tuning



352 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Fig. 2. A connection structure based on thejth fuzzy rule.

parameters of a fuzzy system have clear physical meanings, the
memory terms make it possible to incorporatea priori knowl-
edge in the selection of initial parameter values and constraints
among parameter values. Note that the parametersof the feed-
back units are not set from the human knowledge. According to
the requirements of the system, they will be given proper values
representing the memorized information.

For initializing system parameters, the on-line method also
can be used [1] in the RFNN. The rule number and the initial
value of tuning parameters, , , are given, where
for all . That is, there are no feedback units initially. As for
parameter learning, we will develop a recursive learning algo-
rithm based on the gradient method.

III. T RAINING FOR THE RFNNS

Training architectures for identification and adaptive control,
and a learning algorithm based on the gradient method are pre-
sented below.

A. Training Architecture of the RFNNs

1) Architecture for identification:To identify a nonlinear
dynamic system, prior studies [4], [5], [10] used the series-par-
allel model with tapped delay units for training networks. In
this paper, we adopt this model to train the RFNN with some
modification. The current input and the most recent output of
the system are fed into the RFNN and the error between
the actual system output and the RFNN is used to train the
RFNN. The modified training model is shown in Fig. 3. The
RFNN output will estimate the output trajectories of the non-
linear system. Note that only and are fed into the
identification model even though the system output

Fig. 3. Dynamical modeling of nonlinear systems using the RFNN.

depends both on its past values , as well as
the past values of inputs , . This simplifies
the network structure, i.e., reduces the number of neurons.

2) Architecture for control: For system control problems,
we focus on the adaptive control of dynamic systems using the
RFNN. In [10], Narendra and Parthasarathy used two distinct
neural networks to control systems adaptively by direct and in-
direct control. Subsequently, Chen and Teng and Ku and Lee,
proposed control architecture for the model reference adaptive
control (MRAC) problem by using FNNs [4], [5], and diag-
onal neural networks [8]. Indirect control architecture usually
requires an identified system model and the controller design is
based on the learning algorithm [see Fig. 4(a) and (b)]. Here, we
present the direct adaptive control approach using the RFNN.
Fig. 4(c) illustrates the block diagram of the RFNN-based con-
trol system. Obviously, the inputs of the RFNN are the reference



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 353

Fig. 4. Block diagram of RFNN-based control system. (a) Indirect control architecture in [4]. (b) Indirect control architecture in [7]. (c) Direct adaptive control
architecture using the RFNN. (d) Indirect control architecture using RFNNs.

input, the previous plant output, and the previous control signal,
while the output of the RFNN is the control signal.

Remark 1: The RFNN can also be applied to construct the
above indirect control architectures. The identifier and con-
troller can be replaced by the RFNN and the tapped-delay unit
can be removed [see Fig. 4(d)]. In indirect control, Fig. 4(a),
(b), and (d), an unknown system is identified by the identifier
(FNNI, DRNNI, or RFNNI), which provides the information
about the system to the neural controller (FNNC, DRNNC,
or RFNNC). The neural controller generates a control signal
to drive the unknown system such that the error between
actual system output and desired output is minimized. Herein,
both identifier and controller networks are the same network
structure (see [4], [5], and [8]).

B. Learning Algorithm

Consider the single-output case for simplicity. Our goal is to
minimize the following cost function:

(9)

where is the desired output and is the
current output for each discrete time. In each training cycle,
starting at the input nodes, a forward pass is used to compute
the activity of all the nodes in the current output .

By using the BP learning algorithm, the weighting vector of
the RFNN is adjusted such that the error defined in (9) is less
than a desired threshold value after a given number of training

cycles. The well-known BP algorithm may be written briefly as

(10)

where, in this case, and represent the learning rate and
tuning parameters of the RFNN. Let and

be the training error and weighting vector
of the RFNN, then the gradient of error in (9) with respect
to an arbitrary weighting vector is

(11)

By recursive applications of the chain rule, the error term for
each layer is first calculated, then the parameters in the corre-
sponding layers are adjusted. With the RFNN (6) and the cost
function defined in (9), derive the update rule of

(12)

where

Similarly, the update laws of , , and are

(13)

(14)

(15)



354 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

where

Finally, we have to check (8). In general, this condition usu-
ally holds. If (8) does not hold for some, , a small value
must be added to the STD valuesuch that (8) holds, where

. This completes the derivation of the BP learning al-
gorithm.

The BP algorithm is a widely used algorithm for training
multilayer networks by means of error propagation via varia-
tional calculus [11]. But its success depends upon the quality of
the training data. In [2], Chen and Jain proposed a robust BP
learning algorithm that was stable under small noise perturba-
tion and robust against gross errors. Since our intent here is to
emphasize the universal approximation and dynamic mapping
abilities of the proposed RFNN, the effect of the BP algorithm is
neglected. Other existing on-line learning algorithms for tuning
the weights of recurrent neural networks can also be adopted for
tuning the RFNN.

Remark 2: When the control architecture shown in Fig. 4(c)
and (d) is used, we must pay attention to the training of the
RFNNC. Similarly, let us define the cost function

. Next, the gradient of is

where is the output of the RFNN for control and
denotes the system sensitivity. Thus, the parame-

ters of the RFNNC can be also adjusted by (10).
Remark 3: Note that the convergence of the RFNN cannot

be guaranteed if the system sensitivity is unknown. For an un-
known system, we must adopt the indirect control architecture
in Fig. 4(d). Obviously, the identifier (RFNNI) can provide the
system sensitivity and it can be computed by the chain rule

where and are, respectively, the center and the width
of the Gaussian function in theth term of the th input linguistic
variable . The superscripts denote the layer numbers. The link
weight is the output action strength of theth output asso-
ciated with the th rule. is the number of fuzzy sets of the
th input linguistic variable , which satisfies .

Finally, is the number of rules in the RFNNI.

IV. STABILITY ANALYSIS OF THE RFNN

This section develops some convergence theorems for se-
lecting appropriate learning rates. If a small value is given for
the learning rate , convergence of the RFNN will be guaran-
teed. In this case, the convergent speed may be very slow. On
the other hand, if a large value is given, the system may become
unstable. Therefore, choosing an appropriate learning rateis
very important.

A. Stability Analysis for Identification

First, define a discrete Lyapunov function as follows:

(16)

where represents the identification error in the learning
process. The change of the Lyapunov function due to the
training process is thus

(17)

The error difference due to the learning can be represented by
[17]

(18)

where denotes the change in an arbitrary weighting vector.
From (9) and (11), we have

(19)



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 355

that is

where and are
the tuning parameters and the corresponding learning rates in
the RFNNI and is the current output of the RFNNI for
each discrete time.

Now we have the following convergence theorem.
Theorem 2: Let

be the learning rates for the tuning parameters of the RFNNI and
let be defined as

Then asymptotic convergence is guaranteed ifare chosen to
satisfy

Lemma 1: If the learning rates are chosen as
, then we have the convergence condition

where

and is the usual Euclidean norm. Additionally, the max-
imum learning rate which guarantees convergence corresponds
to .

The general convergence Theorem 2 can now be applied to
find the specific convergence criterion for each type of param-
eter.

Theorem 3: Let be the learning rate for the RFNNI
weights . Then asymptotic convergence is guaranteed if the
learning rate satisfies: , where is the
number of rules in the RFNNI.

Theorem 4: We define , and to be the learning rates
for the RFNNI parameters , and , respectively. Then

asymptotic convergence is guaranteed if the learning rates are
chosen as follows:

where and denote the number of rules in the RFNNI
and the maximum of the number of fuzzy sets with respect to
the input.

Remark 4: From Lemma 1, the optimal learning rates of the
RFNNI are

B. Stability Analysis for Indirect Control

Similar to (16) and (18), we have

and

Thus,

(20)

where is defined in Remark 3.
Now we have the following convergence theorem for the

RFNNC.
Theorem 5: Let

be the learning rates for the tuning parameters of the RFNNC
and let be defined as

Then asymptotic convergence is guaranteed if,
are chosen to satisfy



356 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Lemma 2: If the learning rates are chosen as
, then we have the convergence condition

where

and is the usual Euclidean norm. Additionally, the maximum
learning rate which guarantees convergence is

The general convergence theorem can now be applied to find
the specific convergence criterion for each type of parameter.

Theorem 6: Let be the learning rate for the RFNNC
weights . Then asymptotic convergence is guaranteed if the
learning rates satisfies

where is the number of rules in the RFNNC.
Theorem 7: We define , and to be the learning rates

for the RFNNC parameters , and , respectively. Then
asymptotic convergence is guaranteed if the learning rates are
chosen as follows:

where and denote the number of rules in the RFNN
and the maximum of the number of fuzzy sets with respect to
the input, respectively.

Table I shows the conditions on learning rates for identifica-
tion and control from Theorems 2–7.

Remark 5: In the previous discussion, the system sensitivity
is provided by the RFNN identifier (RFNNI). Therefore,

in the convergent conditions of Theorems 5–7 (also in Table I),
the sensitivity must be replaced by , where

TABLE I
CONDITIONS FORLEARNING RATES

and where is the bound of control input , i.e.,
, for all . Therefore, the convergent conditions of tuning pa-

rameters, , , , for indirect adaptive control must be changed
to

V. SIMULATION RESULTS

Several examples and performance comparisons with the
FNN are presented in this section to verify the performance of
the RFNN for temporal problems, identification, and adaptive
control for nonlinear systems. The examples given here include
the time-series prediction problem as well as identification and
control of nonlinear systems.

Example 1: Time sequence prediction. To clearly verify that
the proposed RFNN can learn temporal relationships, a simple
sequence prediction problem found in [14] is used as a test in
the following example.

The test bed used is shown in Fig. 5(a). This is a “figure eight”
shape made up of a series of 12 points to be presented to the
network in the order shown. The RFNN is asked to predict the
succeeding point for every presented point. Obviously, this task
cannot be accomplished by a static network because the point
at coordinate has two successors: point 5 and point 11.
The RFNN must decide the successor of based on it pre-
decessor: if the predecessor is 3, then the successor is 5; if the
predecessor is 9, however, the successor is 11.

Table II shows the parameters used for the RFNN and FNN.
In this example, the RFNN contains only two input nodes,
which give the two coordinates of the current point, and two
output nodes, which represent the predicted point’s coordinates.
The predicted values are shown in Fig. 5(b) (solid line: desired
output; dotted line: RFNN). We also applied the (nonrecurrent)
FNN to this time prediction problem (solid line: desired output;
dotted line: FNN). The prediction results after training are
shown in Fig. 5(c), verifying that a feedforward fuzzy neural
network cannot predict successfully. Fig. 5(d) shows the mean
square error (MSE) for the FNN and RFNN (solid line: RFNN;
dotted line: FNN). From the simulation results shown in
Fig. 5(b), we can see that the FNN is inappropriate for time
sequence prediction because of its static mapping.



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 357

Fig. 5. Simulation results of time-series prediction. (a) Test bed for the next sample prediction experiment in Example 1. (b) Results of prediction using the RFNN
after 1000 training epochs. (c) Results of prediction using the FNN after 1000 training epochs. (d) MSE of the RFNN and FNN.

TABLE II
PARAMETERS FOREXAMPLE 1

Example 2: Identification of a nonlinear dynamic system. In
this example, the nonlinear plant with multiple time-delay is
described as [10]

(21)

where

Here, the current output of the plant depends on three previous
outputs and two previous inputs. In [4], [5], and [10], the feed-
forward neural network, with five input nodes for feeding the
appropriate past values of and were used. In this paper,
only two values, and , are fed into the RFNN to de-
termine the output . In training the RFNN, we used 100

epochs (90 000 time steps). The testing input signal as the
following equation is used to determine the identification results

Fig. 6(a) shows results using the FNN and RFNN for identifica-
tion. Fig. 6(b) presents the MSEs of the RFNN and FNN (solid
line: the RFNN result; dotted line: the FNN result). The param-
eters for training the RFNN and FNN are listed in Table III. It
is clear that the RFNN results a small network structure and a
small number of tuning parameters from Tables II and III.

This simulation demonstrates that the RFNN has the smaller
network structure for identification. In addition, we observe that
the identification error of the RFNN is less than that of the FNN
after 90 000 time steps.

Example 3: Identification of a chaotic system. The dis-
crete-time Henon system is frequently used in the study of
chaotic dynamics and is not overly simple in the sense that it is
of second order with one delay and two parameters [3]. This
chaotic system is described by



358 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Fig. 6. Simulation results for nonlinear system identification. (a) Comparison of the RFNN (dotted line), FNN with tapped delay (dash-dotted line),and actual
system output (solid line). (b) MSEs of the RFNN (solid line) and FNN with tapped delay (dotted line).

TABLE III
PARAMETERS FOREXAMPLE 2

which, with and , produces a chaotic strange
attractor as shown in [3]. For this study, the input of the RFNN
is and the output is . We first randomly choose
the training data (1000 pairs) from system over the interval
[ 1.5, 1.5]. Then, the RFNN is used to approximate the chaotic
system (the parameters in the RFNN being updated by the
BP algorithm). Fig. 7 shows the phase plane of this chaotic
system after training (100 epochs). Here the initial point is

and the MSE is 0.0136 less than
was achieved in [3] (0.0186).

Example 4: Adaptive control of nonlinear systems. The in-
direct adaptive control method is used in this example. We con-
sider here the problem of controlling a nonlinear system which
was considered in [10]. A brief description is as follows (details
can be found in [10]). The system model is

Fig. 7. Result of the phase plot for the chaotic system.

where

is assumed to be unknown. A reference model is described as

where is a bounded reference input. However, since func-
tion is unknown, it is estimated on-line as. Then, the con-
trol input is

(22)



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 359

Fig. 8. Control architecture for Example 4.

where . The control architecture is shown
in Fig. 9. In this example, the unknown system is identified
off-line using random inputs. Then, the control law (22) can
generate the control input. Finally, both identification and
control are implemented simultaneously. Figs. 8 and 9 give
the control architecture and simulation result. In this example,
the RFNN successfully approximated the continuous function

, . This suggests that the RFNN is also a static
mapping network. In fact, if we assign the values to listed
below parameter:

where is the rule number, then the RFNN reduces to an FNN.
This confirms that the RFNN is also a static network.

Example 5: Direct adaptive control. The model reference
control problem for a nonlinear system with linear input [8] is
consider below. The nonlinear system is described by

The reference model is described by the difference equation

where . The system model output di-
verges when the step input , is applied to the
system. This implies that the reference model signal needs to be
restricted such that . In this example, we adopt .

In this example, the system sensitivity
, the inputs of the RFNN are

, and the learning rates are .
Fig. 10 shows the final system response.

Remark 6: The previous results can be summarized as fol-
lows.

1) The RFNN provides a new recurrent fuzzy neural net-
work constructed from dynamic fuzzy if-then rules and
shares the advantages of the FNN.

2) The RFNN has small network structure and a small
number of tuning parameters in application.

3) The RFNN is capable of dynamic mapping for solving
the temporal problems. In constrast, we see from Ex-
ample 1 that the FNN cannot predict the time-series
successfully. That is, the FNN is not a dynamic map-
ping system.

4) The RFNN is also a static network when the parameter
is set to zero since this reduces the RFNN to an FNN.

We can conclude that the RFNN is a generalized FNN
system, which combines dynamic characteristics and
the advantages of FNN.

5) The RFNN-based control system was tested for its
on-line adapting ability and found to perform well.

VI. CONCLUSION

This paper has proposed an RFNN that is a generalization
FNN. This RFNN is a recurrent multilayered connectionist
network for realizing fuzzy inference using the dynamic fuzzy
rules. The network consists of four layers including two hidden
layers and a feedback layer. The temporal relations embedded
in the network were built by adding feedback connections to
the FNN, where the feedback units act as memory elements. A
simple comparison showed that this modification simplifies the
network structure. Moreover, we have successfully extended
the results for the FNN to the RFNN:

1) the RFNN was proven to be a universal approximator;
2) its (dynamic) fuzzy inference system was presented;
3) using the Lyapunov approach, convergence theorems for

the RFNN were proven and the optimal adaptive learning
rates were also established.

The RFNNs capability to temporarily store information allowed
us to extend the application domain to include temporal prob-
lems. Finally, the proposed RFNN was applied to identify non-
linear dynamic systems.

We proposed direct and indirect adaptive control architec-
tures for nonlinear systems using RFNNs. Simulation results
show that the RFNN has the following advantages:

1) RFNN has the capabilities of attractor dynamics and tem-
porary information storage;

2) in application, the RFNN has smaller network structure
and a small number of tuning parameters than the FNN;

3) RFNN successfully solved the temporal problems and can
approximate a dynamic system mapping as accurately as
desired;

4) RFNN is also a static network (an FNN) when the param-
eters ; we conclude that the RFNN is a generaliza-
tion system of the FNN, which combines dynamic char-
acteristics with the advantages of the FNN;

5) RFNN has on-line adapting ability for dynamic system
control.

APPENDIX

A. Proof of the Universal Approximation Theorem

Theorem 1 will be proven by using the Stone–Weierstrass
theorem. We shall begin with the single-output case and then
extend it to the multiple-output case.



360 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Fig. 9. Response forr(k) = sin(2�k=25) with control (solid line: reference model outputy (k); dashed line: system outputy(k).

The structure of the proposed RFNN is illustrated in Fig. 1.
The single-output of the RFNN can be expressed as

(23)

where is the input variable of the RFNN

is a function of the input , and the
link weight is the output action strength. For ,

denotes the input
of layer 2. Let be a set of functions that have the form

where , and is the family of function : .
As in the previous description, in the RFNN, the value ofand

are and , respectively. The outputis therefore written

for

(24)

In order to prove the universal approximation theorem, the
following definitions and theorem which are quoted from [12]
are necessary.

Definition 1:

A.1 A real functions family defined on a set is an
algebra if: (i) , (ii) , and (iii)

are satisfied, where , , and
is a complex constant, i.e., is closed under addi-
tion, multiplication, and scalar multiplication. For
example, the set of all polynomials is an algebra.

A.2 A family is uniformly closed if whenever
, and uniformly on .

A.3 The uniform closure of , denoted by , is the set of
all functions that are limits of uniformly convergent
sequences of members of. By the Stone–Weier-
strass theorem, it is known that the set of continuous
functions on is the uniform closure of the set
of polynomials on .

A.4 separates pointson a set if for every in
, , there is a function in such that

.
A.5 vanishes at no point of if for each in , there

is a function in such that .

Theorem 8: (Stone–Weierstrass Theorem) [12] Letbe a
set of real continuous functions on a compact set. If (1) is
an algebra, (2) separates points on, and (3) vanishes at
no point of , then the uniform closure of consists of all real
continuous functions on .

Now we are ready to prove the universal approximation the-
orem. The proof is divided into four parts as follows:

Lemma 3: Let be the family of defined in (24), then
, where is a compact set.

Proof: Here, the membership function



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 361

Fig. 10. Final system response for Example 5 (dashed line: reference signal; solid line: system output).

and, therefore, the continuous function is closed and
bounded for all . That is, .

Lemma 4: is an algebra (if and , then
, , and ).

Proof: Let as shown in (24). We can write them
as

(25)

(26)

where and , , and is a time sequence of ,
. That is

...

1) Hence,

where and
. Since , and

, then . That is, the linear combination of
Gaussian functions is also a Gaussian function. So,
is closed under addition.

2) Similarly,

(27)

where

and

...
...

...

...
. . .

Since, for , , and
, are Gaussian functions, their product is also



362 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

a Gaussian function. This can be verified by straight-
forward algebraic operations. Thus, (27) has the same
form as (23). That is, ( is closed under
multiplication).

3) Finally, for arbitrary

where , . That is, (
is closed under scalar multiplication).

By (1)–(3), we conclude that is an algebra.
Lemma 5: separates points on (for , ,

there is an such that .
Proof: We prove this lemma by constructing a function

. That is, we specify the number of fuzzy sets defined in,
the parameters of the Gaussian membership functions, and the
number of fuzzy rules, such that the resulting(in the form
of (24)) has the property , for arbitrarily given

with ).
Now, let and ,

and choose two fuzzy rules as the fuzzy rule base. Furthermore,
let the Gaussian membership functions be

Then can be expressed as

(28)

where are the link weights. With this system, we have

Because (8) holds in training processes, it is easy to verify that
if .

Lemma 6: vanishes at no point of .
Proof: From (24), there are s that are constant and not

equal to zero. That is, for all , . If we choose

, then for any . That
is, any with can serve as the required.

Therefore, the single output RFNN is a universal approxi-
mator from the Stone–Weierstrass theorem and Lemmas 3–6.

From the previous proofs, we can conclude that given a real
function : , continuous on , and , there exists
an RFNN system satisfying condition (8), where is the
uniform closure of , such that ,
for every in . That is, an RFNN system with an arbitrarily
large number of fuzzy logical rules can approximate any real
continuous function in over a compact subset of .

Extension to Multiple Output Case:The following subsection
will extend the previous results to the case of an RFNN with
multiple outputs. Consider the following example.

Suppose and are functions of and let functions and
be approximated by rules and rules, respectively. This

structure is shown in Fig. 11(a) and (b).
It is easy to combine these two single-output RFNNs into a

new RFNN with two outputs, which is shown in Fig. 12. This
new structure has rules; the first rules are constructed
from and the last rules from . In this structure, the con-
sequence weights of the lastrules in the first output ( ) are
set to zero and the consequence weights of the firstrules in
the second output ( ) are also set to zero.

Based on the previous discussion, since the RFNN with
a single output can perform universal approximation, there
must be an RFNN with multiple outputs with an arbitrarily
large number of fuzzy logical rules that can perform universal
approximation on each output. This completes the proof.

B. Proof of Convergence Theorems

To prove our results, the following facts are needed.
Fact 1: Let . Then , .
Fact 2: Let . Then , .

Proof of Theorem 2:The Lyapunov function (16) is a
time-invariant positive definite function. Thus, from (18) and
(19), the change in the Lyapunov function is



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 363

Fig. 11. Structural diagrams off andf .

Fig. 12. Structural diagram of a multiple output system.

where

Because

The convergence of the RFNN is guaranteed if . We
obtain

This completes the proof.
Proof of Lemma 1:Since

we obtain that guarantees conver-
gence. However, the maximum learning rate which guarantees
convergence is .

Proof of Theorem 3:Let

where

in which is the output value of the third layer of the RFNN
and is the number of rules in the RFNN. Then we have

for all , , and
. From Theorem 3, we find that .

Proof of Theorem 4:

1) Mean :
From the previous discussion, we have the following

result by chain rule:

Fact 1 gives



364 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Then

(29)

Thus

Theorem 2 gives

2) STD: .
Similar to the previous discussion, we have

Fact 2 gives

Then

(30)

Thus

Therefore, from Theorem 2 we find that

3) Feedback layer’s weight .

Similar to the previous discussion, we have

Fact 2 gives

Then

(31)

Thus

Drawing on Theorem 2, we obtain

This completes the proof.
Proof of Theorem 5:The Lyapunov function
is a time-invariant positive definite function. Thus, from

(18) and (20), the change in the Lyapunov function is

where



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 365

Similarly, the convergence of the RFNNC is guaranteed if
. We obtain

This completes the proof.
Proof of Lemma 2:Since

(32)

we obtain

that guarantees convergence. However, the maximum
learning rate for control which guarantees convergence is

.
Proof of Theorem 6:Let

where

in which is the output value of the third layer of the
RFNN and is the number of rules in the RFNN.
Then we have for all , , and

. From Theorem 3, we
find that .

Proof of Theorem 7:

1) Mean: .
From the previous discussion, we obtain

Fact 1 gives

Then

(33)

Thus

Theorem 5 gives

2) STD: .
From the previous discussion, we obtain

Fact 2 gives

Then

(34)

Thus

Therefore, from Theorem 5 we find that

3) Feedback layer’s weight .



366 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

From the previous discussion, we obtain

Fact 2 gives

Then

(35)

Thus

Drawing on Theorem 5, we obtain

This completes the proof.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the
anonymous referees for their valuable comments and sugges-
tions and their many stimulating and constructive discussions
for this paper.

REFERENCES

[1] C. T. Chao, Y. J. Chen, and C. C. Teng, “A similarity measure for fuzzy
rule in a fuzzy neural network,”IEEE Trans. Syst., Man, Cybern., pt. B,
vol. 26, pp. 244–254, Feb. 1996.

[2] D. S. Chen and R. C. Jain, “A robust back propagation learning algo-
rithm for function approximation,”IEEE Trans. Neural Networks, vol.
5, pp. 467–479, May 1994.

[3] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a
wiener-type cascade model,”IEEE Trans. Contr. Syst., pp. 29–36, Oct.
1997.

[4] Y. C. Chen and C. C. Teng, “A model reference control structure using
a fuzzy neural network,”Fuzzy Sets Syst., vol. 73, pp. 291–312, 1995.

[5] , “Fuzzy neural network systems in model reference control sys-
tems,” inNeural Network Systems, Techniques and Applications, C. T.
Leondes, Ed. New York: Academic, 1998, vol. 6, pp. 285–313.

[6] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous-time recurrent neural network,”Neural Networks, vol. 6,
pp. 801–806, 1993.

[7] L. Jin, P. N. Nikiforuk, and M. Gupta, “Approximation of discrete-time
state-space trajectories usding dynamic recurrent neural networks,”
IEEE Trans. Automat. Contr., vol. 40, pp. 1266–1270, July 1995.

[8] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for
dynamic systems control,”IEEE Trans. Neural Networks, vol. 6, pp.
144–156, Jan. 1995.

[9] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,”IEEE Trans. Comput., vol. 40, pp. 1320–1336,
Dec. 1991.

[10] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical system using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, Jan. 1990.

[11] D. E. Rummelhart, G. E. Hinton, and R. J. Williams,Parallel
Distributed Processing: Explorations in the Microstructure of Cogni-
tion. Cambridge, MA: MIT Press, 1986, vol. 1, ch. 8.

[12] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.

[13] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural net-
works for identification and control of dynamic systems,”IEEE Trans.
Neural Networks, vol. 5, pp. 306–319, Feb. 1994.

[14] S. Santini, A. D. Bimbo, and R. Jain, “Block-structured recurrent neural
networks,”Neural Networks, vol. 8, no. 1, pp. 135–147, 1995.

[15] J. J. E. Slotine and W. Li,Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[16] R. J. Williams and D. Zipser, “A learning algorithm for continually run-
ning fully recurrent neural networks,”Neural Computat., vol. 1, pp.
270–280, 1989.

[17] T. Yabuta and T. Yamada, “Learning control using neural networks,” in
Proc. IEEE Int. Conf. Robot. Automat., Sacramento, CA, Apr. 1991, pp.
740–745.

Ching-Hung Lee was born in Taiwan, R.O.C.,
in 1969. He received the B.S. and M.S. degree in
control engineering from the National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., in 1992 and
1994, respectively, and the Ph.D. degree in electrical
and control engineering from the same university, in
2000.

He is currently an Assistant Professor in the
Department of Electronic Engineering at Lunghwa
Institute of Technology, Taoyuan, Taiwan. His main
research interests are fuzzy neural systems, fuzzy

logic control, neural network, signal processing, nonlinear control systems,
and robotics control.

Ching-Cheng Tengwas born in Taiwan, R.O.C., in
1938. He received the B.S. degree in electrical en-
gineering from the National Cheng Kung University,
Taiwan, in 1961.

From 1991 to 1998, he was the Chairman of the
Department of Electrical and Control Engineering,
National Chiao Tung University, Hsinchu, Taiwan.
He is currently a Professor in the Department of Elec-
trical and Control Engineering at the same university.
His research interests includeH optimal control,
signal processing, and fuzzy neural systems.


