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Identification and Control of Dynamic Systems Using
Recurrent Fuzzy Neural Networks

Ching-Hung Lee and Ching-Cheng Teng

Abstract—This paper proposes a recurrent fuzzy neural net- neural network (FNN) to establish a model reference control
work (RFNN) structure for identifying and controlling nonlinear  structure and verified that our FNN is a universal approximator
dynamic systems. The RENN is inherently arecurrent multilayered 141 151 The design process for the FNN in [4] and [5] combined
connectionist network for realizing fuzzy inference using dynamic X . :
fuzzy rules. Temporal relations are embedded in the network by tapped delays W'th_the backpropagation (BP) a'go“thm to solve
adding feedback connections in the second layer of the fuzzy neural the dynamic mapping problems. However, a major drawback of
network (FNN). The RFNN expands the basic ability of the FNN the FNN is that its application domain is limited to static prob-
to cope with temporal problems. In addition, results for the FNN-  |ems due to its feedforward network structure. Processing tem-
fuzzy inference engine, universal approximation, and convergence poral problems using the FNN is inefficient. Hence, we propose

analysis are extended to the RFNN. For the control problem, we tf | network (RENN) b d ised
present the direct and indirect adaptive control approaches using a recurrent fuzzy neural network ( ) based on supervise

the RFNN. Based on the Lyapunov stability approach, rigorous l€arning, which is a dynamic mapping network and is more suit-
proofs are presented to guarantee the convergence of the RFNN able for describing dynamic systems than the FNN. Of partic-
by choosing appropriate learning rates. Finally, the RENN is ap- ylar interest is that it can deal with time-varying input or output
plied in several S|m_ulat|ons (time series prediction, |_dent|f|cat|on, through its own natural temporal operation [16]. For this ability
and control of nonlinear systems). The results confirm the effec- - - . :
tiveness of the RENN. t(_) temporarlly stpre information, the struqture of the network is
simplified. That is, fewer nodes are required for system identi-
fication.

Inthis paper, the proposed RFNN, which is a modified version
of the FNN, is used to identify and control a nonlinear dynamic
|. INTRODUCTION system. The RFNN is a recurrent multilayered connectionist

ECENTLY. feedforward neural networks have bee etwork for realizing fuzzy inference and can be constructed
shown to’ obtain successful results in system iden%om a set of fuzzy rules. The temporal relations embedded in

fication and control [10]. Such neural networks are stat e RFNN are developed by addin_g_ fegdback gonnectionsinthe
input/output mapping schemes that can approximate a C&q_cond layer of the FNN. This modification prpwdg;the memory
tinuous function to an arbitrary degree of accuracy. Resuﬁge.mentS of the RFNN and expapds the basic ability of the FNN
have also been extended to recurrent neural networks [6]—|;f§1'][.'nCIUde temporal prob_lems. Since a recurrer_1t neuron has an
For example, Jinet al. [7] studied the approximation of emal feedback loop, it captures the ‘?'y“a.”."c response of a
continuous-time dynamic systems using the dynamic recurree‘PgIStem’ thus the_nthork model can be S'”‘.p"“ed- we shpw that
neural network (DRNN) and a Hopfield-type DRNN Wasal the characteristics of the FNN—fuzzy inference, universal

presented by Funahashi and Nakamura [6]. Recurrent ne proximation, and convergence properties—are extgndeq to
network systems learn and memorize information implicitl € RENN. We also s_tudy th_e_proposed RFNNs approximation
with weights embedded in them. nd dynamics mapping abilities. For the control problem, we

As is widely known, both fuzzy logic systems and neural nep_rgsent the direct and i_qdirect adaptive control approaches
work systems are aimed at exploiting human-like knowled ”;r? thF\?FEEINTH InLaddltlon, tc: %ylilrantee thehcpnvergﬁn((j:e
processing capability. Moreover, combinations of the two ha ei ¢ » the tyalpunqv sta tl "y ﬁpprlcl)acth 'S apple d
found extensive applications. This approach involves mergi%iﬁ\le_c aplp_)r(()jptrla € learning ra les. |na|1 y,. i € propose
or fusing fuzzy systems and neural networks into an integrat IS applied 1o Ssome numerical examples. ime sequence

system to reap the benefits of both. For instance, Lin and Lf%edmnon, identrfication of nonlinear systems without tapped

[9] proposed a general neural network model for a fuzzy log lays, identification of a chaotic system, and adaptive control

oy R . f a nonlinear system.
control and decision system, which is trained to control an ufl . . .
y The paper is organized as follows. In Section Il, an RFENN

manned vehicle. In previous literature, we presented a fuzz ' . L
structure is developed and the universal approximation of the
RFNN is studied. The comparison between the FNN and the
Manuscript received December 2, 1999; revised March 16, 2000. This Wq=NN is also described. The training architectures for identi-

Index Terms—Control, fuzzy logic, fuzzy neural network (FNN),
identification, neural network.
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Fig. 1. The configuration of the proposed RFNN.

that all proof of theorems and lemmas are presented in AB- Layered Operation of the RFNN

pendix. Next, we shall indicate the signal propagation and the oper-
ation functions of the nodes in each layer. In the following de-
Il. RECURRENTFUZZY NEURAL NETWORKS (RFNNS) scription,u¥ denotes théth input of a node in théth layer;O¥

In this section, the proposed recurrent fuzzy neural netwofnotes théth node output in layek.
(RFNN) is presented to show that the RFNN is a system gen-Layer 1: Input Layer: The nodes in this layer only transmit
eralized from the FNN. The key aspects of the RFNN—dy0Put values to the next layer directly, i.e.,
namic mapping capability, temporal information storage, uni- O — 4! 1)
versal approximation, and the fuzzy inference system—are dis- ¢ L
cussed here. The RFNN will be shown to possess the same @gm this equation, the link weight at layer.}) is unity.
vantages over recurrent neural networks [8] and extend the apt ayer 2: Membership Layerin this layer, each node per-

plication domain of the FNN to temporal problems. forms a membership function and acts as a unit of memory. The
Gaussian function is adopted here as a membership function.
A. Structure of the RFNN Thus, we have
This section presents a fuzzy inference system implemented (2, — maj)?
by using a multilayer recurrent neural network, called a RFNN. ij = exp {_%} (2)
A schematic diagram of the proposed RFNN structure is shown (9i)

in Fig. 1, which is organized inta input variables;n-term
nodes for each input variablg,output nodes, ang: x n rule
nades. This RFNN system thus consists of four layersrand tion. The subscript; indicates theith term of theith inputz;.

(n x m) +m + p nodes, yvheren denotes the rule number.ln addition, the inputs of this layer for discrete timlecan be
Layer 1 accepts input variables. Its nodes represent input IHEnoted by

guistic variables. Layer 2 is used to calculate Gaussian mem-
bership values. Nodes in this layer represent the terms of the u?(k) = Oil(k) + 074;(/@) (3)
respective linguistic variables. Nodes at layer 3 represent fuzzy

rules. Layer 3 forms the fuzzy rule base. Links before Iayer\Bhereij(k) = O3;(k—1)-6;; andf;; denotes the link weight
represent the preconditions of the rules, and the links after laydithe feedback unit. It is clear that the input of this layer con-
3 represent the consequences of the rule nodes. Layer 4 istties the memory tern@fj(k — 1), which store the past infor-
output layer, where each node is for an individual output of theation of the network. This is the apparent difference between
system. The links between layer 3 and layer 4 are connectedtbg FNN and RFNN. Each node in this layer has three adjustable
the weighting vaIuesu;,. parametersin;;, ;;, andé;;.

wherem;; ando;; are the center (or mean) and the width (or
standard deviation—STD) of the Gaussian membership func-
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Layer 3: Rule Layer: The nodes in this layer are called rulesatisfies a certain condition. The condition is described as
nodes. The following AND operation is applied to each rule N ) s ) )
node to integrate these fan-in values, i.e., H (07,8:5) H (05 0:x)
e G B (T O

0} = [[w} = exp{-Di(u] - m)]"[Di(u} — m,)]} (4)

B (i + OF50;5 — mj)?
#11 .

i =1 (O—ZJ)Q
where Di = diaq1/ali,1/02i,"',1/07”‘], u; = . ﬁ (mu +012k92k _mik)2
[wrs, ui, s ung]”, @nd my = [myg,ma, e mp] v (oi)?
The outputO? of a rule node represents the “firing strength”
of its corresponding rule. forall j # k. (8)

Layer 4: Output Layer: Each node in this layer is called an

output linguistic node. This layer performs the defuzzificatiomhen we have the following result.

operation. The node output is a linear combination of the con-Theorem 1: Universal approximation theorem—for any real

sequences obtained from each rule. That is functionh: R™ — IR™ which is continuous on a compact set

K c R™ and for any giverr > 0 there is an RFNN systerfi

m that satisfies condition (8), such that

i =05 = ) ujw; (%)
’ Z ’ sup [1f(z) = b < «

whereu; = O} andw;; (the link weight) is the output action Here|| - || can be any norm.

strength of thejth output associated with thiéh rule. Thew;*j This theorem shows that if the RFNN has a sufficiently large

are the tuning factors of this layer. number of fuzzy logical rules (or neurons), then it can approxi-
Finally, the overall representation of inputand themth mate any continuous function @i(IR™) over a compact subset

outputy is of R™. For system identification, the theorem means that for

any given continuous output trajectar§t) of any nonlinear dy-

namic system over any compact time-intervat [to, 7], the

_ 4
Ym(k) = Op,(F) outputg(t) of the RFNN can approximatg(t) uniformly with

n

m
=2 wa]]
=

i=1

[z:(k) + O3;(k = 1) - 85 — myy]?

teXp | — (0_”)2

arbitrarily high precision.

C. Fuzzy Reasoning

For a multi-input single-output RFNN system, let be the
+th input linguistic variable and define; as the firing strength
of rule 5, which is obtained by the product of the grades of the

membership functiong 4, (z;) in the antecedent. Hu; rep-
) resents theth consequence link weight, the inferred valfe
where mi;, oij, 65, and w,,; are the tuning parametersis then obtained by taking the weighted sum of its inputs, i.e.,
and O%(k — 1) = exp{—[z(k — 1) + OF(k — 2) - i — ;wja;. This is the so-called area defuzzification process.
mij]*/(0i;)*}. Obviously, using the RFNN, the same inputs af The proposed RFNN realizes fuzzy inference as follows:
different times yield different outputs. As above, the number of
tuning parameters for the RFNN(a x m x 3) + (m X p). RP: AFuy;iS Arj, -+, unj IS Ay, theny = w;
Recall that the FNN, proposed in [4], has the following
input/output representation: where fori = 1, -+, nuyy = a;+0% (k—1)-0;;, Ay, A are
fuzzy setsyw; is a fuzzy singleton, andlis the number of inputs.

m n That is, the input of each membership function is the network

Ym(k) = Op (k) = wm; [ | inputz; plus the temporal terr®?,6;;. Therefore, a connection
j=1 i=1 structure based on the fuzzy rule can be illustrated as in Fig. 2.
(zi(k) — mi;)? This fuzzy system, with its memory terms (feedback units), can

- €Xp [— T} (7)  pe considered dynamic fuzzy inference systand the inferred

value is given by

Clearly, the RFNN features dynamic mapping with feedback . e
and more tuning parameters than the FNN. In the above for- v= z_:ajwj
mulas, note that if the weights in the feedback uhjtare all =
equal to zero, then the RFNN reduces to an FNN. wherea; = T/, e, (uij).
The proposed RFNN can be shown to be a universal uniformFrom the above description, it is clear that the RFNN is a
approximator for continuous functions over compact sets if ftizzy logic system with memory elements. Given that the tuning
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Fig. 2. A connection structure based on ftib fuzzy rule.

parameters of a fuzzy system have clear physical meanings,
memory terms make it possible to incorporatgriori knowl-
edge in the selection of initial parameter values and constrait
among parameter values. Note that the paramétefthe feed-
back units are not set from the human knowledge. According
the requirements of the system, they will be given proper valu

representing the memorized information. RFNN k)
For initializing system parameters, the on-line method als
can be used [1] in the RFNN. The rule number and the initi: W1y 3 -
) : u(k) —— e(k)
value of tuning parameters, o, w, 6 are given, wheré;; =0 z! O
for all ¢, j. That is, there are no feedback units initially. As for
parameter learning, we will develop a recursive learning alg: » Dynamic System .

rithm based on the gradient method. (k)

IIl. TRAINING FOR THE RENNs Fig. 3. Dynamical modeling of nonlinear systems using the RFNN.

Training architectures for identification and adaptive control . N
i : . depends both on its past valug® — <), ¢ = 0,1, - -- as well as
and a learning algorithm based on the gradient method are RS ) N Lo
e past values of inputg k — j), j = 0,1, - - -. This simplifies
sented below. .
the network structure, i.e., reduces the number of neurons.
. ) 2) Architecture for control: For system control problems,
A. Training Architecture of the RFNNs we focus on the adaptive control of dynamic systems using the
1) Architecture for identification:To identify a nonlinear RFNN. In [10], Narendra and Parthasarathy used two distinct
dynamic system, prior studies [4], [5], [10] used the series-pareural networks to control systems adaptively by direct and in-
allel model with tapped delay units for training networks. ldirect control. Subsequently, Chen and Teng and Ku and Lee,
this paper, we adopt this model to train the RFNN with son@oposed control architecture for the model reference adaptive
modification. The current input and the most recent output obntrol (MRAC) problem by using FNNs [4], [5], and diag-
the system are fed into the RFNN and the eu@r) between onal neural networks [8]. Indirect control architecture usually
the actual system output and the RFNN is used to train thequires an identified system model and the controller design is
RFNN. The modified training model is shown in Fig. 3. Théased on the learning algorithm [see Fig. 4(a) and (b)]. Here, we
RFNN output will estimate the output trajectories of the norpresent the direct adaptive control approach using the RFNN.
linear system. Note that onfy(x — 1) andu(k) are fed into the Fig. 4(c) illustrates the block diagram of the RFNN-based con-
identification model even though the system outp(ft + 1) trol system. Obviously, the inputs of the RFNN are the reference



LEE AND TENG: DYNAMIC SYSTEMS USING RECURRENT FUZZY NEURAL NETWORKS 353
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Fig. 4. Block diagram of RFNN-based control system. (a) Indirect control architecture in [4]. (b) Indirect control architecture in [7]. (c) Bptet adntrol
architecture using the RFNN. (d) Indirect control architecture using RFNNs.

input, the previous plant output, and the previous control signaijcles. The well-known BP algorithm may be written briefly as
while the output of the RFNN is the control signal. OE(k)

Remark 1: The RFNN can also be applied to construct theW (k+1) = W (k) + AW (k) = W(k)+n <——> (10)
above indirect control architectures. The identifier and con- ow
troller can be replaced by the RFNN and the tapped-delay udibere, in this casey and W represent the learning rate and
can be removed [see Fig. 4(d)]. In indirect control, Fig. 4(ajuning parameters of the RFNN. Letk) = y(k) — 4(k) and
(b), and (d), an unknown system is identified by the identifigh’ = [m, s, 6, w]* be the training error and weighting vector
(FNNI, DRNNI, or RFNNI), which provides the information of the RFNN, then the gradient of erréK(-) in (9) with respect
about the system to the neural controller (FNNC, DRNNGo an arbitrary weighting vectd¥ is

or RFNNC). The neural controller generates a control signal 4
OE(k) A0 (k)

to drive the unknown system such that the error between o = (k) (k) = —e(k) (11)
actual system output and desired output is minimized. Herein, ow ow ow
both identifier and controller networks are the same netwoBy recursive applications of the chain rule, the error term for
structure (see [4], [5], and [8]). each layer is first calculated, then the parameters in the corre-
sponding layers are adjusted. With the RFNN (6) and the cost
B. Learning Algorithm function defined in (9), derive the update rulewof;
Consider the single-output case for simplicity. Our goal is to N o w OE(E)
minimize the following cost function: wij(k+1) = wi;(k) = n dw;; (12)
where
E(k) = 3(u(k) = 4(k)* =5 D (u(k) = O*(k))*  (9) OBWR) _ iy 02,
i Gwi; '
Similarly, the update laws of:;;, o;;, andé,, are
where y(k) is the desired output ang(k) = O*(k) is the DE(k)
current output for each discrete timkeIn each training cycle, mi(k+ 1) = mi(k) —n™ (13)
starting at the input nodes, a forward pass is used to compute Imi;
the activity of all the nodes in the current outgik). ois(k+1) = o, (k) — n° OE(k) (14)
By using the BP learning algorithm, the weighting vector of ! ! doi;
the RFNN is adjusted such that the error defined in (9) is less OE(k

than a desired threshold value after a given number of training a0,
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Ny
where _$% e, {55 200 00k,
SE(k) . T 2 Wiad 802, " ou
—_— = Z e(k)wzk . Ok a=1 k=1 Ika
om;; 5 R Ny s )
. 2 _ Y P .. _ - < OIa aOlka
' 2(z; + O5;(k = 1) - 05 — mi;) - Zwlaj . Z o ot
(0i)? a=1 k=1 ~Ika
8E(k) Ny,

= — CkaO3 < 0311
904, zk: (Kywir. - Ok = Zwlaﬂ"{z O%Ik
2(x; + Of(k — 1) - 65 — miy)* = -
(0i;)° - (-2)- (i + Ohio(k — 1) - 0110 — Mika) }
. 2
OE(k) _ 3" (k) - OF (01ra)
k

00,5
wherem i, ando g, are, respectively, the center and the width
5 of the Gaussian function in thigh term of theth input linguistic
(945 variableu;. The superscripts denote the layer numbers. The link
Finally, we have to check (8). In general, this condition usiveightw,; is the output action strength of thieh output asso-
ally holds. If (8) does not hold for somg %, a small value. ~ ciated with theath rule. Ny, is the number of fuzzy sets of the
must be added to the STD valuesuch that (8) holds, where éthinputlinguistic variable:;, which satisfied],_, N;, = R;.
llell < 1. This completes the derivation of the BP learning aFinally, &; is the number of rules in the RFNNI.
gorithm.
The BP algorithm is a widely used algorithm for training IV. STABILITY ANALYSIS OF THERFNN

multilayer networks by means of error propagation via varia- This section develops some convergence theorems for se-
tional calculus [11]. Butits success depends upon the quality|@tting appropriate learning rates. If a small value is given for
the training data. In [2], Chen and Jain proposed a robust B, learning rate), convergence of the RENN will be guaran-
learning algorithm that was stable under small noise perturQaesq. |n this case, the convergent speed may be very slow. On
tion and robust against gross errors. Since our intent here iS§@ other hand, if a large value is given, the system may become

emphasize the universal approximation and dynamic mappifgsiable. Therefore, choosing an appropriate learningrie
abilities of the proposed RFNN, the effect of the BP algorithm l%ry important.

neglected. Other existing on-line learning algorithms for tuning
the weights of recurrent neural networks can also be adopted for Stability Analysis for Identification
tuning the RFNN.

Remark 2: When the control architecture shown in Fig. 4(c)

' _2(371‘ + OZQJ(/{J — 1) . 91} — m“)ij(/ﬂ — 1)

First, define a discrete Lyapunov function as follows:

and (d) is used, we must pay attention to the training of the Vilk) = Er(k) = Lo (k)2 16
RFNNC. Similarly, let us define the cost functidi-(k) = 1(k) 1(k) = 3ler(®)] (16)
3lr (k) = y()]? = 3lec (k). Next, the gradient oc is wheree; (k) represents the identification error in the learning
OFc ® dec(k) eolh) dy(k) i)ro_cgss. The char:ge of the Lyapunov function due to the
We =ec We ec W raining process is thus
oy(k) Ju(k) _ _ 17,2 2
= —enlk) = . AVi(k) =Vi(k+ 1) — Vi(k) = s[er(k + 1) — e3(k)]. (A7)
«<®) Suk) IWe 2 !
Oc(k) The error difference due to the learning can be represented by
= —co(k)yu(k) - 17
We [17]

whereO¢ (k) is the output of the RFNN for control ang (k) = der(k)1F
dy(k)/ou(k) denotes the system sensitivity. Thus, the parame- ~ Aer(k) = er(k +1) —es(k) = [ oW, } AW;
ters of the RFENNC can be also adjusted by (10).

Remark 3: Note that the convergence of the RFNN cannot _ | Gerlk) Der(k) er(k) aef(k)}
be guaranteed if the system sensitivity is unknown. For an un- mr oy O0r  Owy
known system, we must adopt the indirect control architecture Amy
in Fig. 4(d). Obviously, the identifier (RFNNI) can provide the | Bor (18)
system sensitivity and it can be computed by the chain rule 291
wr
: o0t B (004, 3
Oy, (k) =N Z { ég . 80,0} whereAW; denotes the change in an arbitrary weighting vector.
dui(k)  Oui A | 907, Oui From (9) and (11), we have
R
T 007, } der(k D04k
- w{ ‘ A= er(k) _ H(R)
az::l o, Wi = —ner(k) oW, nrer(k) oW, (19)
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that is asymptotic convergence is guaranteed if the learning rates are
- 901 (k) ] chosen as follows:
8m1 0 < rn’ 0"
Am[ 77}” 0 0 0 801(k) T 2
Aor | 0 77 0 O oy
ag; | =B 0 0 e o || a0k e < 2 1
Awg 0 0 0 nv 961 RNz max |07 x| < 2 )
aO[(k') ’ 01, min
L 8w1 .

whereR; andN; .« denote the number of rules in the RFNNI

whereW; = [my, o7, 87, w]* andy; = [ 07 nt, ne]” are and the maximum of the number of fuzzy sets with respect to

the tuning parameters and the corresponding learning ratedlfy iNPUL. _ ) .
the RENNI andO; (k) is the current output of the RFNNI for Remark 4: From Lemma 1, the optimal learning rates of the

each discrete timé. RFNNI are
Now we have the following convergence theorem. w1
Theorem 2:Letn, = [n; n7 n7 nl" = lny" 7 nf ny]* TR,
be the learning rates for the tuning parameters of the RFNNI and = =t
. T nr nr
let Pr max be defined as 2
Proax Z [P Promes Ploman Primad” - !
o o o o RINI,maX 2
|wT,1nax|
aO[(k') aO[(k') I, min
= |max <l —a
k 8m1 k 801
500 (1 20y 17 B. Stability Analysis for Indirect Control
max ﬁ max ﬁ . Similar to (16) and (18), we have
k 00; k owr
1 2
Then asymptotic convergence is guaranteeg iire chosen to Ve(k) = 560(k) and
satisfy e (V1T
Acc(k) ~ { cc )} AWe.
4 2 aWe
0 <) < s, i=1,---,4.
! (PIi,max)2 ThUS,
Lemma 1: If the learning rates are chosen#gs = 17" = _ dec(k)
n? =n% = n¥, then we have the convergence condition AWe = —neec(k) Jwe
90 (k)
0 < < 2 = chc(k)yu(k) T owe (20)
i (PI,max)2 . . . “
wherey, (k) is defined in Remark 3.
where Now we have the following convergence theorem for the
RFNNC.
Prmax = max 1P(R)| Theorem 5: Let

e =M ne e nelt=hE n& ne nEl”

d0(k) 00:(k) 80,(k) 00;(k)]"
|: amy dog a0y Owr :|

max
k

be the learning rates for the tuning parameters of the RFNNC
and letPc .« be defined as

and|| - || is the usual Euclidean norm. Additionally, the max-
imum learning rate which guarantees convergence corresponds P max = [Py v P Pooman Pa;,.m]T
ton; = (1/(Prmax)?). _ _ A0c (k) A0 (k)

The general convergence Theorem 2 can now be applied to = 1 ome X o
find the specific convergence criterion for each type of param- i 1T
eter. i 30c(k)‘ \ ‘80c(k) } '

Theorem 3:Let ¥ be the learning rate for the RFNNI k I k| duwe
weightswy. Then asymptotic convergence is guaranteed if tbl%en asymptotic convergence is guaranteegifi = 1, - - -, 4
learning rate satisfiest < ny < (2/Ry), whereR;isthe .. hosen to satisfy T
number of rules in the RFNNI.

Theorem 4: We definen?, n7 andn? to be the learning rates i 2

0 < Ne <

for the RFNNI parameters:;, o; andé;, respectively. Then (WuPe; i )?
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Lemma 2: If the learning rates are chosen@s = n* = TABLE |
ng = n¢ = n%, then we have the convergence condition CONDITIONS FORLEARNING RATES
0 < ne < 2 identiﬁcation
2
(yu(k)PC,max) m 0Pt < R;N; ox [T, max|(2/0'1 &
Where a 0 < nI < RINI max [JWI, mnxl(zlal mm)]
Pr e =max || (k)| 0 0<m < 7N, or .5.,|<z/cn P
’ k w 0<9f <%
d0c (k) d0c(k) d0c(k) d0c(k)]* Control
=I1nax 2
K Ome  doc O Owc m || 0 <08 < Ryt Nomm: ommlClioamll
. . " . o [ 0<% < poyrtiNemm: [wommlGloamml
and||-|| is the usual Euclidean norm. Additionally, the maximum R A — L -
learning rate which guarantees convergence is CO”"( No.mex lIti0.mex| 2/ C\min)
w <fc < BoyIH

« 1
0= g
© (yu(k)-PC,maX)2
The general convergence theorem can now be applied to figdl wherel! is the bound of control input(k), i.e., [u(k)| <

the specific convergence criterion for each type of parameter/, for all k. Therefore, the convergent conditions of tuning pa-
Theorem 6:Let n% be the learning rate for the RENNCrametersn, o, 8, for indirect adaptive control must be changed

weightsw. Then asymptotic convergence is guaranteed if tfi@
learning rates satisfies 2 1

0 <7, n,ne < '
e RcsglaxNC,max [|wC,maX|(2/O—C:min)]2

o 2
VS S ERe
where R is the number of rules in the RFNNC. V. SIMULATION RESULTS

Theorem 7: We definen, nZ andnf. to be the learning rates
for the RFNNC parameterac, o andfc, respectively. Then
asymptotic convergence is guaranteed if the learning rates
chosen as follows:

Several examples and performance comparisons with the
FNN are presented in this section to verify the performance of

1€ RENN for temporal problems, identification, and adaptive
control for nonlinear systems. The examples given here include

0 < ni, n& the time-series prediction problem as well as identification and
2 control of nonlinear systems.
9 1 Example 1: Time sequence prediction. To clearly verify that
ne. < RN 5 the proposed RFNN can learn temporal relationships, a simple
valk) Re Nemax |we: max| < ) sequence prediction problem found in [14] is used as a test in
C,min

the following example.
whereR¢c andN¢ max denote the number of rules in the RENN  The test bed used is shown in Fig. 5(a). This is a “figure eight”
and the maximum of the number of fuzzy sets with respect shape made up of a series of 12 points to be presented to the

the input, respectively. network in the order shown. The RFNN is asked to predict the
Table | shows the conditions on learning rates for identificsucceeding point for every presented point. Obviously, this task
tion and control from Theorems 2—7. cannot be accomplished by a static network because the point

Remark 5: In the previous discussion, the system sensitivitgt coordinatg0, 0) has two successors: point 5 and point 11.
yu (k) is provided by the RFNN identifier (RFNNI). Therefore,The RFNN must decide the successo(@f0) based on it pre-
in the convergent conditions of Theorems 5-7 (also in Table Hecessor: if the predecessor is 3, then the successor is 5; if the

the sensitivityy,, must be replaced by, where predecessor is 9, however, the successor is 11.
Table 1l shows the parameters used for the RFNN and FNN.
Smax = max{y. (k) } In this example, the RFNN contains only two input nodes,
" Ny o3 which give the two coordinates of the current point, and two
= max Zwlai Z OQM (=2) output no'des,whlch representth(_e pr¢d|cted pom.t’s.coordmgtes.
1 ZIka The predicted values are shown in Fig. 5(b) (solid line: desired
output; dotted line: RFNN). We also applied the (nonrecurrent)
w; + O3, 01k — Miak FNN to this time prediction problem (solid line: desired output;
OIka dotted line: FNN). The prediction results after training are
shown in Fig. 5(c), verifying that a feedforward fuzzy neural
= 2R N max max ||| network cannot predict successfully. Fig. 5(d) shows the mean
x|+ Ofwaf1ka = M1k square error (MSE) for the FNN and RFNN (solid line: RFNN;
k OTka dotted line: FNN). From the simulation results shown in
M + 01 max + M7 max Fig. 5(b), we can see that the FNN is inappropriate for time

=2RiN ) . . . . .
1% max T max 7 min sequence prediction because of its static mapping.
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(b)

x2
<

—_ v

X

0.2

solid line: RFNN

dashed line: FNN

(¢) RFNN result

0
0.5 1 1.5 0 200 400 600 800 1000

x1 Epoch

-1 -0.5 0

Fig. 5. Simulation results of time-series prediction. (a) Test bed for the next sample prediction experiment in Example 1. (b) Results of miedithieR&ENN
after 1000 training epochs. (c) Results of prediction using the FNN after 1000 training epochs. (d) MSE of the RFNN and FNN.

TABLE I
PARAMETERS FOREXAMPLE 1

epochs (90 000 time steps). The testing input sigiga) as the
following equation is used to determine the identification results

RFNN FNN r ok

No. of inputs: n 2 4 sin <—r>, 0 < k < 250
No. of outputs: p 2 2 10 25 950 < k 500
Rule number: m 12 12 T ro S o,
Training patterns 12 12 u(k) = - 1.0, 2 500 Skk < 750
nodes 40 66 0.3sin { == ) +0.1sin ( =
parameters 84 108 25 32
Learning rates nf =07 =n§ =0.011, Tk

n¥ = 0.055 +0.6sin (5 ). 750 <k < 1000,
epochs 1000 )

Fig. 6(a) shows results using the FNN and RFNN for identifica-
tion. Fig. 6(b) presents the MSEs of the RFNN and FNN (solid
Example 2: Identification of a nonlinear dynamic system. Injne: the RENN result; dotted line: the ENN result). The param-
this example, the nonlinear plant with multiple time-delay igters for training the RFNN and FNN are listed in Table III. It
described as [10] is clear that the RFNN results a small network structure and a
. small number of tuning parameters from Tables Il and III.
Up(k 1) = Fup(k), gp(k = 1), yp(k = 2), This simulation demonstrates that the RFNN has the smaller
w(k), u(k — 1)) network structure for identification. In addition, we observe that
the identification error of the RFNN is less than that of the FNN
after 90 000 time steps.
z1wawrs (€3 — 1) + 24 Example 3:Identification of a chaotic system. The dis-
1+a3+a3 ' crete-time Henon system is frequently used in the study of

Here, the current output of the plant depends on three previd@0tic dynamics and is not overly simple in the sense that it is
outputs and two previous inputs. In [4], [5], and [10], the feed®§ S€cond order with one delay and two parameters [3]. This
forward neural network, with five input nodes for feeding th€haotic system is described by

appropriate past values gf, and« were used. In this paper,
only two valuesy, (k) andu(k), are fed into the RFNN to de-
termine the outpuy, (k). In training the RFNN, we used 100

(21)

where

flz1, 2,23, 24, 25) =

y(k+1) = =Py (k) + Q - y(k — 1) + 1.0,
k=12,
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s Solid line: Actual system i !

]

. Dotted line: RFNN result

Dash-dotted line: FNN result

Output

15 ! 1 1 ! i 1 1 1 i
0 100 200 300 400 500 600 700 800 900 1000

Time step

(b)
0.7 T T T T T T T

MSE of RFNN=0.00013 _

MSE of FNN=0.003 7

i
20 30 40 50 60 70 80 90 100
Epoch

Fig. 6. Simulation results for nonlinear system identification. (a) Comparison of the RFNN (dotted line), FNN with tapped delay (dash-dotiad hcg)al
system output (solid line). (b) MSEs of the RFNN (solid line) and FNN with tapped delay (dotted line).

TABLE 11l
PARAMETERS FOREXAMPLE 2
RFNN | FNN 1
No. of inputs: n 2 5
No. of outputs: p 1 1 051
Rule number: m 16 16
Training pattern 900 900 = ; \
nodes 51 112 £ ' Sk
parameters 112 176 R S
Learning rates nf=n? =nf =0.01 sl TP
¥ =0.1 e
epochs 100 | 100 et
1 T o e
&
which, with P = 1.4 and@ = 0.3, produces a chaotic strange _, ;

I L I L L
-15 -1 -0.5 0 05 1 1.5

attractor as shown in [3]. For this study, the input of the RFNFP ik
is y(k — 1) and the output ig/(k). We first randomly choose _
the training data (1000 pairs) from system over the intervRf" -
[—1.5, 1.5]. Then, the RFNN is used to approximate the chaotic
system (the parameters in the RFNN being updated by tbere
BP algorithm). Fig. 7 shows the phase plane of this chaotic Yk — 1) = y(k)y(k — 1) (y(k) +2.5)
system after training (100 epochs). Here the initial point is Tluk), ol )= 1+ y2(k) +y2(k—1)
[y(l),y(Q)]T - [0.4,0.47 and the MSE is 0.0136 less than|s assumed to be unknown. A reference model is described as
was achieved in [3] (0.0186).

Example 4: Adaptive control of nonlinear systems. The in- Ym(k + 1) = 0.6y, (k) + 0.2y, (k — 1) + (k)
direct adaptive control method is used in this example. We con- , , i
sider here the problem of controlling a nonlinear system whidi'€re (k) is a bounded reference input. However, since func-
was considered in [10]. A brief description is as follows (detailéo" /[] is unknown, itis estimated on-line gsThen, the con-
can be found in [10]). The system model is trol input is

uk) = = f(y(k), y(k — 1)) + 0.6y (k) + 0.2y(k — 1) + r(k)
y(k+1) = fly(k), y(k — )] +u(k) (22)

Result of the phase plot for the chaotic system.
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M Yulk) , 3) The RFNN is capable of dynamic mapping for solving

the temporal problems. In constrast, we see from Ex-
ample 1 that the FNN cannot predict the time-series
successfully. That is, the FNN is not a dynamic map-
ping system.

4) The RFNN is also a static network when the parameter
6 is set to zero since this reduces the RFNN to an FNN.
We can conclude that the RFNN is a generalized FNN
system, which combines dynamic characteristics and
the advantages of FNN.

5) The RFNN-based control system was tested for its
on-line adapting ability and found to perform well.

e(k)

Fig. 8. Control architecture for Example 4.

VI. CONCLUSION
wherer(k) = sin(2xk/25). The control architecture is shown
in Fig. 9. In this example, the unknown system is identifieE

off-line using random inputs. Then, the control law (22) can ., : . :
enerate the control input. Finally, both identification an etwork for realizing fuzzy inference using the dynamic fuzzy
9 : ’ rules. The network consists of four layers including two hidden

control are |mp!emented S|m.ultane'ously. Figs. 8 'and 9 g'ngers and a feedback layer. The temporal relations embedded
the control architecture and simulation result. In this examplg;

the RFNN successfully approximated the continuous functi('%rlgi\ the network were built by adding feedback connections to

fy(k), y(k — 1)). This suggests that the RFNN is also a static FNN, Wher_e the feedback unlt_s act as memory ele_ments. A
mapping network. In fact, if we assign the values to Iistesq:mple comparison showed that this modification simplifies the
below paramet e@-l ' network structure. Moreover, we have successfully extended

the results for the FNN to the RFNN:
9=[0.000 - 0.000]ixz~0 1) Fhe RFNN was proven to be a universal approximator;
2) its (dynamic) fuzzy inference system was presented;
3) using the Lyapunov approach, convergence theorems for

This paper has proposed an RFNN that is a generalization
NN. This RFNN is a recurrent multilayered connectionist

whereR is the rule number, then the RFNN reduces to an FNN. . . .

This confirms that the RFNN is also a static network. the RFNN were proven and the optimal adaptive learning
Example 5: Direct adaptive control. The model reference rates were aI_sp estabhshed._ ) ]

control problem for a nonlinear system with linear input [8] id he RFNNs capability to temporarily store information allowed

consider below. The nonlinear system is described by us to extend the application domain to include temporal prob-
lems. Finally, the proposed RFNN was applied to identify non-

linear dynamic systems.

_ 2 _
ylk +1) = 0.2y"(k) + 0.2y(k — 1) We proposed direct and indirect adaptive control architec-

+ 0.4sin[0.5(y(k) + y(k — 1))] tures for nonlinear systems using RFNNs. Simulation results
- cos[0.5(y(k) + y(k — )] + 1.2u(k). show that the RFNN has the following advantages:
1) RFNN has the capabilities of attractor dynamics and tem-
The reference model is described by the difference equation porary information storage;
2) in application, the RFNN has smaller network structure
yn(k 4+ 1) = 0.6y,.(k) + r(k) and a small number of tuning parameters than the FNN;

3) RFNN successfully solved the temporal problems and can
. approximate a dynamic system mapping as accurately as
wherer(k) = Ssin(275/100). The system model output di- dggire):jl' Y ©sy Pping ! Y

verges Whe_n _the step inpufk) =0.83, vk 2 0is applied tothe 4) RFNN is also a static network (an FNN) when the param-
system. This implies that the reference model signal needs to be etersd = 0; we conclude that the RFNN is a generaliza-

restrictgd such thatt < 0.9. In this exa”.‘F"?’ we adogit=0.2. tion system of the FNN, which combines dynamic char-
In this example, the system sensitiviy, (k) = (Jy(k) acteristics with the advantages of the FNN;

/0u(k))=12,the i_nputs ofthe RFNN afle(k) u(k—1) y(k— 5) RFNN has on-line adapting ability for dynamic system
1)], and the learning rates arg, = 9 = 1, = 179 = 0.07. control
Fig. 10 shows the final system response. '

Remark 6: The previous results can be summarized as fol-
lows. APPENDIX

1) The RFNN provides a new recurrent fuzzy neural net- _ .
work constructed from dynamic fuzzy if-then rules an@ Proof of the Universal Approximation Theorem
shares the advantages of the FNN. Theorem 1 will be proven by using the Stone—\Weierstrass
2) The RFNN has small network structure and a smatheorem. We shall begin with the single-output case and then
number of tuning parameters in application. extend it to the multiple-output case.
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Solid line: reference model output

Dotted line: system output

output

-2

3 ! L ! ! ! ! L | !
20 30 40 50 60 70 80 90

Time (sec)

100

Fig. 9. Response for(k) = sin(27k/25) with control (solid line: reference model outpyt. (k); dashed line: system outpytk).

The structure of the proposed RFNN is illustrated in Fig. 1. Definition 1:

The single-output of the RFNN can be expressed as Al A real functions family.4 defined on a sek is an
m algebraif: (i) f+¢ € K, (i) fg € K, and (iii)
- (T cf € K are satisfied, wher¢ € A, ¢ € K, andc
u() ; wy -l (o) (@) is a complex constant, i.eX; is closed under addi-
tion, multiplication, and scalar multiplication. For
wherez € IR™ is the input variable of the RFNN example, the set of all polynomials is an algebra.
. A2 A family X is uniformly closed iff € K whenever
(TN — O3 — » fn€ An=1,2---andf, — f uniformly onX.
a(ly) = 0F = 21:[1 tas, (L) A3 The uniform closure ok, denoted by, is the set of
no I 9 all functions that are limits of uniformly convergent
= Hexp [—M} sequences of members &f By the Stone—Weier-
i=1 (7i;) strass theorem, itis known that the set of continuous
functions on[a, 3] is the uniform closure of the set
is a function of the inputl; = [I;,1I2;,---,I,;]", and the of polynomials onfa, b].
link weightw; is the output action strength. Foe= 1,--- . n, A4 K separates pointsn a setk if for every z,y in
Lij(k) = uf;(k) = zi(k) + OF;(k — 1) - 6;; denotes the input K,z # v, there is a functionf in K such that
of layer 2. Let® be a set of functions that have the form flz) £ fy).
A5 K vanishes at no point @€ if for eachz in /C, there

n 2
[[ew <_ (2= )
=1
wherea, b € IR, andF™ is the family of functiony: IR — IR.

As in the previous description, in the RFNN, the value:@ind
b areo;; andm;;, respectively. The outpytis therefore written

y(x) = ij ~a,forw; € R, {e;} € @,z € R"
j=1

j:1a2a"'am' (24)

is a functionf in A such thatf(x) # 0.

Theorem 8: (Stone—Weierstrass Theorem) [12] LEtbe a
set of real continuous functions on a compact/Self (1) K is
an algebra, (2K separates points ofi, and (3)X vanishes at
no point of I, then the uniform closure df consists of all real
continuous functions oi.

Now we are ready to prove the universal approximation the-
orem. The proof is divided into four parts as follows:

Lemma 3: Let I’ be the family ofy defined in (24), then

Proof: Here, the membership function

In order to prove the universal approximation theorem, the

following definitions and theorem which are quoted from [12]

are necessary.

(Lij — mi;)?

™mi;)

(0i5)?

<1

F™ C K, whereK is a compact set.

0 < pa,,;(Li) = exp [—
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Fig. 10. Final system response for Example 5 (dashed line: reference signal; solid line: system output).

and, therefore, the continuous functien(l;(x)) is closed and
bounded for all: € R™. That is,F™ C K. ]
Lemma 4: F™ is an algebra (iff,g € F™ andc € R, then
f+ge F, f-ge F" andcf € I'™).
Proof: Letf,g € F" asshownin (24). We can write them
as

k1
- Zw}a}(fij(ﬂ?))

Uij —m3y)?
= Zw Hexp Ty (25)

ko
= waai(fij(a?))
mz‘Qj)Q
= Zw Hexp 2y (26)

wherew} andwf» € R, V4, andl;; is a time sequence af;,
i =1,---,n. Thatis

|
E
<
N
™
B
<

150 200 250
1) Hence,
k1 ko
frg= Y wioj(I}(@) + Y wiei(I}(x)
i=1 j=1

k1+tke

Z wja;(I;(2)) =

whereW = [w} w3

1 1 1 2
[al a?"'akl al---

1,2 21T = —
wy, wi---wi ]T anda =

o, ' Sincew; € R, andey; €

«, thenf + g € F™. That s, the linear combination of
Gaussian functions is also a Gaussian function.fSo,
is closed under addition.

2) Similarly,
f-g= Zw a; Il Zw aj 12
= W1 Wi ay = W1 (Gy - 62YWo (27)
where
W = [wi wy |7 € RM
Wy = [w? wi ]¥ e R
and
ajof ajoq,
CAY1 M &2 = 06710612
o, of o, 0,
Since, fori = 1,--+ki,j = 1,--,ko, &; and

&3, are Gaussian functions, their produgt; is also
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a Gaussian function. This can be verified by straighty; > 0(j =1,2,---,m), theny > 0foranyz € IR". That
forward algebraic operations. Thus, (27) has the sansg anyy € £ with w; > 0 can serve as the requirgd
form as (23). Thatisf - g € F™ (£™ is closed under  Therefore, the single output RFNN is a universal approxi-

multiplication). mator from the Stone—Weierstrass theorem and Lemmas 3-6.
3) Finally, for arbitraryc € IR From the previous proofs, we can conclude that given a real
k1 function: R — IR, continuous oiiC, ande > 0, there exists
c f= (¢ wi)oj(L;(x)) an RFNN systeny € B satisfying condition (8), wher8 is the
j=1 uniform closure off™, such thakup, s |y(z) — h(z)] < e,
k1 for everyz in K. That is, an RFNN system with an arbitrarily
= Zw]‘?a}(lj(x)) large number of fuzzy logical rules can approximate any real
j=1 continuous function ilC(IR™) over a compact subset &%".
wherew$ = ¢-wt € R, Vj. Thatis,cf(:) € F™ (F" Extension to Multiple Output Cas&he following subsection
is closed under scalar multiplication). will extend the previous results to the case of an RFNN with
By (1)—(3), we conclude thaf™ is an algebra. m Multiple outputs. Consider the following examplg.
Lemma 5: F™* separates points dfl (for z,y € F", z # v, Suppose; ande are functions of: and let functlo'ngf]L and.
there is anf € ™ such thatf(z) # f(y)). f2 be approximated by rules andp rules, respectively. This

Proof: We prove this lemma by constructing a functiorfiructure is shown in Fig. 11(a) and (b).
f. That is, we specify the number of fuzzy sets definedin It is easy to combine these two single-output RFNNSs into a
the parameters of the Gaussian membership functions, and?¥ RFNN with two outputs, which is shown in Fig. 12. This
number of fuzzy rules, such that the resultifigin the form New structure has: + p rules; the firstn rules are constructed

of (24)) has the property( 0y £ £(y°), for arbitrarily given from f; and the lasp rules fromf. In this structure, the con-
0'c K with 20 £ ¢°). = sequence weights of the lgstrules in the first outputf;) are

Now letz® = (22,29, --,29) andy (2,59, 40), set to zero and the consequence weights of thesfirstiles in
- ) ) 7 n ) ) 1IN
and choose two fuzzy rules as the fuzzy rule base. Furthermcm? second outpuift) are also set to zero. _
let the Gaussian membership functions be ased on the previous discussion, since the RFNN with
a single output can perform universal approximation, there

o 0)2
pa, (z:) = exp <_M> must be an RFNN with multiple outputs with an arbitrarily
(@) o2 large number of fuzzy logical rules that can perform universal
= exp <_ (zi + Oinbin — a7) approximation on each output. This completes the proofl]
(0)?
(Iis — 9)? B. Proof of Convergence Theorems
pa, (wi) = exp <_ )2 ) To prove our results, the following facts are needed.

Fact 2: Let f(y) = y%e(=¥"). Then|f(y)| < 1,¥y € R.
Proof of Theorem 2:The Lyapunov function (16) is a
time-invariant positive definite function. Thus, from (18) and

< (25 + Ouafi — y0)2> Fact 1: Letg(y) = ye(=¥"). Then|g(y)| < 1,Vy € IR.
=exp| — ¢

Then f can be expressed as

f=w- ﬁexp <_ (z; + O — 2)? (19), the change in the Lyapunov function is
(0)? 1
. s Ot AVi(R) = 5 [k +1) = ()
T + Oy2bia — y;
. — il 1
+ wo il:[leXp< (0)? ) (28) = Acr(k) [er(k )+§Ae;(k)]
wherew; , wy are the link weights. With this system, we have 8ef(k) » 901 (k)
< 071971) ) oW, 77[6[ an
Hex ,
(0)? L1 ae,(k) 0 (k)
2 aW mrerk) =5y
(29 + O;20;2 — y9)? 2 4
—+ wo - Hexp — 3
et (o) 0 (k)
"Z ( 04 0.0 0)2 A cr(k) 8WI
o0y ) ¥ i1Vl — &5
f(y") = w HeXp< (o) ) 1 aol(k) ) 90 (k)
(Oi26i2)” 2 |ow, | 1 oWy
T Hexp (-5 L (20
= —C —_
Because (8) holds in tralmng processes, it is easy to verify that 1t 2" 8WI

F&) # f(u°) if 2° # y°.
Lemma 6: '™ vanishes at no point of. . <2 —ny < oW, ) )]

Proof. From (24), there are;s that are constant and not L
equalto zero. Thatis, forall € R", «;(x) > 0. |fwe choose = A (k)
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(a)

Fig. 11. Structural diagrams ¢ and f-.

Fig. 12. Structural diagram of a multiple output system.

where

v [ () (- (20))

Because

AVi(k) = S[ef(k + 1) — e7(k)] = —Arej(k).

The convergence of the RFNN is guaranteed if< A;. We

obtain

0 < 7h < i=1,--,4.

(PIi,max)2 ’

This completes the proof.
Proof of Lemma 1:Since

1 || 80:(k) |7 o (k) |?
AL 5 aw, 2=y oW,
1
=5 1P®) P2 = il Pr(®)IP) > 0

®

we obtaind < 7n; < (2/(Prmax)?) that guarantees conver-
gence. However, the maximum learning rate which guarantees
convergence i§} = (1/Ps max)?). n
Proof of Theorem 3:Let
20 (k)
P (k)= ——= = Zi(k
1 (k) s (k)

where

Zr = [Z17Z27 Ty ZRI]T

in which Z; is the output value of the third layer of the RFNN
andR; is the number of rules in the RENN. Then we hage<
Lforallj, |Pa(k)] < VRr, and(Py, ., )* = maxy | Pr(k)]* =
R;. From Theorem 3, we find théit < #¥ < (2/R;). m

Proof of Theorem 4:

1) Meanmy:

From the previous discussion, we have the following
result by chain rule:

Ry Ni; 3 80?2
Py = 20 5, {Z o }
=1 j=

omy - O% Omg
J i

R Ny 2
I N aOI ]
< W, max o

-

Ry Ni; 9
S S (2)

j=1
T+ 0%9[ —my
ar
T+ 0%9[ —my 2
- eXp - O——I .
Fact 1 gives

< 1.

37—‘1-0%9[—771[ oxD |— $+O%9[—m[ 2
or P g1
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Then Similar to the previous discussion, we have
pl aO NI 03 802
I I;;
Z o Z o0

RI J
2
P (k) < wy, max <—) P (k)=
1 ; Jzz:l o7 13( ) 89[
Ry ¥ 3 R; Nrj 80%
< ZUJL- V 4VI,max § I1aX o7 < Zwb ZIH&X < ”)
=1 j

=1
Ry
2
= wr; N ,max { < ) } . (29) B & 2(F
T

Thus =1 i
x + 0%9[ —my
|PII | < vV RINI 111ax|TUI max| <O'[ ) or
Theorem 2 gives <x+0§91—m1> D
exp |—
2 a1
2 2 1 .
0 m — . Fact 2 gives
SIS P121 RINI,max |w | < 2 ) g )
e I, max 2 2
’ . Oz0r — O50r —
OJ min <.Z' + JYvI m[) exp [_ <.Z' + Tvr m[) <1
2) STD:oy. ar or
Similar to the previous discussion, we have Then
Ry N1, 2 .
201 (k) O?i aOL‘j s 2071(
Bl =5, =2 v L G e, P) < 3 un { S (22021
= Jj= +3 — j=1
. 2
< wa { NT max <0'[ R )} (31)

Thus

Ry Nr; < < 5 )
|P13 V RINI max|wl max| <0'I )

i=1 =1 o1
2 _ 2
. <w> Drawing on Theorem 2, we obtain
ar )
z4+020; —m;\°
- exp —<$) ]) . 0 < i < 22 _ 2 1
PIz,max RINI,max |wI max| < 2 )
Fact 2 gives 71, min
2 2 2 2 This completes the proof. ]
‘(W) exp l— <w> < 1. Proof of Theorem 5:The Lyapunov functio/(ec) =
o1 a1 1¢Z. is a time-invariant positive definite function. Thus, from
Then (18) and (20), the change in the Lyapunov function is
4
1 . { 90¢
P NI mox . 30 AVe(k) = —eZ(k 2(k
X wa e { ()} o clh) = =206) [2 0 (i)
Thus ‘ 90\ 2
<2 — neya(k) <ﬁ) )
|P12 \Y RINI max|wl ma.x| < ) 9 !
OJ min = —)\QCC(k)
Therefore, from Theorem 2 we find that
) where
4 2
1 90¢
P o [ ()
0 o — . 2 Yu Tic
< K < PIQS RINI,maX 2 i 2 aWCi
max |wI,max| . 80 2
,min 9 _ i 2(/{) C
Cdu awa
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Similarly, the convergence of the RFNNC is guaranteéd &
A2. We obtain

2 .
7 =1.---

—7 7 74'
(yu(k)PCi,max)Q

0<77}<

This completes the proof. [ |
Proof of Lemma 2:Since

= 5 IPc(B)*ncya(k) 2 — neyu (D Pe(B)]*) > 0

(32) 5
|wC,maX| <O’ ] )
we obtain Comin
2 2) STD:oc.
0 <nc < W From the previous discussion, we obtain
that guarantees convergence. However, the maximum 0 ( Ney 0%
learning rate for control which guarantees convergence isf’c, (k) = 300 < ch Zmax O_CJ
776 = (1/(yu(k)PC,max)2)- | ] j=1
Proof of Theorem 6:Let Re Ne, 5
Peui) = P50 = 2e() - U=
w,
¢ x + Oéec — mc ?
where oc
ZC:[Zl,ZQ,..~,ZRc]T - exp [_ <x—|—0é90—mc>2‘|>
in which Z; is the output value of the third layer of the oc
RFNN and Rc is the number of rules in the RFNN. _
Then we haveZ; < 1 for all j, |FPe, (k)] < VRc, and Fact 2 gives

(Pcy ax)? = maxy |Po(k)]? = Rc. From Theorem 3, we
find that0 < n% < (2/Rcy2(k)). [
Proof of Theorem 7:
1) Mean:mc.
From the previous discussion, we obtain

]\‘r(v
A0 (k 2
Pe (k) = a —
e, (k) = amc < ch ;lnmx<<ac>
x4+ 02090 — mgc
oc
[ <$+O%90—mc>2]>
. eXp —_ . —
oc
Fact 1 gives
2
‘(w—l—O%@c—mc)expl_(x—l—O%Hc—mc) <l
oC ac
Then

Pc

0C,min

(k) < gwch 2. )} (33)

Thus

|Pcl V RCNC max|wC ma.x| < )
0C,min

Theorem 5 gives

2 2
0 < <
T RRR T RoNe e (R)
2
1

ac
z+ O%6c — mc 2
e | =

Then

2
PC2 ch { NCma.X <UC - )}

Thus

|PC2 V RCNC max|wC ma.x| < )
0C,min

Therefore, from Theorem 5 we find that

2 3 2

‘(a:—l—OéHc —mc)2

< 1L

0 <n& < -
C y%(k)Pégx Rch,maxy?f,(k)

2

1

2
| WC max |
JC, min
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From the previous discussion, we obtain

.

Ne, 5

150} a0z
P, (k) = L < Z we, Z max 890”
j=1 ¢
Z ]\i: . <20g(k—1)>
= we, max _—
j=1 oc
T+ O%ec —mc
oc
<.’IZ+ O%QC — mc>2
. eXp —_ e ——
oc
Fact 2 gives
T+ O%ec —mc
ac
2 _ 2
-exp [— <—$+ cheg mc_) < 1.
Then
2
PCS ch { NCmaX <O’C ] )} (35)
Thus

|PCS < ERcNe max|wC max| < ) .
JC,min

Drawing on Theorem 5, we obtain

2 2
0 <:n0 < =
< Z/g(k)ngymx yg(k)RCNC,max
2
1
2
|wC,max|
0C,min
This completes the proof. [ |
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