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pute the back-propagation error. There may be a processor asso- 
ciated with each layer or a specified cluster of neurons. These pro- 
cessors will also compute the necessary combinations of weights 
for the distributed arithmetic neurons and broadcast them to the 
dual ported memories. It may seem that calculating an average of 
10 000-100 000 combinations at each new error update is a for- 
midable task’. It is indeed. But the network if desired may be trained 
off-line or simply modeled and the final weights loaded. Fortu- 
nately, there exist training methods which do not require an update 
at each pattem, but only at each epoch (or iteration) [8]. This 
method was chosen for the experiments. 

V.  CONCLUSION 

A hardware neural net was designed based on distributed arith- 
metic. The model used in the experiments was a three layer net- 
work with 10 neurons per layer at maximum (this was because of 
the 1K dual ported memories used). The numbers used were limited 
to 16 b, with an 8-b integer and 8-b fractional part. The LUT’s 
were full length, but of the 16 b available for addressing at the 
linear output of the neuron (i.e., the sum output), only 13 were 
used-eight from the integer part and five from the fractional part. 
Because the sigmoid is absolute bounded by 1 ,  only 8 b were used 
on the LUT output, simplifying the hardware and lowering the sys- 
tem cost. A TMS320E25 was preprogrammed as an error processor 
for the whole network. Recognition experiments were conducted, 
and while the correctness was slightly worse than when modeling 
was performed on an IBM AT with the floating point package from 
a high level language (“C”), a result was output roughly 48 cycles 
after a pattern was presented. At a clock rate of 10 Mhz that means 
one decision every 5 ps and this independently of the number of 
neurons in a layer as long as they are not shared. 
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A Numerically Stable Pipeline Net VLSI Architecture 
for the Isomorphic Hopfield Model 
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Abstract-This correspondence presents a reconfigurable pipeline net 
VLSI architecture for implementing Hopfield neural models. It is 
known that the Hopfield models involve computing the hyperbolic 
trigonometric functions which are hard to be realized by digital VLSI 
architectures. In order to tackle such difficulty, a useful isomorphic 
nonlinear mapping is introduced to convert those hyperbolic trigo- 
nometric nonlinear functions into the simple second-order polynomial 
functions. Moreover, the isomorphic formulation provides the higher 
ability to decompose the problem into several independent tasks which 
can be assigned to a number of processors. Handling the digital real- 
izations on the Hopfield model, the previous attemps were to use the 
technique based on the first-order approximation called Euler’s method 
which has poor numerical stability and large truncation error. To find 
a numerical solution with a prescribed accuracy, one of the promising 
approaches is a combination of both a single-step Runge-Kutta method 
and a multistep predictor-corrector method which has a larger stabil- 
ity interval and is particularly suitable for parallel computation. Since 
the mixed-type procedure requires data broadcasting, common VLSI 
architectures with fixed connections cannot offer such flexible connec- 
tivities. A pipeline net VLSI architecture which is a programmable two- 
level pipelined and dynamically reconfigurable systolic array would be 
adopted as the design platform. The pipelining period and block pipe- 
lining period of the proposed architecture have the computational or- 
ders of U(1)  and O(n),  respectively, where n is the number of neurons. 

I. INTRODUCTION 

Artificial neural networks contain a large number of identical 
computing elements or neurons with specific interconnection 
strengths between neuron pairs [13]. The massively parallel pm- 
cessing power of neural network lies in the cooperation of highly 
interconnected computing elements. Analog VLSI implementa- 
tions of the Hopfield network containing up to 512 neurons have 
been built with matrices of fixed resistors and nonlinear amplifiers 
fabricated on a single chip [6]. This task is made difficult by the 
large number of analog signals which much pass between chips and 
by the external parasitic capacitances which will distort the charg- 
ing characteristics of the network and possibly cause erroneous re- 
sults. 

Due to the limitations of analog computing, digital simulation 
on neural networks would be the most promising approach to solve 
the difficulty. A lot of researchers [ 6 ] ,  [l] apply the techniques 
based on the first-order approximation called Euler’s method [lo] 
to the simulation of neural networks. To find a numerical solution 
with a prescribed accuracy, it i s  recommended to use Ghoshal’s 
fourth-order predictor-corrector multistep method [ 5 ] ,  which is 
particularly suitable for parallel implementation. Unfortunately, 
this method is not self-starting. This is in contrast to the single- 
step Runge-Kutta methods where only the single initial condition 
is needed to start the computation, but may become weakly un- 
stable in some unpredictable conditions. Hence the best way is to 
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use the five-point formula of Milne’s Runge-Kutta method [ 121 to 
start the computations of Ghoshal’s predictor-corrector method. 

It is known that the Hopfield model involves computing the hy- 
perbolic trigonometric functions which are hard to be realized by 
digital VLSI architectures. In order to tackle such difficulty, a use- 
ful isomorphic nonlinear mapping as discussed in Section I1 is pro- 
posed to convert those hyperbolic trigonometric nonlinear func- 
tions into the simple second-order polynomial functions. Moreover, 
the isomorphic formulation is specially suitable for parallel imple- 
mentation. However, it could be shown that the time evolutions 
and the final solutions of both models are in the same results. Cer- 
tainly, the mixed-type integration procedure is also suitable for 
evaluating the isomorphic model. 

In this correspondence, the concept of a pipeline net architecture 
that is a programmable two-level pipelined and dynamically recon- 
figurable systolic array [9 ]  would be adopted as our design princi- 
ple. A reconfigurable pipeline net VLSI architecture including four 
processors, a 6 X n shifter array and a programmable 12 X 30 
routing network has been designed, based on the mixed-type inte- 
gration procedure, for simulating the isomorphic Hopfield model. 
The pipelining period and block pipelining period of executing the 
integration algorithm on pipeline net architecture are characterized 
as a and (n  + 4 )  a ,  respectively, where a is the time required for 
performing a scalar addition and a scalar multiplication. 

11. THE HOPFIELD MODEL WITH ISOMORPHIC MAPPING 

A .  The Original Hopfield Model 

The Hopfield model [7], [8 ]  is a popular model of continuous, 
interconnected n nodes. Each node is assigned a potential, u, ( t ) ,  i 
= 1 ,  . . . , n as its state variable. Each node receives external input 
I, (t), and internal inputs from other nodes in the form of a weighted 
sum of firing rates El T,,g,(ul), where g , (  - )  is a monotonically in- 
creasing bounded function converting potential to firing rate. The 
equations of motion are 

dui “ 
- = c T j V i  + I; 
dt j = ~  

vi = g i ( 4  (1) 

for i = 1, 2 ,  . . , n.  The dynamic model (1) is highly nonlinear, 
coupled, and of a high dimension for a large number of nodes. As 
such it is difficult to analyze, simulate, and synthesize. Due to the 
saturation of g i (u i ) ,  an acceptable solution for the firing rates vi 
may involve very high values for the potentials ui implying a large 
computational dynamic range. 

s 

B. The Isomorphic Model 

In order to derive the governing equations of motion character- 
ized by firing rate, a useful isomorphic nonlinear mapping $(.) 
may be defined on the space of potentials and described as 

U = $(U). (2 )  
For the sake of simplicity, one may let $ ( e )  be C ( . ) .  And, the i th 
term in U is a function of ui only vi = gi(ui) ,  i = 1 ,  2 ,  . . * ,  n. 
The procedure of transforming the original model (1) into its iso- 
morphic form could be described as 

for i = 1 ,  2 ,  . * , n .  In vector form, 

6(t)  = L(U(t))  . [Tu(t)  + I ] .  (4) 

It is shown that the model ( 3 )  is isomorphic to ( 1 )  since the map- 
ping g,(u,) is one to one and onto for all i = 1 ,  2 ,  * . . , n.  Ac- 
cording to ( 3 ) ,  the rate of change of the firing rate for the ith node 
is proportional to its extemal input I,(t), to a linear combination of 
the firing rates of other nodes E;= U,. The summed input is 
shunted by the nonlinear function I ,  (U,), which is specially suitable 
for parallel implementation. 

The sigmoid nonlinear function g, (U,) in (1) can be identified as 

0, = g,(u,) = + tanh ( A , 4 ) 1 ,  

f o r i  = 1 , 2 ,  e * -  , n  (5)  

where A, > 0 is the gain scaling parameter of the nonlinear function 
for the i th neuron. The explicit formulation of the nonlinear func- 
tion for the isomorphic model ( 3 )  can be derived as 

(6) 

for i = 1, 2 ,  . . . , n .  The sigmoid nonlinearity of (5) of the orig- 
inal Hopfield model has the term tanh, which is hard to be imple- 
mented. For the isomorphic model, it is shown that the nonlinear 
function could be converted to a simple second-order polynomial, 
which is quite easy to be realized by digital VLSI architectures. 

l,(v,) = 2A, U , ( 1  - U,)  

111. NUMERICAL METHODS FOR THE ISOMORPHIC HOPFIELD 
MODEL 

The limitations of analog computing have led researchers of 
neural networks to rely upon digital simulation. It is known that 
the Hopfield-type neural model could be formulated as the follow- 
ing initial value problem (IVP): 

6 = L(1,  U@)) . [TU@) + I ]  

= F(t ,  1, ~ ( t ) )  and v(to) = vo. (7) 

In order to find a numerical solution with a prescribed accuracy, 
one of the commonly used numerical algorithms is the multistep 
method based on the predictor-corrector strategy [ 101 which has a 
larger stability interval and is particularly suitable for parallel com- 
putation. Ghoshal et al. [SI  proposed that a fourth-order method 
employing a predictor and three correctors could be described as 

Note that the superscript [i] means the result after the evaluation 
of the i th corrector, 1 5 i 5 3 ,  [O]  means the predicted value, and 
[3 ]  means the final corrected value, which can be output. The pro- 
posed algorithm could keep four processors busy, with each pro- 
cessor computing the predictor or one of the corrector formulas and 
then evaluating the function in terms of the predicted or corrected 
arguments. 

One of the computational defects of the predictor-corrector 
methods is that the methods are not self-starting. This is in contrast 
to the single-step Runge-Kutta methods wbere only the single ini- 
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Fig. 1 .  The computational wavefront diagram of the proposed mixed-type integration method ESIIH. Note that the evaluations 
F,,r = F(r,, A, U ,  ,) and Fkl = F(r,, A, U P ] )  are also performed after their associated U,  and uki have been determined, 
respectively. u , , ~ :  an approximation to U(?,)  of order r + 1 (or local error of O(h'+2) ) .  vio1: the predicted value of ~ ( r , ) .  U!': 

the ith corrected value of v(r,), i = 1, 2, 3 .  r: order index, r,: the kth time instant. -: No operation. CW,: the jth 
computational wavefront. 

tial condition u(to) = uo is needed to start the computation. Un- 
fortunately, [ 1 1 1  showed that the Runge-Kutta method will become 
weakly unstable in some unpredictable conditions. However, the 
five-point formula of the Milne's Runge-Kutta procedure (MRKP) 
is especially suitable for starting the Ghoshal's predictor-corrector 
method (GPCM). The procedures for the MRKP are as follows: 

1 )  To begin, the following Euler formula below is used to pre- 
dict solutions at four time steps as 

U I , O  = uo + hFo, ~ 2 . 0  = uo + 2hF0, 

113.0 = U0 + 3hF0, U4.0 = U0 + 4hFo. 

2 )  The solution values can be iteratively improved using the fol- 
lowing five-point formula [ 121 which is an order-improving recur- 
sion: 

i) The first four approximations to u( t l ) ,  U&), u( t3 ) ,  and u(t4) 
of order m: 

For r = 0 step 1 until (m - 2 )  do 

h 
720 

u I , ~ +  I = UO + - (251 Fo + 646FI,, - 264F2,, 

ii) Observing the five-point formula [ 121, the approximation 
u5,,, - I can be in terms of the first four approximations as 

5h 
144 

~ 5 , ~ - l  = UO + -((19Fo - 10F1,m-l + 120F2,m-I 

- 70F3.m-1 85F4.m-1) 

F5.m- I = F(t59 k ~ 5 . m -  11. (10) 

The procedure for evaluating the proposed mixed-type integra- 
tion method could be illustrated in Fig. l .  The j th  computational 
wavefront CW, represents thejth computational activities. At CWo, 
Fo = F(to, I ,  uo) is evaluated to provide the necessary information 
to the successive computations. The first-order approximations for 
the first four points u ( t I ) ,  u ( t2 ) ,  u ( t3 ) ,  and u(t4) and their corre- 
sponding Fl , ,,, F2, F3, o, and F4, are evaluated parallely along the 
computational wavefront of CWi. From CW2 to CW,, an order- 
improving procedure has been executed for evaluating the approx- 
imations t ) k , r  to the first 'five points and their corresponding Fk, r ,  1 
5 k I 5 parallely along a particular wavefront. After the starting 
conditions have been determined, the computational activities (the 
evaluations of U!] and F!') of the GPCM along the 45" dash lines 
would sweep from CW6 to a time step in which the termination 
conditions of that the state in the isomorphic Hopfield system is 
near the thermodynamie ground state. The resultant approxima- 
tions would be pumped out from the leftmost side of k = 3 to the 
right side along the fourth row of the computational wavefronts. 
The mixed-type integration procedure for the isomorphic Hopfield 
model can be described in [ 2 ] .  

Digital implementations of neural networks have been con- 
structed to offer a nature, and well-understood technology, flexi- 
bility, scalability, and accuracy much better than those of analog 
implementations. In this correspondence, the concept of a pipeline 
net architecture which is a programmable two-level pipelined and 
dynamically reconfigurable systolic a m y  [9] would be adopted as 
our design principle. Basically, a pipeline net is made of multiple 
functional pipelines, programmable routing or crossbar networks, 
and a set of data registers. Each functional pipeline is used to ex- 
ecute its assigned operations. The programmable routing networks 
are used to provide dynamic connecting paths among multiple 
functional pipelines and registers. Therefore, local connections 
necessary in a systolic array are no longer a structural constraint in 
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Fig. 2. The reconfigurable pipeline net architecture for computing the algorithm ESIIH. 

a pipeline net. However, the systolic flow of data through the pipe- 
line net is preserved. In a pipeline net, noncompute delay buffers 
can be inserted at any data path in order to handle the problem of 
delay matching. 

The design of implementing the algorithm ESIIH, as illustrated 
in Fig. 2,  is made of four two-dimensional functional pipelines, a 
programmable 12 X 30 distribution routing network, and a 6 X n 
shifter array. Functional pipelines (or processors) Po, P I ,  P2 ,  and 
P3 are assigned to deal with the operations of procedure GPCM, 
respectively. Meanwhile, the starting conditions should be gener- 
ated by the MRKP before executing the GPCM. More details about 
executing MRKP on the pipeline net would be summarized in the 
procedure RPNAE and described in [2]. After the starting condi- 
tions have been set up, the pipeline net would start performing the 
GPCM and the desired solutions of up1,  k 2 3 would be then 
pumped out from the output port vOut of P3 sequentially. A pro- 
grammable 12 X 30 distribution routing network is applied to ex- 
changing the information and data among the predictor and the cor- 
rectors. It is possible to be realized by crossbar network [3]. 
However, [4] showed that each crosspoint contributes capacitance 

which limits the speed and size of the network. As shown in Fig. 
3, the solution presented here consists of connecting the rows to 
each column with a tree structure as opposed to a direct connection. 
More details about the 3-pm CMOS VLSI implementations of the 
binary tree crossbar network are described in [4]. 

IV. CONCLUSION 

A reconfigurable pipeline net VLSI architecture has been de- 
signed based on the mixed-type integration procedure, for simu- 
lating the isomorphic Hopfield model. Due to the difficulty of re- 
alizing the Hopfield model, an isomorphic model is introduced to 
reduce the complexity of its digital implementations. To ensure the 
numerical solution with a prescribed accuracy, a mixed-type inte- 
gration algorithm based on combining a single-step Runge-Kutta 
method and a multistep predictor-corrector method is applied to 
the digital simulation of an isomorphic model, resulting in numer- 
ical stability. A reconfigurable pipeline net VLSI architecture is 
proposed to implement the mixed-type integration algorithm. Ba- 
sically, the architecture is made of four processors, a programma- 

__ 



2017 

A ..........- ... ...- 
B ._._. 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 5 ,  MAY 1993 

...... “...............I 

1 .......... ”....” ..... 

No Connection 
X 

C 
D 
E 
F 
G Inputs 

4 - b i t  

Control 

Latch 

q-th OUtpUt 
q = l  ,2,...,30 

Tree Multiplexer 
Control : 

Fig. 3. The binary tree crossbar design of the programmable 12 X 30 distribution routing network. 

ble 12 X 30 routing network, and a 6 X n shifter array which are 
assigned to deal with the main operations of the integration algo- 
rithm, data routing, and synchronization, respectively. The pipe- 
lining period and block pipelining period of executing the integra- 
tion algorithm on pipeline net architecture are characterized as a 
and (n + 4)a, respectively. 
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