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Carrier-to-Interference Ratio Measurement Using
Moments or Histograms

Yu T. Su, Member, IEEE,and Ju-Ya Chen

Abstract—Cochannel interference is often the predominant
factor that limits the capacity of a cellular mobile radio system.
Power control is thus needed so that carrier-to-cochannel inter-
ference ratio (CIR) can be maintained within a tolerable bound.
Many power control algorithms that require real-time CIR mea-
surement have been proposed but there is very few mentioning of
the measurement method. This paper presents viable solutions
for real-time CIR estimations under various channel conditions.
These solutions are based on either the method of moments or
the histogram matching concept. We provide numerical results to
demonstrate the usefulness and to compare the performance of
the proposed algorithms. It is found that the histogram matching
method with a properly-designed nonuniform quantizer offers
excellent CIR estimation.

Index Terms—Cochannel interference, MAP estimation.

I. INTRODUCTION

T HE ULTIMATE concern of a communication system de-
signer is the quality of the demodulated baseband signals.

When cochannel or interchannel interference is present, car-
rier-to-interference ratio (CIR) or signal-to-interference ratio
(SIR) is an important receiver parameter that characterizes the
degree of system performance deterioration. For angle-modu-
lated analog waveforms, Prabhu and Enloe [1] derived upper
and lower bounds of the minimum baseband SIR over the
signaling band in a multiple-interferer environment. These
baseband SIR bounds depend on the number of interferers and
the radio frequency band CIR. Recently, Mizuno and Shimbo
[2] presented an exact analysis of an FM discriminator when
the received carrier is modulated by a Gaussian baseband
signal. Both thermal noise and a cochannel interferer are
considered. The autocorrelation of the signal, interference and
noise components, and the cross correlations among them are
derived. The relationship between RF band CIR and baseband
SIR can be found in [1] and [2]. Other investigations (e.g., [3])
show that CIR is also a good indicator for the quality of digital
communication signals.

When a frequency reuse scheme is employed in a cellular
mobile communication system to enhance the system’s spectral
utilization efficiency, a received signal inevitably suffers from

Paper approved by R. A. Valenzuela, the Editor for Transmission Systems
of the IEEE Communications Society. Manuscript received November 15,
1998; revised December 20, 1999. This paper was presented in part at IEEE
PIMRC’97, Helsinki, Finland, September 1–4, 1997. This work was supported
in part by the National Science Council of Taiwan, R.O.C., under Contract
NSC-85-2213E-009-013.

The authors are with the Department of Communication Engineering, Na-
tional Chiao Tung University, Hsinchu 30010, Taiwan.

Publisher Item Identifier S 0090-6778(00)07102-6.

interference from other cochannel users. The signal quality
requirement of such a cellular system is often specified by a CIR
threshold called the protection ratio. For an FDMA system, the
cochannel reuse distance, i.e., the minimum distance between
two cochannel users and therefore the cell size has to be such that
the average CIR is greater than or equal to this minimum required
threshold value. Therefore, the system capacity is limited by
the multiplicity of the simultaneous usage of the same channel.
Furthermore, power control is necessary to reduce cochannel
interference and allow as many cochannel users as possible while
each maintaining an acceptable CIR. Besides power control [4],
we have also seen CIR-based criteria for diversity reception,
handoffs, and channel allocation; see references in [6]–[10]. All
of these algorithms assume that real-time CIR measurement is
available without mentioning how it is obtained.

Kozono [5] used statistical properties of the received wave-
form’s envelope and applied the method of moments to esti-
mate the CIR of a phase-modulated carrier that is corrupted by
a single interferer. However, this method is based on a noiseless
assumption. The estimated CIR becomes less reliable whenever
the operation scenario is different from the assumed one. As
CIR is often difficult to measure, Brandãoet al. [6] introduced
a parameter called signal-to-variation power ratio (SVR), and
showed it lies between upper and lower bounds of the true CIR
for MPSK signals. As SVR is a function of the autocorrelation
function of the received samples taken at the symbol rate, it can
easily be estimated based on the method of moments. The same
SVR idea was later extended to the measurement of signal-to-in-
terference-plus-noise ratio (SINR) of DECT signals [7]. How-
ever, in both cases the resulting estimates exhibit a certain de-
gree of bias. Interference projection (IP) and signal projection
(SP) methods that project the received baseband samples into
the range space or null space formed by the training (or desired)
signal were used [8], [9] to estimate SINR of time-division mul-
tiple-access signals. Both methods need to know the channel
memory length and require a training sequence. The associated
estimates need about one second to render an average error of
1 dB. Applying a signal subspace method to the sample covari-
ance matrix of the received narrow-band signal, [10] develops
a general SINR estimation algorithm. It requires no channel in-
formation but has to perform eigenvector decomposition of the
sample covariance matrix.

In the following section, Kozono’s method is briefly
reviewed. We then extend Kozono’s work to other practical sit-
uations, suggesting solutions when 1) thermal noise is present;
2) the transmitted signal suffers from Rayleigh fading; and 3)
there are more than one interferer. Section III presents a new
class of CIR measurement methods that can used in both analog
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and digital systems. We first explore the histogram matching
concept which has been utilized for other applications. Then
a CIR estimation algorithm based on histogram matching is
proposed. Variations and modifications of this algorithms are
discussed. Performance estimations of our algorithms using
computer simulations are given in Section IV. The last section
contains our conclusions.

II. CIR ESTIMATION BASED ON MOMENTS

A. Preliminary

Consider a received radio waveform that is composed of the
desired signal and interference signals. The received signal
passes through an intermediate frequency (IF) filter and an enve-
lope detector. The envelope detector’s output is sampled and then
fed into a microcomputer to evaluate the CIR. Hence the channel
considered here includes the transmitter filter, radio channel and
the receiver filter. To begin with, let us consider a noiseless envi-
ronment in which the received signal is given by

(1)

where is the cochannel frequency,and are the amplitudes
of the desired signal and the interferer, respectively; and

are the corresponding modulation waveforms. and
are the envelope and phase of

(2)

(3)

with . From (2), we have

(4)

If is properly selected so that
, then [5]

(5)

(6)

Since the cochannel interference comes from another distant mo-
bile cell, the amplitude is usually less than . Applying the
method of moments, a CIR estimator can be obtained by [5]

(7)

Assuming the envelope output is an ergodic process, we have

(8)

(9)

where is the number of samples and the overbar denotes the
time average operator. The resulting CIR estimation algorithm
will be referred to as Estimator 1 or Kozono’s estimator hence-
forth.

B. AWGN Channels

We next consider an additive white Gaussian noise (AWGN)
channel with a noise power level . Invoking the ergodic as-
sumption, we can easily show that the time averages of
and are

(10)

(11)

A reliable estimate of the noise level can be obtained by
measuring a neighboring band which contains neither signal nor
interference. Assuming the availability of , we have the fol-
lowing CIR estimate:

(12)

where

(13)

(14)

This estimation scheme is referred to as Estimator 2.

C. Rayleigh Fading Channels

In a mobile communication environment where the desired
and the interference signals suffer from Rayleigh fading, the
received waveform can be expressed as

(15)

The resultant squared envelope becomes

(16)

where and are independent Rayleigh processes with
, . Moreover

(17)
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If the random phase is independent of and then
the autocorrelation of the squared Rayleigh process is given by
[11]

(18)

where , is the maximum
Doppler frequency resulted from a relative velocityand
carrier wavelength and is the Bessel function of
the first kind of order zero. If is selected appropriately
such that , , and

, we have the following time
averages:

(19)

(20)

where

(21)

If is known, then we immediately have a CIR estimate

(22)

where . Unfortunately, is in general not known
to the receiver. As is often much smaller than
in a high CIR environment, the first term on the right-hand
side of (20) dominates the value of . Fur-
thermore, we notice that as the correlation coefficient ap-
proaches to zero, .
Equations (19) and (20) are therefore highly dependent
and we have to use higher-order moments. On the other
hand, if , then
and Kozono’s method can be directly applied in this case.
Since is a decreasing function of for small ,

. Let ,
, and consider the ratio

(23)

Our computation shows that the magnitude of the coefficients
associated with the first term in (23) is usually much smaller
than that in (20) especially when CIR is high (15 dB). This ob-
servation leads to a new estimation algorithm called Estimator
3:

(24)

where

When we take into account the presence of thermal noise and
use an approach similar to that leads to Estimator 2, we then
obtain the following estimate:

(25)

and are modified accordingly

D. Multiple Interferer Case

All the CIR estimation algorithms discussed so far assume
that only one interferer is present. In the case of multi-interferer,
the received waveform can be written as

(26)

where and are the envelope and phase of , i.e.,

(27)

(28)

Assuming the desired signal and interferers yield independent
statistics, we can show that and

, if is chosen ap-
propriately. It is clear that, depending on the operation scenario,
the problem of CIR estimation for this case
can be solved by one of the solutions proposed before.

III. ESTIMATION BASED ONPROBABILITY DISTRIBUTIONS

As is well known, complete statistical information of a
random process is embedded in the family of all finite-dimen-
sional joint probability distributions associated with it. We can
measure one of these distributions of the received waveform
and compare it with some known probability distributions.
What we really want to know is not which one is the closest
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to the measured distribution but the parameter values associ-
ated with the closest distribution. As real-time estimation of
higher-order statistics and distribution is time- and computa-
tional-consuming, we limit ourselves to the usage of short-term
probability distributions for CIR estimation. Note that the
method of moments uses moments of the received signal. The
first few moments, however, contain only partial information of
the associated short-term probability distribution. We also want
to remark that the idea of statistic or probability distribution
matching is not new [12], [13] but its application to CIR
measurement is.

A. AWGN Channels

Let us begin with a look at the received signal in an AWGN
channel

(29)

where is a stationary complex low-pass Gaussian process
with zero mean and variance . The probability density func-
tion (pdf) of —the envelope of —is given by [14]

(30)

The pdf of the normalized envelope defined by

(31)

assuming that the interferers have the same power at the receiver
front-end, is given by

(32)

where and .
Fig. 1 depicts as a function of CIR, CNR, and the number
of interferers . As the pdf of is a function of these pa-
rameters, an accurate pdf estimation will provide good estima-
tions of the related parameters including CIR. These curves also
reveal that SINR is not an accurate signal quality indicator for
the same SINR with different CIR and CNR combination results
in different pdf’s.

B. Rayleigh Fading Channels

When the transmitted signal suffers from frequency-nonse-
lective Rayleigh (Rician) fading, the pdf of is Rayleigh (Ri-
cian) distributed and cannot be distinguished from each other.
Therefore, we have to look for other marginal distributions of
the received signal. One of the candidates is the pdf of the base-

Fig. 1. Pdf’s of the normalized envelope.

band phase. Given the amplitudes of signal and interference, we
can write the pdf of received signal’s phaseas [15, eq. (13)]

(33)

where is the zeroth-order modified Bessel function of the
first kind. Equation (33) can also be expressed as a function of

and

(34)

where and . If
the desired and the interference signals suffer from independent
Rayleigh fading with variance equal to and

, respectively, the pdf of becomes

(35)

Equation (35) indicates that is a function of both CIR
and CNR. Shown in Figs. 2 and 3 are of a 0.3-GMSK
modulation signal with carrier frequency 900 MHz transmitted
through Jakes’ Rayleigh fading channels. It is clear that these
pdf’s are not only functions of CIR and CNR but also functions
of the associated doppler frequency.

C. Maximum a posteriori (MAP) Estimator

Let be the normalized envelope de-
tector output samples of a receiver and
be a partition of the domain of , , i.e., ,

, if . The number of the disjoint subsets
in the partition is referred to as the quantization level
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Fig. 2. Pdf’s of a GMSK signal’s phase with different CIR values.

Fig. 3. Pdf’s of a GMSK signal’s phase with different CNR values.

henceforth. Denote the number of samples fall in the re-
gion by and call the ordered pairs a
histogram. This histogram should converge to the quantized
pdf, ,

as , where is a candidate quantized pdf or
probability mass function (pmf).

Since the quantized pdf is a function of CIR, CNR, and the
number of interferers, we can built some priori quantized pdf
library models , , in terms of the above pa-
rameters. The priori library models can be obtained from theory
[like (30)], simulation, or field measurements. A CIR estima-
tion can then be derived from matching the measured histogram
with the prestored library models. To choose the modelas-
sociated with thea priori probability that maximizes the
a posterioriprobability is equivalent to
select a model that satisfies [12], [13]

(36)

The definition of implies the conditional joint pdf [13]

(37)

where for model . After some algebraic
manipulations, we can show that (36) is equivalent to [12], [13]

(38)

A number which satisfies (38) implies that the corresponding
model is the MAP model and the associated CIR value is
the desired estimation. If thea priori distribution is
a uniform one, this MAP test becomes a maximum-likelihood
(ML) test. Such a CIR estimation scheme is referred to as MAP
(or ML) histogram matching in the subsequent discussions.

D. Least Squares (LS) Estimators

MAP histogram matching results in the smallest decision
error if the real model is one of the prestoredpriori library
models. From the estimation theory’s point of view, the MAP
estimate is optimal only if one uses the so-called uniform
cost function [16], i.e., the MAP criterion weight all errors
equally, no matter how far from the true value an estimate
is. On the other hand, the minimum mean-squared estimation
error criterion necessitates the evaluation of the conditional
mean , which is very difficult if not
impossible. Intuitively, we would like to select the model
that is the closest to measured pmf. There exist several ways
to measure the “distance” between two pmf’s. Perhaps the
simplest one is the Euclidean distance with which we select the
model that minimizes

(39)

where and represents the probability distribution and
, respectively. An alternative is the weighted Euclidean

distance . While there are many weighting
schemes, the assignment is often used [13]. This
weighting then leads to the weighted least squared (WLS) esti-
mator—one that selects the modelif it minimizes

(40)

Note that as the distribution is not available the MAP
histogram matching scheme, (38), is equivalent to an LS esti-
mator which minimizes the distance

(41)

where is the Kullback
Leibler distance between the two pmf’s and [17]
and is the entropy of .
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E. Other Design Issues

Other than the choice of the distance measure, there are sev-
eral design concerns and possible modifications of the generic
histogram matching algorithm. The first design concern is the
library model size . For a cellular communication system
can be estimated if one knows the traffic statistics, the user lo-
cation distribution, the frequency reuse pattern, the cell size and
the signal propagation environment.is also determined by the
CIR estimation precision requirement. For a fixed CIR uncer-
tainty range the estimation error can be reduced by increasing
the library model size. On the other hand, for a given perfor-
mance specification, can be made smaller if the CIR uncer-
tainty range becomes smaller.

The last observation leads to the conclusion that the CIR
measurement time can be reduced if we further divide the mea-
surement process into an acquisition mode and a tracking mode.
In the acquisition mode, we have to match the measured his-
togramwithall prestoredmodels. In the trackingmode,wecan
concentrate our matching effort on those models within a small
neighborhood of the previous measurement and thus greatly
shorten the search time. Of course this is possible only if we can
assume a smooth CIR variation environment. The acquisition
time can be further reduced if we divide the acquisition mode
into a coarse acquisition phase and a fine acquisition phase. In
the first phase, we select equally-distanced candidate
models for initial histogram matching. When the model with the
highest matching score is found we then enter the second phase
in which models around the survival model are tested. While
the initial phase results ina CIR resolution coarser than the
original library the second phase achieves the same resolution.
The performance will be the same as that of the single-phase
acquisition mode unless we select the wrong model in the initial
phase. The probability of such an erroneous selection is usually
very small as the distance between two neighboring candidate
models in the firstphase is large.Tomakethisprobabilitybecome
even smaller we can add another verification phase to check the
initial estimate. Furthermore, it is easy to see that the two-phase
acquisition process can be extended to an-phase method in
a straightforward manner. The selection of representatives
from the CIR uncertainty region, , is worthy of investigation
as well. However, since we have noa priori information about
the distribution of the true CIR value it is more appropriate to
apply an uniform partition on so that the distance between two
neighboring representative CIR’s is a constant.

Another design concern is the choice of the number of the
quantization levels . It is natural to expect the performance to
be improved by using a finer partition, or equivalently, a larger

. Given , we then have to find the optimal partition of,
, which is unlikely to be a uniform one. It makes sense to

have finer resolutions on the regions that have higher probability
mass. In other words, when building a histogram one should use
a nonuniform partition (quantizer) that satisfies the condition

if .

IV. SIMULATION RESULTS AND DISCUSSIONS

This section provides computer simulation results of the per-
formance of various CIR estimation algorithms and addresses

Fig. 4. Effect of the noise level measurement on the performance of CIR
estimators in an AWGN channel.

Fig. 5. Comparison of two CIR estimators in a Rayleigh fading channel.

some related design issues. Comparison of the performance of
Estimator 2 and the Kozono estimator in AWGN channels is
given in Fig. 4. Obviously, the reliability of Estimator 2 depends
on the accuracy of the thermal noise power estimator. The
mean estimation performance of Estimator 1 deteriorates as CIR
increases while Estimator 2 is always the better of the two unless

is highly unreliable. But the normalized standard deviation,
which is defined by

(42)

of Estimator 2 is larger than that of Estimator 1. The increase
of the estimator variance is due to the introduction of the noise
level estimator in and . Equation (14) shows that is
also a function of while (6) indicates that is not derived
from . The randomness of increase the variance of and
therefore that of Estimator 2.

Fig. 5 compares the performance of Estimators 1 and 3 in
a Rayleigh fading channel. Compared with Estimator 1, Esti-
mator 3 offers amelioration at all but smaller CIR’s. When CIR
is greater than 3 dB and the Doppler shift is small (40 Hz)
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Fig. 6. Performance of the ML histogram matching estimator in a multiple
interferer environment.

Fig. 7. Influence of the number of quantization intervals on the performance
of the ML histogram matching estimator.

Estimator 3 incurs less than 1-dB mean measurement error. Es-
timator 3 also offers a smaller or at least comparable error stan-
dard deviation. In both figures we find that the estimated CIR
is biased when the true CIR is small. This is because there is
nonzero probability that in (7) or in (24) is not
positive. Whenever such an event occurs the associated samples
have to be discarded as outliers and, as a result, a bias of the CIR
estimator is then introduced. If CIR is not too small this prob-
ability is negligible but if the interference power is close to the
signal power (e.g., 0 dB CIR 3 dB), the outlier probability
becomes significant enough to make the bias noticeable.

Fig. 6 demonstrates that the histogram matching method can
be used effectively in a multiple interferer environment. The es-
timator is quite robust for most cases of interest. The mean esti-
mation error is always less than 2.5 dB and is less than 1 dB in
most cases. Moreover, the histogram matching estimator gives
not only the CIR value but also the number of interferers. The
effect of the number of quantization levels is shown in Fig. 7.
These curves indicate that has to be increased to achieve
the same performance for a higher CNR. When CNR20 dB,

or is good enough; increasing has little or no influ-
ence on the performance. But when CNR is 25 dB, is

Fig. 8. Four partitions (quantizers) used in the histogram matching estimator.

Fig. 9. Effect of partition (quantization) of the normalized envelope range; the
ML histogram matching estimator.

not large enough to provide a satisfactory estimation. This is be-
cause at high CNR’s the probability mass is concentrated around
one. Using the same uniform quantizer for all library models we
will obtain pmf’s that are too close to be distinguishable from
each other by the metric .

One way to improve the performance is to increase the
number of quantization levels. As mentioned before, nonuni-
form quantization is another candidate solution. An optimal
quantization strategy requires that the quantizer be a function
of , CIR, and CNR. If there are models in the receiver
library we will need the same number of quantizers. Practical
consideration suggests that we consider only fixed nonuniform
quantizers, i.e., use the same quantizer for all library models.

Fig. 8 shows one uniform quantizer and three nonuniform
quantizers, all have eight quantization levels. Taking advantage
of the fact that the candidate pdf’s are ‘almost’ symmetric with
respect to 1, quantizer C neglects the upper half of the domain

. Quantizer D considers both sides of one but uses the folded
histogram for matching. In other words, the histogram value
of the th interval , , is added to
that of the th interval, , and only the
folded lower half, , is used for matching. The
performance of these four quantizers are presented in Fig. 9. All
three nonuniform quantizers yield smaller mean estimation error
magnitude than that of the uniform quantizer. The reduction of
the associated standard deviation is even much more impressive.
Similar performance improvement, which is not shown because
of space limitation, is found when the pdf in (35) is used for
histogram matching in Rayleigh fading channels. As Quantizer



SU AND CHEN: CIR MEASUREMENT USING MOMENTS OR HISTOGRAMS 1345

Fig. 10. Effect of the sample sizeN on the performance of the ML histogram
matching scheme.

Fig. 11. Performance comparison between single-phase and three-phase
search algorithms.

D has the best overall performance it is used for all the following
simulations.

In Fig. 10, the effect of the sample size is evaluated.
Although a larger sample size yields a more reliable estimate
(smaller mean estimation error and variance) at the cost of
larger storage requirement and longer time delay, we find
500 samples is good enough to render reliable CIR estimates.
Performance curves for the histogram matching method,
unless otherwise specified, are obtained with the same sample
size—500, , and computer runs. With a
data rate of 128 kb/s and sampling rate of 1 sample/bit, each
estimate requires less than 4 ms.

Compared with the moment method, histogram matching re-
sults is more reliable, especially at high CIR’s. The bias in-
troduced by the moment method at small CIR’s is also elimi-
nated. The CIR estimator resolution is 1 dB. In order to increase
the resolution without increasing the computing load, we can
apply a multiple-phase acquisition algorithm similar to that de-
scribed in Section III-E. Performance of a single-phase and a
three-phase estimators are depicted in Fig. 11. The single-phase
estimator uses 31 models with a resolution of 1 dB while the
three-phase estimator has 301 models with a 0.1-dB resolution.

Fig. 12. Simultaneous CIR and CNR estimation using the ML histogram
matching.

The 301 library models are divided into ten groups, each covers
a 3-dB range with the middle one as the representative. At the
end of the initial phase one of the ten representative models
is selected and the second phase then starts testing six models
around it, resulting in a resolution of 0.5 dB. The final phase
searches the five models round the survival of the second phase,
leading to a 0.1-dB resolution. This estimator has to compute
the ML distance of (41) for 19 times while the single-phase es-
timator needs to compute 31 times. The former has a smaller
variance in most cases and both estimates yield almost the same
mean estimation error. Since the performance curves are de-
picted with a CIR step size of 0.5 dB, the standard deviations
of the single-phase search method, which has a 1-dB resolu-
tion, at noninteger CIR points are larger than those at integer
CIR points.

We have assumed that perfect CNR information is available
so far. CNR can be estimated by the method of moments and a
noise power estimator. It can also be derived from ML histogram
matching as a pdf is a function of CNR as well. Using histogram
matching to estimate both CNR and CIR we have to increase the
number of library models though. Fig. 12 depicts some numer-
ical performance examples with 186 prestored library models.
Reliable CIR estimation is obtained and CNR estimation error
is less than 1 dB for all cases.

Finally, let us examine the influence of the distance measure.
Fig. 13 shows that all three distance measures, (39)–(41), render
about the same mean estimation error with the WLS distance
gives a slightly better performance. The WLS test also has
smaller estimator standard deviation in most cases. Another
advantage of the WLS test is that, compared with the ML test,
it requires less computation. From this and some of previous
figures we observe that both the mean estimator error and the
normalized estimator standard deviation tends to increase at low
or high CIR’s. The estimator becomes less reliable at both ends
because the “distances” between various priori library models
become smaller and in some cases it is so small (on the order of
10 10 ) that they are almost indistinguishable. The largest
variance occurs at some high CIR’s but not at the highest one
(30 dB) since we limit our models to lie between 0–30 dB. The
“truncation” makessome large estimation error impossible when
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Fig. 13. Influence of the distance measure on CIR estimation.

the true CIR is close to both limits. The reason why the variance
does not decrease when the true CIR approaches 0 dB is that the
“distance” factor just mentioned dominates the probability of
erroneous events. We also have to be reminded of the fact that the
standard deviation is normalized by the true CIR value.

V. CONCLUSIONS

The necessity of real-time cochannel CIR measurement in a
mobile cellular radio network is well known. For analog sig-
nals, Kozono had suggested a CIR estimation method that can
do without a pilot tone or any other additional supports. His al-
gorithm was derived under the assumption of single interferer
and zero thermal noise. When the underlying assumption is not
valid, Kozono’s algorithm may fail to provide reliable estimates.
The first part of this paper presents several new CIR estimation
algorithms that can be used in fading and multiple interferer en-
vironments. The second part develops CIR estimates using the
concept of histogram matching. These estimators can be used in
both analog and digital cellular systems. Moreover, they do not
need training sequence or eigenvector decomposition and can be
performed in either IF band or baseband. Several variations of
the direct single-phase histogram matching algorithms are pro-
posed. We can reduce the estimation time by using a multireso-
lution, multiphase search algorithm and enhance the estimation
accuracy by using nonuniformly quantized histogram.

Numerical results demonstrate that the proposed algorithms
do outperform Kozono’s method and offer reliable CIR esti-
mations within a reasonably small time span (500 samples, or
equivalently, less than 10 ms for a data rate greater than 50 kb/s).
Of the two classes of algorithms, an algorithm based on his-
togram matching often result in a better CIR estimate. If the
matching metric and the associated quantizer are properly se-
lected, excellent performance can be expected.
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