
Liang and Jen: Computation-Effective 3-D Graphics Rendering Architecture for Embedded Multimedia System 135

COMPUTATION-EFFECTIVE 3-D GRAPHICS RENDERING ARCHITECTURE
FOR EMBEDDED MULTIMEDIA SYSTEM

Bor-Sung Liang and Chein-Wei Jen
Department of Electronics Engineering

National Chiao Tung University, Taiwan, R.O.C.
E-mail: {bsliang,cwjen}Qtwins.ee.nctu.edu.tw

ABSTRACT
A new architecture is proposed to realize 3-0 graphics
rendering for embedded multimedia system. Because only
20% to 83% triangles in original 3-0 object models are
visible by simulation, our architecture is designed to
eliminate the redundant operations on invisible triangles
without image qualiiy loss. It bases on our index
rendering and enhanced deferred lighting approaches,
and its feature is dual pipeline rendering architecture. The
simulation and analysis results show that this architecture
can save up to 63.4% CPU operations compared with
traditional architectures.

1. INTRODUCTION
3-D graphics emerges rapidly in consumer electronics.
Because of vivid visual effect, 3-D graphics plays
important roles in multimedia, entertainment, virtual
reality and user interface. Although lots of approaches are
proposed in PC-based or entertainment platform, 3-D
graphics rendering still seldom appears in embedded
systems, such as PDA, mobile phone, car navigation
system, etc.

One of the major reasons is computing power. Many
embedded systems equip low-tier CPUs. Especially in
portable devices, low-power low-cost requirement limits
the employ of high-performance CPU. Hence 3-D
graphics rendering by pure software suffers fiom low
speed and poor image quality. Previous research tried to
improve this by modified API [l], and 10k polygods was
reported without lighting, shading and texture mapping.
The speed and image quality is hard to support fantasy 3-
D graphics applications.

On the other hand, the approach of 3-D processor [2][3]
costs too much to be realized in embedded system.
Because 3-D graphics rendering is computation-intensive,
and high image quality requirement of 3-D graphics
applications, commercial 3-D processors are designed to

This work was supported by National Science Council, Taiwan, R.O.C.
under Grant NSC-89-2215-E009-052

achieve high performance. The performance-driven
architecture desires high computation power, large
memory size and huge bandwidth. Those factors are
bottlenecks to realize 3-D graphics rendering in embedded
system.

Hence, the 3-D graphics rendering approach for embedded
system is desired, and it can be utilized in lots of
consumer electronics devices, such as set-top box, car
navigation system, PDA, and mobile phone. In our
previous researches, we proposed index rendering [4] and
deferred lighting [5] approaches. These approaches can
reduce redundant operations on hidden pixels and lighting
operations on invisible triangles. These approaches can be
applied in embedded system. Moreover, we further extend
deferred lighting approach to eliminate the
transformations on invisible triangles in this paper.
Because transformations are huge burden in geometry
subsystem, the enhanced version of deferred lighting can
save more operations. Because of these design issues, the
architecture of traditional rendering pipeline is divided
into two pipelines, and this new architecture can reduce
lots of unnecessary operations without image quality loss.

The organization of this paper is as following: In Section 2,
we first review 3-D graphics pipeline, and show the
strategies to reduce operations. Then, we introduce our
new architecture in embedded system in Section 3.
Because of index rendering and enhanced deferred
lighting, this architecture has the feature of two separated
pipeline. In Section 4 we present simulation and analysis
of this architectures. Finally, we conclude this paper in
Section 5 .

2.3-D GRAPHICS RENDERING PIPELINE
3-D graphics rendering pipeline generally divided into two
parts: geometric subsystem and raster subsystem. The
geometry subsystem transforms vertices, and performs
lighting and perspective transformation. Raster subsystem
receives output of geometry subsystem, and renders
transformed polygons for display. Those two subsystems
are pipelined for high throughput in general. Fig.1 is an
example of traditional 3-D graphics rendering pipeline.

Original manuscript received June 19, 2000 0098 3063/00 $10.00 2000 IEEE

136 IEEE Transactions on Consumer Electronics, Vol. 46, No. 3, AUGUST 2000

Perspective
Setup

[4x4 1

Vertex
Cmrd.

Normal
+ Rasterize 3

I I I
Geometry Subsystem Raster Subsystem

Fig. 1 Traditional 3-D Graphics Rendering Pipeline

2.1 Viewing and Perspective Transformation graphics rendering often uses Phong lighting model [7] , as
shown in following equation. Lighting calculation is

Transformations are major operations in geometric complex and related to exponentiation. Besides, each
subsystem. It can be handled by 4x4 matrix operations. vector needs to be normalized before applying in this
The general form is: equation, and normalization requires calculation of

reciprocal square root. Hence lighting operation is very
r u b c d l computation-intensive.

Generally speaking, the CPU in embedded system handles
matrix transformations. Because the CPU often has no
extra hardware for accumulation operations of matrix
transform, more zero terms in 4x4 matrix means less
multiplication calculations in CPU operations. In 3-D
graphics rendering, the essential transformations are
viewing and perspective. The viewing transformation
transforms objects ffom the world space to the view space.
The perspective transformations from the view space to
the projection space, and then maps to screen coordinates.

In viewing transformation, the CPU needs 12
multiplication and 9 addition instructions perform viewing
transformation. The equation is as following:

On the other hand, in perspective transformation, the
equation of perspective transformation is assumed as

I = 1, X Ka+[Ij X Kd (L * N)+Ii X Ks (H * N)n]
Where
I,
4
L
N
H
V
n
K,,Kd,Ks : coefficients to model the characteristic ofthe material

(4)

: intensity of the ambient light
: intensity of the light source
: the unit vector from pixel to the light source
: the normal vector of the pixel
= the unit vector of (L+v)/2
: the vector to the viewer
: gloss to the model high light

In order to simplification, we can limit the gloss factor n
into 2's exponentiation: 1,2,4,8,and 16. Hence the
exponentiation can be realized by 4 multiplication
instructions. IaX K, , I iXKd and I iXKs can be pre-
computed to avoid redundant operations in the runtime.
However, vector normalization can not be pre-computed.
For each lighting, vector L, Nand H should be normalized
before be applied into this formula. To normalize a vector,
1 reciprocal radical, 6 multiplication and 2 addition
instructions are necessary. Therefore, the CPU needs to
perform 3 reciprocal radical, 34 multiplication and 19
addition instructions for each lighting operation.

2.3 Data Setup

following [6].- In h i s transformation, the CPU only needs
5 multiplication and 1 addition instructions. setup is the operation to prepare the necessary

information for further rasterization. In the Setup
operation, two kinds of data are generated for further
rasterization. The first is the data related to shape

(3) information, while the second is related to color
information.

I x y = w l 5 O O c e jl = [x' y' I' wq

2.2 Lighting

Lighting is an essential procedure to calculate illumination
on assigned position by lighting model. Nowadays 3-D

2.3.1 Setup for shape information

Because the triangles are described by vertices in
geometry subsystem, the setup of shape information is to
help scan-converting triangles into a group of pixels. The

Liang and Jen: Computation-Effective 3-D Graphics Rendering Architecture for Embedded Multimedia System 131

locates, we can simply apply the (x,y) coordinates into
E,,(x,y), and see the result value greater or less then zero.
For three edges in a triangle, the pixels are inside triangles
only when all edge functions are positive or negative, as
shown in Fig. 3(b) and Fig. 3(c). Because the all-positive
or all-negative result depends on the direction of three
edge vectors, this algorithm can also perform back-face

(X I , Y l)

x2. Y2)

(X3, Y3)

(c) culling in runtime.

DF (4 (b)

Fig2 Triangle Shape Generation

scan-convert method affects the work of setup for shape
information. In traditional method, the triangles are
decomposed into two scanline-aligned parts, and each part
can be described by left-side edge, right-side edge,
maximal and minimal y-coordinates boundaries, as shown
in Fig. 2(a) and (b). Then, the Rasterize operation uses the
information to decomposed two scanline-aligned parts
into a group of pixels. As shown in Fig. 2(c), the grid
means the pixel array in screen coordinates, and the gray-
colored grids mean the pixels covered by the triangle in
Fig 2(a). Because this method of setup can simplify the
data transfer between geometry subsystem and raster
subsystem, lots 3-D graphics rendering hardware [8]
utilize this method for shape information setup.

This method works will in PC-based platform, but the
description of left-side and right-side edge is a problem in
embedded system. The edges are usually described by
their edge slopes, and division operations are needed to
generate the slopes. Because most embedded systems
employ low-tier CPUs, division operations for edge setup
are large burden. On the other hand, this method
decomposes a triangle into two scanline-aligned ones, and
hence other triangle information is duplicated for data
transmission. It may cause bandwidth problems.

In embedded system, Pineda's algorithm [9] is more
suitable, because its algorithm is all by integer and not
needed to decompose triangle. This algorithm represents
each edge of a triangle by a linear edge function. The edge
function can divide a plan into two parts. As shown in
Fig.3(a), two vertices (xl,yl) (x,,y,) can define a linear
equation E,,(x,y). To detect which part does a pixel (x,y)

Although the setup needs to setup three edge functions in
Pineda's algorithm, we do not need to find out the real
parameters in E(x,y). Because two end-point vertices are
on the edge, the edge function must be zero on the vertices.
For example, for an edge function E,,(x,y) defined by

be zero. For other pixel (xk,yt), the edge function
becomes:

vertices (xl,yl) and (x2,y2), E12(xl,~,) and El,(xZ,~,) must

E12(xk,yk) = ~ x ~ ~ x l ~ d ~ l ~ ~ ~ ~ k ~ ~ ~ ~ d x l Z (5)

dY,z= Y2 - YI

dx,2= x2 - X I

Therefore, the setup and rasterizing triangle shape can be
all integer operations. Although Pineda's algorithm is
designed for parallel rendering, it is also suitable in 3-0
graphics rendering in embedded system.

2.3.2 Setup for color information

For rasterizing color information, Gouraud shading [lo] is
a widespread method to generate acceptable image quality
without huge computation. It applies lighting only on
vertices of each triangle, and then shades each pixel inside
triangle by interpolating color on vertices. Hence it can
render polygons with smooth color gradation. In
traditional method, the color interpolation is handled
along the edge[S]. This way is related to traditional
triangle shape generation, but makes color interpolation
complex. Generating triangle shape by Pineda's algorithm,
we can treat color interpolation by plain equation. This
method is developed for parallel rendering in pixel-planes
[l l] . Because of linear interpolation, the intensity of each
color can be generated by the linear expression, Ax + By +
C. We can treat the color intensity (R, G or B) as the third

(4 (b) (c)
Fig.3 Triangle Shape Generation by Pineda's Algorithm

138 lEEE Transactions on Consumer Electronics, Vol. 46, No. 3, AUGUST 2000

Color Value 4 (xi. v i .R i)

X

Y
Fig.4 Color Value Plane

dimension associated by screen coordinates. As shown in
Fig. 4, we take R value as example. The lighting operation
gives the color intensity on three vertices, and hence a
plain is defined in this space:

dWdx = Ka * [(R2-R1) * dy,, - (RI-R,) * dy,,] (6)
dWdy = Ka * [(R,-R,) * dx,, - (R2-RI) * dx,,]
Ka = 1 / (dx,, * dy,, - dx,, * dy,,)
dx,,=x,-x, dx,,=x,-x,
dY,z=Yz-Yi ~Y, ,=Y~-YZ

The intensity of R in (xl,yl) is known as RI, therefore the
R value in (xk,yk) is:

R(xd'd = RI +(xk-x,)dWdx+(Yk-Yi)dR/dy (7)

operations, while after Rasterize are pixel-level operations.
Shading operation colors each pixel for display, and
texture mapping is also applied here. Visibility
comparison determines the visibility of each pixel, and Z-
test algorithm is the most common one.

In order to eliminate redundant operations on invisible
triangles and invisible pixels, we utilize index rendering
and deferred lighting to realize raster subsystem. We will
discuss more in following section.

3. THE PROPOSED ARCHITECTURE
In this paper, we propose a new architecture for 3-D
graphics rendering in embedded system. As shown in
Fig.5, the chipset, Rasterizer Controller (RC) and Color
Shader (CS), realizes the raster subsystem and setup,
while the CPU handles the geometry subsystem. Two
blocks of memory are utilized for data storage. One is for
original object models, and can be realized by ROM or
RAM, which depends on the applications. This database is
named GTdb (Global Triangle Database). The another
memory block is for temporal storage in 3-D graphics
rendering, therefore it should be realized by RAM. The
hardware architecture is based on our index rendering [4]
and enhanced version of deferred lighting[5] approaches.

The value in Eq. 6 is calculated in setup stage. Because
the Ku term is only related to the vector of vertices, and it
is the same in different color component R, G, B. Hence,
only one division is necessary for each triangle and other
Color infOrmatiOn can be generated by m U l t @ l k U t i O n and
addition operations.

2.4 Raster Subsystem

In conventional rendering Pipeline, raster subsystem
handles rasterization. Rasterization consists of three
subtasks: scan conversion, visibility comparison and
shading [121. scan COnversion decouPles PolYgon into a
group of pixels. It iS handled in the raSteriZe block in Fig. 1.
Hence, the operations before Rasterize are triangle-level

3.1 Index Rendering

Index rendering is an approach that can avoid redundant
operations on invisible pixels. It is also the essential
architecture to realize deferred lighting. The major
concepts of index rendering are separating triangle/pixel
data to explore parallelism, and rearranging operations for
optimal data flow.

Traditional rendering architecture is a long pipeline, and
therefore triangles and pixels cany their whole data to
pass all pipeline In fact, most of pipeline stages
only relates to some parts of data. The other parts of data
are only stored-and-forwarded, On the other hand, the
nature of is fixed data flow, and hence limits the

Fig. 5 3-D Graphics Rendering System for Embedded System

Liang and Jen: Computation-Effective 3-D Graphics Rendering Architecture for Embedded Multimedia System 139

optimization of operation rendering.

The relationship of Z-test and shading is an example to
show limitation of traditional rendering pipeline. Most
shading operations relate to triangle information, and
triangles must be scan-converted into groups of pixels
before Z-test. Hence, shading operation applies on all
pixels in traditional rendering pipeline, even though the
pixels are invisible (fail in Z-test). In previous researches,
Deferred Shading [13][14][15][16] can improve this
problem. It defers the shading operations after Z-test, but
each pixel needs to carry a copy of shading-related
information. It leads to bandwidth problem, and hence not
suitable for embedded system.

In our approach, index rendering, we utilize index to
separate triangle/pixel data to explore parallelism. The
index is a serial number of each polygon. We use this
index to denote the information and pixels fiom this
parent polygon. In the rendering pipeline, the information
i s stored in database, and each pixel only carries its index
number to pass the long rendering pipeline. If one part of
information is necessary in a pipeline operation, we can
fetch the database on demand.

In order to eliminate redundant shading operations on
invisible pixels, the approach of index rendering stores
shading information in TdbS (Triangle Database for
Shading), as shown in Fig.5. After Z-test, the index
numbers of visible pixels are stored into a screen-size
buffer, named I-buffer, as shown in Fig. 6. Then, we can
calculate color values of each pixel from the Eq. 7 to
generate the final image.

In the Fig.5, CS handles the shading operations, while RC
handles the other operations in raster subsystem and setup.
The job of RC is to generate the index pattern in I-buffer
and data in TdbS, and the CS utilizes the data in I-buffer
and TdbS to generate the final result. Because the I-buffer
and TdbS keep enough information to generate the final
result, hence frame buffer can be optional if the CS can
generate pixels in screen scan-out rate.

3.2 Enhanced Deferred Lighting

More than eliminating redundant operations on invisible
pixels, our deferred lighting approach can avoid redundant
operations on invisible triangles. This approach defers
lighting calculation after Z-test. If all pixels of a triangle
fail in Z-test, it implies that this triangle is invisible, hence
we can eliminate lighting calculation on invisible polygon.
This idea is straightforward but hardly to be realized in
traditional rendering pipeline. With the approach of index
rendering, this idea can be realized in 3-D graphics
rendering pipeline.

ndex-3 Index=2 Index=l
...
... (Image in view port)

I ~ Buffer
Fig6 Index pattern in I-buffer

This approach was proposed in 151. In this paper, we
further extend deferred lighting approach to eliminate the
transformations on invisible triangles. In order to do this,
the triangle information must be separated before
operations. The triangle information related to geometry,
such as the (x,y,z) coordinates, goes first to define the
shape of this triangle, and then to be scan-converted into a
group of pixels. After all pixel are Z-tested, we can h o w
whether this triangle is hidden. If any pixel of this triangle
passes the Z-test, the triangle information related to
shading enters the rendering pipeline. After setup
operation, the shading information is stored in TdbS.
Finally, the result image is generated by I-buffer and
TdbS.

3.3 Dual Pipeline Rendering Architecture

According to index rendering and enhanced deferred
lighting approaches, the 3-D graphics rendering hardware
becomes dual pipeline architecture. Fig. 7 shows the
rendering pipeline. The Fig.7(a) shows traditional one,
while Fig. 7(b) our dual pipeline architecture. The major
difference is that we divide the 3-D rendering pipeline into
two parallel pipelines. The ASIC chip handles the
operations with gray shaded area, and the CPU of
embedded system handles the other area.

To render a triangle in the dual pipeline architecture, the
upper pipeline goes first. The upper pipeline needs the
input of triangle information related to geometry, which
are the coordinates of vertices. After all pixels of this
triangle are Z-tested, a signal is sent to the CPU to denote
whether this triangle is visible or not. If this triangle is
invisible, the other part of triangle information is
discarded. If this triangle is visible, the other part of
triangle information enters the second pipeline. Because
the Phong lighting model is applied, hence the triangle
information related to shading is the normal vectors on the
vertices of this triangle.

In the dual pipeline architecture, we can find that the setup
is divided into two parts. The setup in the upper pipeline
handles the shape generation, and setup in the second
pipeline helps the color generation. The shared terms of

740 IEEE Transactions on Consumer Electronics, Vol. 46, No. 3, AUGUST 2000

Vertex
coord
Namal
Vectors

..............................

Fig.7 3-D Graphics Rendering Pipeline (a) Traditional (b) Proposed
(The blocks in gray area are handled by rendering hardware)

two setup blocks are the vectors of vertices: dx,,, dy,,,
dx,, and dy2, . Because the vectors are appeared in both
Eq.5 and Eq.6, the vectors can be reused to reduce
operations.

4. SIMULATION AND ANALYSIS
The performances of index rendering and deferred lighting
have been analyzed and simulated [4][5]. Hence, we will
demonstrate the performance of the enhanced version of
deferred lighting. Compared with our previous deferred
lighting approach, enhanced deferred lighting can further
eliminates the redundant transformations on invisible
triangles. Because the CPU handles this part in embedded
system, we focus on the reduction in the CPU's
operations.

The Java [171 and Mesa [181 were utilized to develop our
simulation environment and two 3-D object models,
Dolphins and Castle, are applied, as shown in Fig.8 [19].
Their original triangle numbers are listed in Table 1.
Because the Pineda's algorithm is applied, the triangles are

TYPE 11, which is a straightforward method to realize
traditional architecture but wastes computation power.
After simulation in resolution 320x200, we fmd the
triangle numbers that can pass the back-face culling and
be visible in final image. We denote the original triangle
number as (a), the triangle number pass the back-face
culling as (b), and visible triangle number as (c). The
visible ratio equals the result of that visible triangle
number (c) divides the triangle number that should be

Table 1. Triangle Number in Each Model by Simulation

'1 Compared with lraditional archi. TYPE I (Back-faced culling before lighting)
'2 Compared with traditional archi. TYPE II (Back-faced culling before triangle setup)

- -

(a) (b)
whick is a better way to realize traditional architecture.
The rendering pipeline performs back-face culling after
lighting before triangle setup as traditional architecture Fig. 8 Simulation Models (a) Dolphins (b) Castle [19]

Liang and Jen: Computation-Effective 3-D Graphics Rendering Architecture for Embedded Multimedia System 741

(a) x 3

(a) x 3

Transform
Perspective
Transform

Table 2. Numbers of Operations in Different Architectures

(a) x 3 (a) x 3 (a) x 3 (a) x 3 (c) x 3

- (a)x3 - (a) x 3 -
Lighting I - I (b) x 3) - I(a)x3(- I (c)x3 I

lighted in traditional architecture, i.e. (c)/(b) in TYPE I,
and (c)/(a) in TYPE 11.

Compared with original models, the results show that only
20% triangles in Castle and 40% triangles in Dolphins are
visible. The results show that both traditional architecture
TYPE I and TYPE I1 waste lots of unnecessary lighting
and transformation operations on invisible triangles. The
proportions are up to 80% in Castle model and 60% in
Dolphins model. Although back-face culling technique is
utilized in TYPE I, there are still lots of invisible triangles
are lighted and transformed. We can find that the number
in column (b) still larger than visible triangle numbers in
column (c). The ratios of column (c) and (b) are 44% in
Castle model and 83% in Dolphins model. It means that
only 44% and 83% lighting and transform operations are
needed in TYPE I, and others are unnecessary. The
reduction is more significant in the Casfle model. Because
the Dolphins model illustrates the shape of animal, and its
model is simple and convex. Hence there are fewer hidden
triangle, especially after back-face culled. On the other
hand, the Castle model is combined by lots of walls, and
its walls cover each other. Therefore many triangles cover
each other, and visible triangle numbers are relatively low.

In order to analyze total CPU operations, the instruction
numbers of each operation are evaluated according to
Direct3D transform pipeline [6] , and the numbers of
desired CPU instructions are illustrated in Fi12.9. From the

triangle numbers, those refer to Table 1. The vertex
coordinates and normal vectors are handled separately for
analysis. The vertex coordinates are the information to
generate triangle shape. Before applying setup for shape
information, which we described in section 2.3.1, the
viewing and perspective transformations are necessary in
order to generate correct shape on Screen. The transforms
on vertex coordinates are essential and not reducible.
Hence, in Table 2, the operation numbers on vertex
coordinates all equal to three times of original triangle
numbers, (a) x 3, no matter which architecture is applied.
On the other hand, the operation numbers on normal
vectors very depend on architecture. In order to perform
lighting operations on each vertex, the normal vectors are
necessary information. In traditional architecture without
back-face culling (TYPE 11), the number of lighting equals
three times of original triangle numbers, (a) x 3. In
traditional architecture with back-face culling (TYPE I),
the number equals (b) x 3. In our proposed architecture,
the number becomes (c) x 3. Due to the data in Table 1,
we can find the improvement on reducing lighting
operation. Besides, due to enhanced deferred lighting, the
operation number of viewing transform also reduced into
(c) x 3 on normal vectors.

Then, the CPU costs are analyzed to generate the 3-D
graphics. Table 3 lists the analysis results. For example, if
we need to know the multiplication operation count (MUL)
to generate Dolphins model in traditional architecture
TYPE I, we can calculate the number from data in Tablel,
2 and Fig. 9. From Table 2, in order to generate 3-D model
in traditional architecture TYPE I, the CPU need to handle
(a) x 3 viewing transforms, (a) x 3 perspective transforms
for vertex coordinates, and (a) x 3 viewing transforms, (b)
x 3 lighting operations for normal vectors. Referred to
Table 1, we know that in Dolphins model, (a) equals 3000
triangles, while (b) equals 1451. Referred to Fig. 9, we
know there are 12 multiplication operations in viewing

CPU Instructions
per Operation -

basis of Fig.9, we can analyze the CPU costs for
transformations and lighting. On the three types of
architecture: traditional architecture Type I, Type 11, and
proposed architecture. Because of no specified CPU and
platform, we reasonably assume the costs of each CPU
instructions as a basis to measure performance. The cost
of addition instruction is 1, multiplication instruction is 2,
and reciprocal radical instruction is 16. Because the

of triangle, the number of operations equals to three times
of related triangle number. Triangle strip and fan are not
discussed here for fair comparison.

Table 2 shows the numbers of each operation in different
architectures. The (a), (b) and (c) denote the related

0 0 0
=

l [o o c * ,,I ii [~ y’ .x ~,

I = lax ~ ~ + [z ~ x K~ (L . N)+I~ x K~ (H . N)“I

O O d O

lighting and transform operations are applied on vertices

Addillon 1 reciprocal radical

V o x K o) (I iXKi l) (It x h s) CBn be p*mmpuled
L N.HaDYedoR H = (L + V) n
L N H erealyl nonallled lnlhl3 formula

All R, G and B value^ am generated

Fig 9 CPU Instructions for Each Operations

742 IEEE Transactions on Consumer Electronics, Vol. 46, No. 3, AUGUST 2000

transform, 5 in perspective transform and 34 in lighting.
Therefore, the operation count of MUL is:

f 3OOOx3x12+ 300Ox3x5t 3OOOx3x12+ 1451x3~ 34 I = 409002 18)
~I

Vlewng Perspect,ie Vt% ng tight ng Total
Transforms Transforms Tianstorms for opts

fC4 FC4 for NMrnal Of

vertex Vertex Normal vectors MUL
Cccid. Coord Vectors

Hence, we know the number of MUL is 409K for
Dolphins model in traditional architecture TYPE I. By the
same way, we can also know the addition number (ADD)
is 254K, and the reciprocal radical operation number
(Rec.Rad.) is 13K. After multiplied assumed instruction
cost, we can calculate the equivalent CPU cost is (409K x
2 +254Kx 1 + 13Kx 16) = 128lK.

After all equivalent CPU costs are calculated, we can
compare the cost of three architectures in different models.
Compared with traditional architecture TYPE I, we can
find that the proposed architecture only needs 78.4%
equivalent CPU cost in Dolphins model, and 56.1% in
Castle model to generate the same results. In comparison
with traditional architecture TYPE 11, the ratio becomes
more significant. The proposed architecture only needs
52.6% equivalent CPU cost in Dolphins model, and 36.6%
in Castle model. Hence, in traditional architecture TYPE
11, up to 100%-36.6% = 63.4% CPU operations in Castle
model are redundant.

5. CONCLUSION
A new architecture is proposed in this paper for
computation-effective 3-D graphics rendering in
embedded multimedia system. It bases on our index
rendering and enhanced version of deferred lighting
approaches. Comparing with traditional architecture, its
feature is dual pipeline rendering architecture. This

architecture is computation-effective because it can render
3-D graphics image by fewer operations without image
quality loss. We achieve this goal by eliminating the
redundant operations on hidden pixels and invisible
triangles.

By simulation and analysis in resolution 320x200, the
result shows our dual pipeline architecture can reduce
equivalent CPU cost into 56.1% - 78.4% compared with
traditional architecture TYPE I, and into 36.6% - 52.6%
compared with traditional architecture TYPE 11. Hence, by
analysis our dual pipeline design can save up to 63.4%
CPU cost, and is very suitable for low cost embedded
multimedia system.

REFERENCE
[l] K.Yoshida, T. Sakamoto and T.Hase, "A 3D Graphics

Library for 32-bit Microprocessors for Embedded
systems," IEEE Tran. Consumer Electronics, vol. 44,

[2] J. Torborg and J.T. Kajiya, "Talisman: commodity
realtime 3D graphics for the PC", SIGGRAPH '96, pp.

[3] J. McCormack, R. McNamara, C.Gianos, L.Seiler, N.Jouppi
and K.Correl1, "Neon: a single-chip 3D workstation graphics
accelerator," Proc. Workshop on Graphics Hardware, pp.

[4] B.-S.Liang, Y-C. Lee, W.-C. Yeh, and C.-W. Jen, "Index
rendering: A hardware-efficient architecture for 3-D
graphics," Proc. VLSUCAD Symposium, Taiwan, pp. 137-140,
1999.

[5] B.-S. Liang, W.-C. Yeh, Y-C. Lee, and C.-W. Jen, "Deferred
Lighting: A Computation-Efficient Approach for Real-time
3-D Graphics, Proc. IEEE International Symposium on
Circuits and Systems (ISCAS), p.p. IV.657-IV.660, Geneva,
Switzerland, May 2000.

[6] Microsoft, "The Direct3D Transformation Pipeline",
http://msdn.microsof.com/lihrary/backgrnd/html/d3dx~m6.
htm, Apr. 1998

[7] B.T.Phong, "Illumination for computer generated pictures,"

NO.3, pp. 1107-1114, Aug. 1998

353-363, 1996.

123-132, 1998.

Table 3. CPU Cost for Geometry Transform and Lighting

opts 1885K 1172K 58K 2669K 1610K 127K 1110K 661K 25K
Castle cost 2 I 1 I 16 2 I 1 I 16 2 I 1 I 16 56.1% 36.6%

5867K 8982K 3289K Equiv.
cost

'I Ratio of CPU cost = [Equal cost in Proposed Archilecture) I [Equal cost in Traditional Architecture TYPE I)
'2 Ratio of CPU cost = (Equal MSI in Proposed Architecture) I (Equal cost in Traditional Architecture TYPE II)
'3 Assume the cost of CPU instruction: Add = 1, Mu1 =2 , Reciprocal radical = 16

Comm ofrhe ACM, 18(6), pp, 311-317, Jun. 1975.
[8] 3Dlabs,GLINT 300SX Programmer's Reference Manual,

p.p.42, Oct., 1994.
[9] J. Pineda ,"A parallel algorithm for polygon rasterization,"

[lo] H. Gouraud, "Continuous shading of curved surfaces," IEEE
Transactions on Computer, V0l.C-20, No.6, pp. 623-629, Jun.
1975.

[ll] H.Fuchs, et al., "Fast spheres, shadows, textures,
transparencies, and image enhancements in Pixel-Planes,''

[I21 J. Foley, A. van Dam, S.Feiner and J.Hughes , Computer
Graphics: Principles and Practice, 2nd Ed., Addison-Wesley,
1990.

[13] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt,
"The Triangle Processor and Normal Vector Shader: A VLSI
System for High Performance Graphics", SIGGRAPH '88 ,

[14] B.-0. Schneider and U. Claussen, "PROOF: An Architecture
for Rendering in Object Space", Advances in Computer
Graphics Hardware 111, p.p.121-135, Springer-Verlag, 1991.

[15] S. Molnar, J. Eyles, and J. Poulton, "PixelFlow: high-
speed rendering using image composition", p.p.23 1 -
240, SIGGRAPH, 1992.

[I61 J. Eyles, S. Molnar, J. Poulton,T.Greer, A.Lastra, N.England
and L.Westover, "PixelFlow: the Realization", Proceedings
of the 1997 EUROGRAPHICS/ SIGGRAPH workshop on
Graphics hardware, Pages 57- 68 , 1997.

[17] Sun Microsystems, "JAVATM development kit version 1.1
software", http://java.sun.com/ products/jdk/l. I/, 1999.

[IS] B. Paul, "Mesa - The free OpenGL work-alike library",
http://www.mesa3d.org/Mesd Mesa.html, Feb. 1999.

1191 Silicon Graphics Incorporated, "OpenGL - more samples:
Wavefrout .OBJ file format model readedwriter
manipulator", OpenGL Developer Tools, http://trant.sgi.com/
opengl/examples/more-sampledmore-samples.htm1, 1997.

SIGGRAPH'88, P.P. 17-20, 1988

SIGGRAPH '85, Vol. 19,No. 3, pp. Ill-120, Jul. 1985.

p,p, 21-30, 1988.

Bor-Sung Liang was born in
Kaohsiung, Taiwan, R.O.C. in
1972. He received the B.S. degree
in 1994 and M.S. degree in 1996
fiom National Chiao Tung
University, Taiwan. He is a Ph.D
candidate now in Department of
Electronics Engineering, National
Chiao Tung University, Taiwan,
R.O.C.
His major research interests

include VLSI design, 3D graphics rendering architecture

Chein-Wei Jen was born in
Shanghai, China, in 1948. He
received the B.S. degree from
National Chiao Tung University
in 1970, the M.S. degree from
Stanford Uni-versity in 1977, and
the Ph.D. degree from National
Chiao Tung University in 1983.
He is a professor in the
Department of Electronics
Engineering and the Institute of

Electronics, National Chiao Tung-University, Hsinchu,
Taiwan. From 1985 to 1986 he was a Visiting Researcher
at the University of Southem Califomia, USA. His current
research interests include VLSI signal processing, VLSI
architecture design, design automation. He is a member of
IEEE and Phi Tau Phi.

Liang and Jen: Computation-Effective 3-D Graphics Rendering Architecture for Embedded Multimedia System 743

and Internet architecture.

http://java.sun.com
http://www.mesa3d.org/Mesd
http://trant.sgi.com

