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ABSTRACT 
A new architecture is proposed to realize 3-0 graphics 
rendering for embedded multimedia system. Because only 
20% to 83% triangles in original 3-0 object models are 
visible by simulation, our architecture is designed to 
eliminate the redundant operations on invisible triangles 
without image qualiiy loss. It bases on our index 
rendering and enhanced deferred lighting approaches, 
and its feature is dual pipeline rendering architecture. The 
simulation and analysis results show that this architecture 
can save up to 63.4% CPU operations compared with 
traditional architectures. 

1. INTRODUCTION 
3-D graphics emerges rapidly in consumer electronics. 
Because of vivid visual effect, 3-D graphics plays 
important roles in multimedia, entertainment, virtual 
reality and user interface. Although lots of approaches are 
proposed in PC-based or entertainment platform, 3-D 
graphics rendering still seldom appears in embedded 
systems, such as PDA, mobile phone, car navigation 
system, etc. 

One of the major reasons is computing power. Many 
embedded systems equip low-tier CPUs. Especially in 
portable devices, low-power low-cost requirement limits 
the employ of high-performance CPU. Hence 3-D 
graphics rendering by pure software suffers fiom low 
speed and poor image quality. Previous research tried to 
improve this by modified API [l], and 10k polygods was 
reported without lighting, shading and texture mapping. 
The speed and image quality is hard to support fantasy 3- 
D graphics applications. 

On the other hand, the approach of 3-D processor [2][3] 
costs too much to be realized in embedded system. 
Because 3-D graphics rendering is computation-intensive, 
and high image quality requirement of 3-D graphics 
applications, commercial 3-D processors are designed to 
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achieve high performance. The performance-driven 
architecture desires high computation power, large 
memory size and huge bandwidth. Those factors are 
bottlenecks to realize 3-D graphics rendering in embedded 
system. 

Hence, the 3-D graphics rendering approach for embedded 
system is desired, and it can be utilized in lots of 
consumer electronics devices, such as set-top box, car 
navigation system, PDA, and mobile phone. In our 
previous researches, we proposed index rendering [4] and 
deferred lighting [5] approaches. These approaches can 
reduce redundant operations on hidden pixels and lighting 
operations on invisible triangles. These approaches can be 
applied in embedded system. Moreover, we further extend 
deferred lighting approach to eliminate the 
transformations on invisible triangles in this paper. 
Because transformations are huge burden in geometry 
subsystem, the enhanced version of deferred lighting can 
save more operations. Because of these design issues, the 
architecture of traditional rendering pipeline is divided 
into two pipelines, and this new architecture can reduce 
lots of unnecessary operations without image quality loss. 

The organization of this paper is as following: In Section 2, 
we first review 3-D graphics pipeline, and show the 
strategies to reduce operations. Then, we introduce our 
new architecture in embedded system in Section 3. 
Because of index rendering and enhanced deferred 
lighting, this architecture has the feature of two separated 
pipeline. In Section 4 we present simulation and analysis 
of this architectures. Finally, we conclude this paper in 
Section 5 .  

2.3-D GRAPHICS RENDERING PIPELINE 
3-D graphics rendering pipeline generally divided into two 
parts: geometric subsystem and raster subsystem. The 
geometry subsystem transforms vertices, and performs 
lighting and perspective transformation. Raster subsystem 
receives output of geometry subsystem, and renders 
transformed polygons for display. Those two subsystems 
are pipelined for high throughput in general. Fig.1 is an 
example of traditional 3-D graphics rendering pipeline. 
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Fig. 1 Traditional 3-D Graphics Rendering Pipeline 

2.1 Viewing and Perspective Transformation graphics rendering often uses Phong lighting model [7] ,  as 
shown in following equation. Lighting calculation is 

Transformations are major operations in geometric complex and related to exponentiation. Besides, each 
subsystem. It can be handled by 4x4 matrix operations. vector needs to be normalized before applying in this 
The general form is: equation, and normalization requires calculation of 

reciprocal square root. Hence lighting operation is very 
r u  b c d l  computation-intensive. 

Generally speaking, the CPU in embedded system handles 
matrix transformations. Because the CPU often has no 
extra hardware for accumulation operations of matrix 
transform, more zero terms in 4x4 matrix means less 
multiplication calculations in CPU operations. In 3-D 
graphics rendering, the essential transformations are 
viewing and perspective. The viewing transformation 
transforms objects ffom the world space to the view space. 
The perspective transformations from the view space to 
the projection space, and then maps to screen coordinates. 

In viewing transformation, the CPU needs 12 
multiplication and 9 addition instructions perform viewing 
transformation. The equation is as following: 

On the other hand, in perspective transformation, the 
equation of perspective transformation is assumed as 

I = 1, X Ka+[Ij X Kd (L * N )+Ii X Ks (H * N )n] 
Where 
I, 
4 
L 
N 
H 
V 
n 
K,,Kd,Ks : coefficients to model the characteristic ofthe material 

(4) 

: intensity of the ambient light 
: intensity of the light source 
: the unit vector from pixel to the light source 
: the normal vector of the pixel 
= the unit vector of (L+v)/2 
: the vector to the viewer 
: gloss to the model high light 

In order to simplification, we can limit the gloss factor n 
into 2's exponentiation: 1,2,4,8,and 16. Hence the 
exponentiation can be realized by 4 multiplication 
instructions. IaX K, , I iXKd  and I iXKs  can be pre- 
computed to avoid redundant operations in the runtime. 
However, vector normalization can not be pre-computed. 
For each lighting, vector L, Nand H should be normalized 
before be applied into this formula. To normalize a vector, 
1 reciprocal radical, 6 multiplication and 2 addition 
instructions are necessary. Therefore, the CPU needs to 
perform 3 reciprocal radical, 34 multiplication and 19 
addition instructions for each lighting operation. 

2.3 Data Setup 

following [6].- In h i s  transformation, the CPU only needs 
5 multiplication and 1 addition instructions. setup is the operation to prepare the necessary 

information for further rasterization. In the Setup 
operation, two kinds of data are generated for further 
rasterization. The first is the data related to shape 

(3) information, while the second is related to color 
information. 

I x y = w l  5 O O c e  jl = [x' y' I' wq 

2.2 Lighting 

Lighting is an essential procedure to calculate illumination 
on assigned position by lighting model. Nowadays 3-D 

2.3.1 Setup for shape information 

Because the triangles are described by vertices in 
geometry subsystem, the setup of shape information is to 
help scan-converting triangles into a group of pixels. The 
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locates, we can simply apply the (x,y) coordinates into 
E,,(x,y), and see the result value greater or less then zero. 
For three edges in a triangle, the pixels are inside triangles 
only when all edge functions are positive or negative, as 
shown in Fig. 3(b) and Fig. 3(c). Because the all-positive 
or all-negative result depends on the direction of three 
edge vectors, this algorithm can also perform back-face 

( X I ,  Y l )  

x2. Y2) 

(X3, Y3) 

(c) culling in runtime. 

DF (4 (b) 

Fig2 Triangle Shape Generation 

scan-convert method affects the work of setup for shape 
information. In traditional method, the triangles are 
decomposed into two scanline-aligned parts, and each part 
can be described by left-side edge, right-side edge, 
maximal and minimal y-coordinates boundaries, as shown 
in Fig. 2(a) and (b). Then, the Rasterize operation uses the 
information to decomposed two scanline-aligned parts 
into a group of pixels. As shown in Fig. 2(c), the grid 
means the pixel array in screen coordinates, and the gray- 
colored grids mean the pixels covered by the triangle in 
Fig 2(a). Because this method of setup can simplify the 
data transfer between geometry subsystem and raster 
subsystem, lots 3-D graphics rendering hardware [8]  
utilize this method for shape information setup. 

This method works will in PC-based platform, but the 
description of left-side and right-side edge is a problem in 
embedded system. The edges are usually described by 
their edge slopes, and division operations are needed to 
generate the slopes. Because most embedded systems 
employ low-tier CPUs, division operations for edge setup 
are large burden. On the other hand, this method 
decomposes a triangle into two scanline-aligned ones, and 
hence other triangle information is duplicated for data 
transmission. It may cause bandwidth problems. 

In embedded system, Pineda's algorithm [9] is more 
suitable, because its algorithm is all by integer and not 
needed to decompose triangle. This algorithm represents 
each edge of a triangle by a linear edge function. The edge 
function can divide a plan into two parts. As shown in 
Fig.3(a), two vertices (xl,yl) (x,,y,) can define a linear 
equation E,,(x,y). To detect which part does a pixel (x,y) 

Although the setup needs to setup three edge functions in 
Pineda's algorithm, we do not need to find out the real 
parameters in E(x,y). Because two end-point vertices are 
on the edge, the edge function must be zero on the vertices. 
For example, for an edge function E,,(x,y) defined by 

be zero. For other pixel (xk,yt), the edge function 
becomes: 

vertices (xl,yl) and (x2,y2), E12(xl,~,)  and El,(xZ,~,) must 

E12(xk,yk) = ~ x ~ ~ x l ~ d ~ l ~ ~ ~ ~ k ~ ~ ~ ~ d x l Z  ( 5 )  

dY,z= Y2 - YI 

dx,2= x2 - X I  

Therefore, the setup and rasterizing triangle shape can be 
all integer operations. Although Pineda's algorithm is 
designed for parallel rendering, it is also suitable in 3-0 
graphics rendering in embedded system. 

2.3.2 Setup for color information 

For rasterizing color information, Gouraud shading [lo] is 
a widespread method to generate acceptable image quality 
without huge computation. It applies lighting only on 
vertices of each triangle, and then shades each pixel inside 
triangle by interpolating color on vertices. Hence it can 
render polygons with smooth color gradation. In 
traditional method, the color interpolation is handled 
along the edge[S]. This way is related to traditional 
triangle shape generation, but makes color interpolation 
complex. Generating triangle shape by Pineda's algorithm, 
we can treat color interpolation by plain equation. This 
method is developed for parallel rendering in pixel-planes 
[l l] .  Because of linear interpolation, the intensity of each 
color can be generated by the linear expression, Ax + By + 
C. We can treat the color intensity (R, G or B) as the third 

(4 (b) (c)  
Fig.3 Triangle Shape Generation by Pineda's Algorithm 
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Color Value 4 (xi. v i .R i )  
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Fig.4 Color Value Plane 

dimension associated by screen coordinates. As shown in 
Fig. 4, we take R value as example. The lighting operation 
gives the color intensity on three vertices, and hence a 
plain is defined in this space: 

dWdx = Ka * [(R2-R1) * dy,, - (RI-R,) * dy,, ] (6) 
dWdy = Ka * [(R,-R,) * dx,, - (R2-RI) * dx,, ] 
Ka = 1 / (dx,, * dy,, - dx,, * dy,, ) 
dx,,=x,-x, dx,,=x,-x, 
dY,z=Yz-Yi ~Y, ,=Y~-YZ 

The intensity of R in (xl,yl) is known as RI, therefore the 
R value in (xk,yk) is: 

R(xd'd = RI +(xk-x,)dWdx+(Yk-Yi)dR/dy (7) 

operations, while after Rasterize are pixel-level operations. 
Shading operation colors each pixel for display, and 
texture mapping is also applied here. Visibility 
comparison determines the visibility of each pixel, and Z- 
test algorithm is the most common one. 

In order to eliminate redundant operations on invisible 
triangles and invisible pixels, we utilize index rendering 
and deferred lighting to realize raster subsystem. We will 
discuss more in following section. 

3. THE PROPOSED ARCHITECTURE 
In this paper, we propose a new architecture for 3-D 
graphics rendering in embedded system. As shown in 
Fig.5, the chipset, Rasterizer Controller (RC) and Color 
Shader (CS), realizes the raster subsystem and setup, 
while the CPU handles the geometry subsystem. Two 
blocks of memory are utilized for data storage. One is for 
original object models, and can be realized by ROM or 
RAM, which depends on the applications. This database is 
named GTdb (Global Triangle Database). The another 
memory block is for temporal storage in 3-D graphics 
rendering, therefore it should be realized by RAM. The 
hardware architecture is based on our index rendering [4] 
and enhanced version of deferred lighting[5] approaches. 

The value in Eq. 6 is calculated in setup stage. Because 
the Ku term is only related to the vector of vertices, and it 
is the same in different color component R, G, B. Hence, 
only one division is necessary for each triangle and other 
Color infOrmatiOn can be generated by m U l t @ l k U t i O n  and 
addition operations. 

2.4 Raster Subsystem 

In conventional rendering Pipeline, raster subsystem 
handles rasterization. Rasterization consists of three 
subtasks: scan conversion, visibility comparison and 
shading [121. scan COnversion decouPles PolYgon into a 
group of pixels. It iS handled in the raSteriZe block in Fig. 1. 
Hence, the operations before Rasterize are triangle-level 

3.1 Index Rendering 

Index rendering is an approach that can avoid redundant 
operations on invisible pixels. It is also the essential 
architecture to realize deferred lighting. The major 
concepts of index rendering are separating triangle/pixel 
data to explore parallelism, and rearranging operations for 
optimal data flow. 

Traditional rendering architecture is a long pipeline, and 
therefore triangles and pixels cany their whole data to 
pass all pipeline In fact, most of pipeline stages 
only relates to some parts of data. The other parts of data 
are only stored-and-forwarded, On the other hand, the 
nature of is fixed data flow, and hence limits the 

Fig. 5 3-D Graphics Rendering System for Embedded System 
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optimization of operation rendering. 

The relationship of Z-test and shading is an example to 
show limitation of traditional rendering pipeline. Most 
shading operations relate to triangle information, and 
triangles must be scan-converted into groups of pixels 
before Z-test. Hence, shading operation applies on all 
pixels in traditional rendering pipeline, even though the 
pixels are invisible (fail in Z-test). In previous researches, 
Deferred Shading [13][14][15][16] can improve this 
problem. It defers the shading operations after Z-test, but 
each pixel needs to carry a copy of shading-related 
information. It leads to bandwidth problem, and hence not 
suitable for embedded system. 

In our approach, index rendering, we utilize index to 
separate triangle/pixel data to explore parallelism. The 
index is a serial number of each polygon. We use this 
index to denote the information and pixels fiom this 
parent polygon. In the rendering pipeline, the information 
i s  stored in database, and each pixel only carries its index 
number to pass the long rendering pipeline. If one part of 
information is necessary in a pipeline operation, we can 
fetch the database on demand. 

In order to eliminate redundant shading operations on 
invisible pixels, the approach of index rendering stores 
shading information in TdbS (Triangle Database for 
Shading), as shown in Fig.5. After Z-test, the index 
numbers of visible pixels are stored into a screen-size 
buffer, named I-buffer, as shown in Fig. 6. Then, we can 
calculate color values of each pixel from the Eq. 7 to 
generate the final image. 

In the Fig.5, CS handles the shading operations, while RC 
handles the other operations in raster subsystem and setup. 
The job of RC is to generate the index pattern in I-buffer 
and data in TdbS, and the CS utilizes the data in I-buffer 
and TdbS to generate the final result. Because the I-buffer 
and TdbS keep enough information to generate the final 
result, hence frame buffer can be optional if the CS can 
generate pixels in screen scan-out rate. 

3.2 Enhanced Deferred Lighting 

More than eliminating redundant operations on invisible 
pixels, our deferred lighting approach can avoid redundant 
operations on invisible triangles. This approach defers 
lighting calculation after Z-test. If all pixels of a triangle 
fail in Z-test, it implies that this triangle is invisible, hence 
we can eliminate lighting calculation on invisible polygon. 
This idea is straightforward but hardly to be realized in 
traditional rendering pipeline. With the approach of index 
rendering, this idea can be realized in 3-D graphics 
rendering pipeline. 

ndex-3 Index=2 Index=l . . . . . . . . . . . .  ... ... ... ... ... ... ... ... 
... 
... ... . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  (Image in view port) . . . . . . . . . . . .  

I ~ Buffer 
Fig6 Index pattern in I-buffer 

This approach was proposed in 151. In this paper, we 
further extend deferred lighting approach to eliminate the 
transformations on invisible triangles. In order to do this, 
the triangle information must be separated before 
operations. The triangle information related to geometry, 
such as the (x,y,z) coordinates, goes first to define the 
shape of this triangle, and then to be scan-converted into a 
group of pixels. After all pixel are Z-tested, we can h o w  
whether this triangle is hidden. If any pixel of this triangle 
passes the Z-test, the triangle information related to 
shading enters the rendering pipeline. After setup 
operation, the shading information is stored in TdbS. 
Finally, the result image is generated by I-buffer and 
TdbS. 

3.3 Dual Pipeline Rendering Architecture 

According to index rendering and enhanced deferred 
lighting approaches, the 3-D graphics rendering hardware 
becomes dual pipeline architecture. Fig. 7 shows the 
rendering pipeline. The Fig.7(a) shows traditional one, 
while Fig. 7(b) our dual pipeline architecture. The major 
difference is that we divide the 3-D rendering pipeline into 
two parallel pipelines. The ASIC chip handles the 
operations with gray shaded area, and the CPU of 
embedded system handles the other area. 

To render a triangle in the dual pipeline architecture, the 
upper pipeline goes first. The upper pipeline needs the 
input of triangle information related to geometry, which 
are the coordinates of vertices. After all pixels of this 
triangle are Z-tested, a signal is sent to the CPU to denote 
whether this triangle is visible or not. If this triangle is 
invisible, the other part of triangle information is 
discarded. If this triangle is visible, the other part of 
triangle information enters the second pipeline. Because 
the Phong lighting model is applied, hence the triangle 
information related to shading is the normal vectors on the 
vertices of this triangle. 

In the dual pipeline architecture, we can find that the setup 
is divided into two parts. The setup in the upper pipeline 
handles the shape generation, and setup in the second 
pipeline helps the color generation. The shared terms of 
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Fig.7 3-D Graphics Rendering Pipeline (a) Traditional (b) Proposed 
(The blocks in gray area are handled by rendering hardware) 

two setup blocks are the vectors of vertices: dx,,, dy,,, 
dx,, and dy2, . Because the vectors are appeared in both 
Eq.5 and Eq.6, the vectors can be reused to reduce 
operations. 

4. SIMULATION AND ANALYSIS 
The performances of index rendering and deferred lighting 
have been analyzed and simulated [4][5]. Hence, we will 
demonstrate the performance of the enhanced version of 
deferred lighting. Compared with our previous deferred 
lighting approach, enhanced deferred lighting can further 
eliminates the redundant transformations on invisible 
triangles. Because the CPU handles this part in embedded 
system, we focus on the reduction in the CPU's 
operations. 

The Java [ 171 and Mesa [ 181 were utilized to develop our 
simulation environment and two 3-D object models, 
Dolphins and Castle, are applied, as shown in Fig.8 [19].  
Their original triangle numbers are listed in Table 1. 
Because the Pineda's algorithm is applied, the triangles are 

TYPE 11, which is a straightforward method to realize 
traditional architecture but wastes computation power. 
After simulation in resolution 320x200, we fmd the 
triangle numbers that can pass the back-face culling and 
be visible in final image. We denote the original triangle 
number as (a), the triangle number pass the back-face 
culling as (b), and visible triangle number as (c). The 
visible ratio equals the result of that visible triangle 
number (c) divides the triangle number that should be 

Table 1. Triangle Number in Each Model by Simulation 

'1 Compared with lraditional archi. TYPE I (Back-faced culling before lighting) 
'2 Compared with traditional archi. TYPE II (Back-faced culling before triangle setup) 

- -  

(a) (b) 
whick is a better way to realize traditional architecture. 
The rendering pipeline performs back-face culling after 
lighting before triangle setup as traditional architecture Fig. 8 Simulation Models (a) Dolphins (b) Castle [19] 
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(a) x 3 

( a ) x 3  

Transform 
Perspective 
Transform 

Table 2. Numbers of Operations in Different Architectures 

(a) x 3 (a) x 3  (a) x 3  (a) x 3 (c) x 3 

- (a)x3 - ( a ) x 3  - 
Lighting I - I ( b ) x 3 )  - I(a)x3( - I (c)x3 I 

lighted in traditional architecture, i.e. (c)/(b) in TYPE I, 
and (c)/(a) in TYPE 11. 

Compared with original models, the results show that only 
20% triangles in Castle and 40% triangles in Dolphins are 
visible. The results show that both traditional architecture 
TYPE I and TYPE I1 waste lots of unnecessary lighting 
and transformation operations on invisible triangles. The 
proportions are up to 80% in Castle model and 60% in 
Dolphins model. Although back-face culling technique is 
utilized in TYPE I, there are still lots of invisible triangles 
are lighted and transformed. We can find that the number 
in column (b) still larger than visible triangle numbers in 
column (c). The ratios of column (c) and (b) are 44% in 
Castle model and 83% in Dolphins model. It means that 
only 44% and 83% lighting and transform operations are 
needed in TYPE I, and others are unnecessary. The 
reduction is more significant in the Casfle model. Because 
the Dolphins model illustrates the shape of animal, and its 
model is simple and convex. Hence there are fewer hidden 
triangle, especially after back-face culled. On the other 
hand, the Castle model is combined by lots of walls, and 
its walls cover each other. Therefore many triangles cover 
each other, and visible triangle numbers are relatively low. 

In order to analyze total CPU operations, the instruction 
numbers of each operation are evaluated according to 
Direct3D transform pipeline [6] ,  and the numbers of 
desired CPU instructions are illustrated in Fi12.9. From the 

triangle numbers, those refer to Table 1. The vertex 
coordinates and normal vectors are handled separately for 
analysis. The vertex coordinates are the information to 
generate triangle shape. Before applying setup for shape 
information, which we described in section 2.3.1, the 
viewing and perspective transformations are necessary in 
order to generate correct shape on Screen. The transforms 
on vertex coordinates are essential and not reducible. 
Hence, in Table 2, the operation numbers on vertex 
coordinates all equal to three times of original triangle 
numbers, (a) x 3, no matter which architecture is applied. 
On the other hand, the operation numbers on normal 
vectors very depend on architecture. In order to perform 
lighting operations on each vertex, the normal vectors are 
necessary information. In traditional architecture without 
back-face culling (TYPE 11), the number of lighting equals 
three times of original triangle numbers, (a) x 3. In 
traditional architecture with back-face culling (TYPE I), 
the number equals (b) x 3. In our proposed architecture, 
the number becomes (c) x 3. Due to the data in Table 1, 
we can find the improvement on reducing lighting 
operation. Besides, due to enhanced deferred lighting, the 
operation number of viewing transform also reduced into 
(c) x 3 on normal vectors. 

Then, the CPU costs are analyzed to generate the 3-D 
graphics. Table 3 lists the analysis results. For example, if 
we need to know the multiplication operation count (MUL) 
to generate Dolphins model in traditional architecture 
TYPE I, we can calculate the number from data in Tablel, 
2 and Fig. 9. From Table 2, in order to generate 3-D model 
in traditional architecture TYPE I, the CPU need to handle 
(a) x 3 viewing transforms, (a) x 3 perspective transforms 
for vertex coordinates, and (a) x 3 viewing transforms, (b) 
x 3 lighting operations for normal vectors. Referred to 
Table 1, we know that in Dolphins model, (a) equals 3000 
triangles, while (b) equals 1451. Referred to Fig. 9, we 
know there are 12 multiplication operations in viewing 

CPU Instructions 
per Operation - 

basis of Fig.9, we can analyze the CPU costs for 
transformations and lighting. On the three types of 
architecture: traditional architecture Type I, Type 11, and 
proposed architecture. Because of no specified CPU and 
platform, we reasonably assume the costs of each CPU 
instructions as a basis to measure performance. The cost 
of addition instruction is 1, multiplication instruction is 2, 
and reciprocal radical instruction is 16. Because the 

of triangle, the number of operations equals to three times 
of related triangle number. Triangle strip and fan are not 
discussed here for fair comparison. 

Table 2 shows the numbers of each operation in different 
architectures. The (a), (b) and (c) denote the related 

0 0 0  
= 

l [ o o c *  ,,I ii [~ y’ .x ~, 

I = lax  ~ ~ + [ z ~  x K~ (L . N )+I~ x K~ (H . N )“I 

O O d O  

lighting and transform operations are applied on vertices 

Addillon 1 reciprocal radical 

V o x K o )  ( I iXKi l )  (It x h s )  CBn be p*mmpuled 
L N.HaDYedoR H = ( L + V ) n  
L N H erealyl nonallled lnlhl3 formula 

All R, G and B  value^ am generated 

Fig 9 CPU Instructions for Each Operations 
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transform, 5 in perspective transform and 34 in lighting. 
Therefore, the operation count of MUL is: 

f 3OOOx3x12+ 300Ox3x5t 3OOOx3x12+ 1451x3~ 34 I = 409002 18) 
~I 

Vlewng Perspect,ie Vt% ng tight ng Total 
Transforms Transforms Tianstorms for opts 

fC4 FC4 for NMrnal Of 

vertex Vertex Normal vectors MUL 
Cccid. Coord Vectors 

Hence, we know the number of MUL is 409K for 
Dolphins model in traditional architecture TYPE I. By the 
same way, we can also know the addition number (ADD) 
is 254K, and the reciprocal radical operation number 
(Rec.Rad.) is 13K. After multiplied assumed instruction 
cost, we can calculate the equivalent CPU cost is ( 409K x 
2 +254Kx 1 + 13Kx 16 ) = 128lK. 

After all equivalent CPU costs are calculated, we can 
compare the cost of three architectures in different models. 
Compared with traditional architecture TYPE I, we can 
find that the proposed architecture only needs 78.4% 
equivalent CPU cost in Dolphins model, and 56.1% in 
Castle model to generate the same results. In comparison 
with traditional architecture TYPE 11, the ratio becomes 
more significant. The proposed architecture only needs 
52.6% equivalent CPU cost in Dolphins model, and 36.6% 
in Castle model. Hence, in traditional architecture TYPE 
11, up to 100%-36.6% = 63.4% CPU operations in Castle 
model are redundant. 

5. CONCLUSION 
A new architecture is proposed in this paper for 
computation-effective 3-D graphics rendering in 
embedded multimedia system. It bases on our index 
rendering and enhanced version of deferred lighting 
approaches. Comparing with traditional architecture, its 
feature is dual pipeline rendering architecture. This 

architecture is computation-effective because it can render 
3-D graphics image by fewer operations without image 
quality loss. We achieve this goal by eliminating the 
redundant operations on hidden pixels and invisible 
triangles. 

By simulation and analysis in resolution 320x200, the 
result shows our dual pipeline architecture can reduce 
equivalent CPU cost into 56.1% - 78.4% compared with 
traditional architecture TYPE I, and into 36.6% - 52.6% 
compared with traditional architecture TYPE 11. Hence, by 
analysis our dual pipeline design can save up to 63.4% 
CPU cost, and is very suitable for low cost embedded 
multimedia system. 
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