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Let G be a connected real semisimple Lie group which contains a compact Cartan
subgroup such that it has non-empty discrete series. A holomorphic discrete model of
G is a unitary G-representation consisting of all its holomorphic discrete series with
multiplicity one. We perform geometric quantization to a class of G-invariant pseudo-
Ka� hler manifolds and construct a holomorphic discrete model. The construction of
discrete series which are not holomorphic is also discussed. � 2000 Academic Press
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1. INTRODUCTION

Let G be a connected real Lie group. A unitary representation of G in
which each irreducible representation occurs exactly once is called a model.
This terminology is due to I. M. Gelfand and A. Zelevinski [6], who give
several ingenious constructions of models for the classical compact groups.
For compact semisimple Lie groups, the construction of a model is carried
out in [4]. If G is not compact, then looking for its model is overly
ambitious since the unitary dual of G is still unknown in general. However,
suppose that G is semisimple and has a compact Cartan subgroup, so that
it has a non-empty discrete series [10]. Following the spirit of the above
definition of a model, we define the holomorphic discrete model as a unitary
G-representation consisting of all the holomorphic discrete series with
multiplicity one. The major purpose of this article is to use symplectic
techniques to construct such an object. Namely, we start with certain
classes of G-invariant pseudo-Ka� hler manifolds and use the machinery of
geometric quantization [14] to convert the pseudo-Ka� hler structures into
holomorphic Hermitian line bundles. The square-integrable holomorphic
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sections of these line bundles are used to construct the desired holomorphic
discrete model. More generally, the L2-cohomology of these line bundles
provides discrete series which may not be holomorphic. We can of course
define the discrete model in a similar manner. Unfortunately these L2-co-
homologies do not provide a discrete model due to multiplicity problems.
Nevertheless, by applying symplectic reduction [15] to the pseudo-Ka� hler
manifolds we show that these L2-cohomologies obey the principle ``quan-
tization commutes with reduction'' [7].

We now describe our projects in more detail. Throughout this paper, G
denotes a connected real semisimple Lie group which has a maximal com-
pact Cartan subgroup. We also adopt the convention that the Lie algebra
of a Lie group is always denoted by its lower case German letter; for
instance, g is the real Lie algebra of G.

Let GC be the adjoint group of the complex Lie algebra gC=g�C.
Then G is a real form of GC. Let K be a maximal compact subgroup of G
satisfying rank K=rank G and T a Cartan subgroup of both K and G.
Thus T/K/G. The complex structure of gC sends t to an abelian sub-
algebra a. We obtain a complex Cartan subalgebra h=t+a/gC and a
Cartan subgroup H=TA/GC. Consider the root system 2/h*. Fix a
system of positive roots 2+, which determines a unipotent subgroup N
corresponding to the negative root spaces. Then B=HN is a Borel subgroup
of GC.

The positive roots 2+ are partitioned into compact roots 2+
c and non-

compact roots 2+
n . Namely, a root is said to be compact if its root space

lies in k�C and is said to be non-compact otherwise. Let 2s be the simple
roots in 2+ and consider the compact simple roots 2s

c=2+
c & 2s. Fix a

subset _/2s
c . We define t_ /t by

t_=[x # t; (:, x)=0 for all : # _]. (1.1)

Since gC is semisimple, its Killing form is non-degenerate. It identifies the
subalgebras with their duals; for instance, we have t_*/g*. Whenever we
pair two elements in the dual space to get a number, such as in (1.2) below,
it is understood that this is always done via the Killing form.

Let _� /2+ be the positive roots generated by _. Define the _-regular
elements

(t_*)reg=[x # t_*; (:, x){0 for all : # 2+"_� ]. (1.2)

So (t_*)reg is an open dense set in t_* whose connected components are
cones. If _ is the empty set <, we clearly have (t*<)reg=(t*)reg . By the
complex structure, the above constructions lead to (a_*)reg/a_*. We shall
always identify (t_*)reg $(a_*)reg . We define h_=t_+a_ /h and H_=T_A_

/H accordingly.
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A subset _/2s
c determines a parabolic subgroup P/GC via Langlands

decomposition [13, p. 132]

B/P=M_A_N_ ; A_ /A, N_ /N. (1.3)

For example, _=< corresponds to P=B=HN.
Let \ denote half the sum of all positive roots. We denote the discrete

series of G by Harish-Chandra's notation 3*+\ for integral weights *.
Apply (1.3) and fix _, P for now. Let Y_ /GC�P be the G-orbit containing
the identity coset. It is a homogeneous G-space isomorphic to an elliptic
orbit. Further, it is open in GC�P and thus is a complex manifold. Let
(P, P) be the commutator subgroup of P. We define X_ /GC�(P, P) by the
natural fibration

?: GC�(P, P) � GC�P, X_=?&1(Y_). (1.4)

By studying homogeneous line bundles over Y_ corresponding to integral
weights * # h_*, we obtain discrete series of G [16]. However, each * gives
at most one discrete series. Therefore, we shall work on line bundles over
X_ instead to obtain the holomorphic discrete model.

Since Y_ is an open G-orbit in GC�P, X_ is an open G-space in GC�(P, P).
Thus X_ is a complex manifold. Since H_ normalizes (P, P), it acts on
GC�(P, P) on the right. Let G_ be the centralizer of T_ in G and let G _

ss /G_

be its commutator subgroup. We shall see (Proposition 3.1) that X_=
(G�G_

ss) A_ . This implies that the right H_ -action restricts to a right action
on X_ and that G-invariant functions on X_ can be regarded as functions
on A_ .

A subscript of a Lie group shall always indicate invariance under the
group action. For instance, C �

G (X_)=C�(A_).
The exponential map is a diffeomorphism from a_ onto A_ . Throughout

this paper, we shall frequently make the identification

a_ $A_ , F } exp # C�(a_) W F # C�(A_). (1.5)

So if F is a G-invariant function on X_ , we can identify it with a function
on a_ . We shall say that F is strictly convex if its Hessian matrix is positive
definite everywhere and more generally that F is non-degenerate if its
Hessian matrix is non-degenerate everywhere. The image of the gradient
function 1

2 F $: a_ � a_* is denoted by UF ,

UF= 1
2 F $(a_)/a_*. (1.6)

The inverse function theorem says that if F is non-degenerate then UF is
open. We shall see that 1

2 F $ is essentially the moment map of pseudo-
Ka� hler form. By definition, a pseudo-Ka� hler form is a symplectic form of
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type (1, 1). It is weaker than a Ka� hler form only on the positive definite
condition.

The starting point of this paper is classifying all the (G_T_)-invariant
pseudo-Ka� hler structures on X_ . Since G is semisimple, the G-actions on
these pseudo-Ka� hler forms are necessarily Hamiltonian [8, Theorem 26.1].
Their G-moment maps are denoted by

8: X_ � g*.

Since 8 is G-equivariant it is determined by its restriction on A_ /X_ .
Define the (possibly empty) chamber

C=[x # t*; (2+
c , x)�0, (2+

n , x)<0]. (1.7)

The complex structure also identifies C as a subset of a*. Our theorems
contain statements about C. If C=< the results are still valid, and they
simply say that the Ka� hler structures in question do not exist.

Theorem 1. Every (G_T_)-invariant closed (1, 1)-form on X_ is given
by |=- &1 ��� F, where F # C�(A_). It is pseudo-Ka� hler if and only if F is
non-degenerate and UF /(a_*)reg . It is Ka� hler if and only if F is strictly
convex and UF /(a_*)reg & C. The moment map satisfies 8(a)= 1

2 F $(a) #
a_*$t_* for all a # A_ , so UF=8(A_).

Fix a (G_T_)-invariant Ka� hler form | on X_ . By Theorem 1, | is
exact. So there exists a pre-quantum line bundle L [14] whose Chern class
is [|]=0. Further, L is equipped with a connection { whose curvature is
| as well as an invariant Hermitian structure ( , ). A smooth section s on
L is said to be holomorphic if {v s=0 for all anti-holomorphic vector fields
v. We shall show (Proposition 4.1) that X_ has (G_A_)-invariant measure
+X , which is unique up to scalar. A section s is said to be square-integrable
if the integral

|
X_

(s, s) +X (1.8)

converges. Consider the Hilbert space H| of all square-integrable holomorphic
sections. The (G_T_)-action on X_ lifts to a unitary (G_T_)-representation
on H| . The next theorem describes the irreducible G-subrepresentations
in H| .

Let * # h_* be an integral weight. We shall always write /=e* for its
character. Namely, /: H_ � C_ is the multiplicative homomorphism satisfying

/(ev)=exp(*, v), v # h_ . (1.9)
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If V is an H_ -module we say that v # V transforms by * if h } v=/(h)v for
all h # H_ .

In the following theorem, (H|)* denotes the square-integrable holomorphic
sections which transform by * under the right T_ -action. We also assume
that *+\ # (t*)reg , since this condition is needed for 3*+\ to exist.

Theorem 2. Let |=- &1 ��� F be a (G_T_)-invariant Ka� hler form on
X_ . The holomorphic discrete series 3*+\ occurs in H| if and only if * # UF .
If so, it occurs with multiplicity one and is given by (H|)* .

In Section 5, we apply Theorems 1 and 2 to construct a holomorphic
discrete model for G. Namely, we show that for a suitable choice of Ka� hler
form |_ on X_ , H|_

contains every holomorphic discrete series 3*+\ in
which * # (a_*)reg & C once. Consequently, if we vary _ over all subsets of
2s

c , then �_ H|_
becomes a holomorphic discrete model.

The square-integrable holomorphic sections H| can be generalized to the
L2-cohomology H q

| , defined below. From H q
| we obtain the discrete series

which may not be holomorphic. But unlike the construction �_ H|_
above,

these H q
| do not form the discrete model when we vary _, due to the multi-

plicity problem. Nevertheless, we shall study H q
| in the context of symplectic

reduction.
Let |=- &1 ��� F be a (G_T_)-invariant pseudo-Ka� hler form on X_ ,

where F is strictly convex. Let L be the pre-quantum line bundle as before.
We shall construct the L2-cohomology Hq

| as follows. We denote the Dolbeault
(0, q)-forms with coefficients in L by 00, q(X_ , L). Define a G-invariant
Hermitian structure on it and then integrate over +X to obtain an L2-struc-
ture (x, y) L, x, y # 00, q(X_ , L). We say that x is square-integrable if
(x, x)L<�. Let �� * be the formal adjoint of �� relative to this L2-structure.
The differential forms which are annihilated by �� and �� * are said to be
harmonic. Let H q

| be the square-integrable harmonic (0, q)-forms. Let
* # t_* be an integral weight. The (G_T_)-action lifts to a G_T_-represen-
tation on H q

| and the right T_ -action defines (H q
|)* as before. Let

l(*)=>[* # 2+
c ; (*+\, :)<0]&>[* # 2+

n ; (*+\, :)>0]. (1.10)

We now obtain the general discrete series from H q
| .

Theorem 3. Let |=- &1 ��� F be a (G_T_)-invariant pseudo-Ka� hler
form on X_ with F strictly convex. The discrete series 3*+\ occurs in H q

| if
and only if * # UF , *+\ # (t*)reg , and q=l(*). If this is so, it occurs with
multiplicity one and is given by (H q

|)* .
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Let | be a (G_T_)-invariant pseudo-Ka� hler form on X_ . The right
T_ -action is Hamiltonian and we call its moment map

8r : X_ � t_*

the right moment map. Suppose that * # t_* is in its image. We perform
symplectic reduction [15] on it. This leads to the reduced space R*=8&1

r (*)�T_

equipped with a symplectic form |* , called the reduced form. The process

(X_ , |, *) ^ (R* , |*) (1.11)

is known as symplectic reduction. We shall see (Proposition 7.2) that R* is
a complex manifold and (Proposition 7.4) that |* is a G-invariant pseudo-
Ka� hler form on R* .

We want to study how | and * determine the reduced space in (1.11).
For i=1, 2, let *i # t_* be in the image of the right moment maps of |i . We
introduce the notions of

*1 t*2 , (|1)*1
t(|2)*2

, (|1)*1
=(|2)*2

(1.12)

as follows. Regarding *i as elements of g*, we write *1 t*2 if they lie in the
same coadjoint G-orbit. For the reduced forms, we write (|1)*1

t(|2)*2
if

there exists a G-equivariant symplectomorphism between them. In parti-
cular if this symplectomorphism can be made holomorphic and preserves
the pseudo-Ka� hler structures we write (|1)*1

=(|2)*2
.

Theorem 4. The image of 8r lies inside (t_*)reg . The connected components
in R* are mutually isomorphic pseudo-Ka� hler manifolds, each of which is a copy
of Y_ . They are Ka� hler if and only if * # (t_*)reg & C. For i=1, 2, suppose that
R*i

has the same number of connected components. Then (|1)*1
t(|2)*2

if
and only if *1 t*2 , and (|1)*1

=(|2)*2
if and only if *1=*2 .

By this theorem, the reduction process is independent of | and depends
uniquely on *. Assume for simplicity that R* is connected. For example,
this happens when F is strictly convex or more generally when the gradient
of F is injective. By Theorem 4, (1.11) simplifies to

(X_ , *) ^ (Y_ , |*). (1.13)

Further, the process * ^ |* is injective.
The following theorem classifies the G-invariant pseudo-Ka� hler forms on

Y_ and shows that (1.13) is actually a bijective correspondence. The G-action
on Y_ preserving a pseudo-Ka� hler form is Hamiltonian and we let �: Y_ � g*
denote its moment map. Note that Y_=G�G_ (Proposition 3.1) and we
write e # Y_ for the identity coset eG_.
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Theorem 5. The G-invariant pseudo-Ka� hler forms on Y_ are not exact
and are classified by the points in (t_*)reg via �(e) # (t_*)reg . All of them can
be obtained by symplectic reduction from X_ , and the one with �(e)=* is
given by |* .

By Theorems 4 and 5, we see that the G-invariant Ka� hler forms on Y_

are indexed by (t_*)reg & C (non-existant if C=<). For example, take G to
be compact and _=<, P=B. In this case (t_*)reg & C is just the interior
of the Weyl chamber in t*. We recover the classic result of Borel [2] that
the G-invariant Ka� hler structures on Y_=GC�B are classified by the
interior points of the Weyl chamber.

Let |=- &1 ��� F be a (G_T_)-invariant pseudo-Ka� hler form on X_

where F is strictly convex. We have quantized the left G-action and
obtained a G-representation H q

| consisting of square-integrable harmonic
forms. For integral weights * # t_* we obtain the subrepresentation (H q

|)*

via the right T_ -action. On the other hand, we can first perform symplectic
reduction on the right T_ -action and obtain (R* , |*) and then quantize the
G-action on (R* , |*) to obtain a G-representation H q

(|*) . We compare the
G-representations (H q

|)* and H q
(|*) and show that quantization commutes

with reduction [7].

Theorem 6. Let |=- &1 ��� F be a (G_T_)-invariant pseudo-Ka� hler
form on X_ , with F strictly convex. Then (H q

|)* $H q
(|*) .

In other words, quantizing the G-action followed by taking subrepresen-
tation via the T_ -action coincides with performing symplectic reduction via
the T_ -action followed by quantizing the G-action. Other results of this
nature are summarized in [17].

We outline the structure of this paper as follows. In Section 2, we review
some concepts of the Lie algebra and establish the common notations that
will appear throughout the paper. In Section 3, we describe the spaces X_

and Y_ in terms of a torus and its centralizer. Also, we study the (G_T_)-
invariant pseudo-Ka� hler forms on X_ and their moment maps, leading to
the proof of Theorem 1. In Section 4, we show that X_ has a (G_A_)-invariant
measure +X . Using the Hermitian structure on the line bundle L and the
measure +X , we construct an L2-structure on the sections of L and prove
Theorem 2. In Section 5, we apply Theorems 1 and 2 to construct a holo-
morphic discrete model for G. In Section 6, we generalize Theorem 2 to
Theorem 3: the Ka� hler structures, holomorphic discrete series, and square-
integrable holomorphic sections H| are replaced by the pseudo-Ka� hler
structures, discrete series, and L2-cohomology H q

| . In Section 7, we
perform symplectic reduction to the right T_ -action on X_ and prove
Theorem 4. The reduced space is the flag domain Y_ , and we study its
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pseudo-Ka� hler structures in Section 8. This leads to the proof of Theorem
5. Finally, in Section 9 we quantize the G-action on the reduced space and
prove Theorem 6.

2. LIE ALGEBRAS

In this section, we review some aspects of the Lie algebra which will be
used later. We also establish some common notations.

Recall that G is connected semisimple with compact Cartan subgroup
and that it is a real form of GC. There exists a compact real form U/GC

such that K=U & G is maximal compact in G. Let gC=h+�i g\i be the
root space decomposition, indexed over the positive roots :i # 2+. There
exists !\i # g\i [11, p. 421] such that

u=t+R(! i&!&i , - &1 (!i+!&i)). (2.1)

For convenience, write

=i={1
- &1

if :i # 2+
c ,

if :i # 2+
n .

(2.2)

Then

`i==i (!i&!&i), #i==i - &1 (! i+!&i) # g. (2.3)

From (2.3), it follows that for all x # t,

[x, `i]=- &1 :i (x) #i , [x, #i]=&- &1 :i (x) `i . (2.4)

The vectors in (2.1) can be normalized so that [!i&!&i , - &1 (!i+!&i)]
# t is identified with the root :i # t* by the Killing form. So by =2

i =\1 in
(2.2), the Killing form identifies

[`i , #i]={:i

&:i

if :i # 2+
c ,

if :i # 2+
n .

(2.5)

Define V and Vi by

g=t+V, V= :
:i # 2+

Vi , Vi=R(`i , #i). (2.6)

In fact, the Cartan decomposition g=k+q is obtained by

k=t+ :
:i # 2 c

+

Vi , q= :
:i # 2 n

+

Vi .
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The Lie bracket between t and Vi is given by (2.4). If we take the Lie
bracket between Vi and Vj , (2.3) gives

x # Vi , y # Vj O [x, y] # {t

V
if i= j,
if i{ j.

(2.7)

Since g is semisimple, its Killing form is non-degenerate. It identifies g
with g*, so that t* and V i* can be regarded as subspaces of g*. The sub-
spaces [t, Vi] i are pairwise orthogonal under the Killing form, so

(t*, Vi)=(V i* , t)=(V i* , Vj)=0, i{ j. (2.8)

Consider the vectors

`i* , # i* # V i* /V*/g* (2.9)

dual to (2.3). The coadjoint representation ad*: g � End g* can be com-
puted from the above identities. Namely, (2.4) says that for all x # t,

adx*`i*=- &1 : i (x) # i*, adx*#i*=&- &1 : i (x) `i*. (2.10)

For _/2s
c , we have defined the subalgebras t_ , g_, g_

ss in Section 1.
We now relate them to these Vi . Given : # 2+, we write (:, t_)=0 if :
annihilates t_ . Otherwise, if (:, x){0 for some x # t_ , we simply write
(:, t_){0. Let t_

=/t be the complement of t_ in t, under the Killing form.
Then

g_=t+ �
(:i , t_ )=0

V i , g_
ss=t=

_ + �
(:i , t_ )=0

Vi , (2.11)

and

g=t+V

=t_+g_
ss+ �

(:i , t){0

Vi

=g_+ �
(:i , t_ ){0

Vi .

We also introduce the concept of the relative Lie algebra cohomology.
Consider in general a Lie group R with a closed subgroup S. Restricting
the coadjoint representation to S, we get Ad*: S � Aut r*. We extend this
representation to the exterior algebras �q r*, then differentiate to get
ad*: s � End(�q r*). We define

�
q

(r, s)*={: # �
q

r*; @(v):=adv*:=0 for all v # s= . (2.12)
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Here @(v) : # �q&1 r* is the interior product. Then [�q (r, s)*]q can be
identified with the R-invariant differential forms on R�S, and they become
a chain complex under the de Rham operator d. We write Hq(r, s) for the
resulting cohomology.

3. PSEUDO-KA� HLER STRUCTURES

Fix a subset _ of the compact simple roots and it determines a parabolic
subgroup P via (1.3). By (1.4), we define the domain X_ /GC�(P, P) as a
fibration ? over the flag domain Y_ . The present section studies X_ and its
pseudo-Ka� hler structures and proves Theorem 1. Recall that H=TA is a
Cartan subgroup of GC. Let T_ be the subtorus whose Lie algebra is the
kernel of _. It corresponds to a subgroup A_ /A, where H_=T_A_ is
complex. Let G_ be the centralizer of T_ in G and let G_

ss be its commutator
subgroup. There is a natural action of G_H_ on X_ , a fact made clearer
by the following description of X_ .

Proposition 3.1. X_=(G�G_
ss) A_ and Y_=G�G_ and the fiber of X_ � Y_

is H_ .

Proof. Recall that _/2s
c . So (1.1) says that if : # 2+

n , then (:, t_){0.
It follows that

T/G_/K, (3.1)

and so G_ is compact. Therefore, its commutator G_
ss is a compact semi-

simple Lie group. Let P=M_A_ N_ be the Langlands decomposition (1.3).
Let A=

_ /A be the subgroup whose Lie algebra is the orthocomplement of
a_ in a (under the Killing form). We have the Iwasawa decomposition
(G_

ss)
C=G_

ssA=
_ (M_ & N ). Hence

G_
ss A=

_ N=(G_
ss)

C N_

=((G_)C, (G_)C) N_

=(M_ A_ , M_A_) N_

=(P, P). (3.2)

By (3.2), X_=(G�G _
ss)(A�A=

_ )=(G�G_
ss) A_ . The fiber of X_ over Y_ is the

same as the fiber of P over (P, P), which is H_ . So Y_=G�G_ and the
proposition is proved. K
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With this proposition, the right action of H_ on X_ is clear: A_ acts by
self-multiplication on A_ /(G�G_

ss) A_ , while T_ acts on the right of G�G_
ss

because it commutes with G_
ss .

Let | be a (G_T_)-invariant closed (1, 1)-form on X_ . To solve |=
- &1 ��� F for F we need the next two propositions. Here H q

G(X_) denotes
the G-invariant de Rham cohomology of X_ with real or complex coefficients.

Proposition 3.2. H 1
G(X_)=H 2

G(X_)=0.

Proof. By the previous proposition, X_=(G�G_
ss) A_ . But A_ is contrac-

tible. So it suffices to consider G-invariant forms on the space G�G_
ss , which

can be identified with �q (g, g_
ss)* of (2.12). Therefore, we can prove the

proposition by showing that H1(g, g_
ss)=H2(g, g_

ss)=0.
Note that g is semisimple. So the Whitehead lemma [8] says that its Lie

algebra cohomology satisfies

H1(g)=H 2(g)=0. (3.3)

Consider a non-zero : # �1 (g, g_
ss)*. We regard : as an element of �1 g*.

Then d:{0, because H1(g)=0 by (3.3). This proves that H 1(g, g_
ss)=0.

Next let | # �2 (g, g_
ss)* and suppose that d|=0. Since | # �2 g*, (3.3)

says that |=d; for some ; # �1 g*. To complete the proof, we need to
show that ; # �1 (g, g_

ss)*. In other words, we check that for all v # g_
ss ,

(;, v) =adv* ;=0. (3.4)

By (3.1), G _ is compact, so G _
ss is semisimple. Hence up to linear com-

bination, v # g_
ss can be written as v=[x, y] for x, y # g_

ss . Then

( ;, v) =( ;, [x, y])

=d;(x, y)

=|(x, y)

=(@(x) |)( y). (3.5)

Since | # �2 (g, g_
ss)* and x # g_

ss , it follows that @(x)|=0. Therefore, (3.5)
vanishes.

For x # g_
ss and y # g, we apply the same argument as (3.5) and get

(adx*;, y) =( ;, [x, y])=(@(x)|)( y)=0.

Hence adx*;=0. This proves (3.4), and hence the proposition. K

As a side remark, we note that in the statement of Proposition 3.2 the
subscript G is necessary for the vanishing of cohomology (unless of course
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G is compact so that the G-invariant cohomology coincides with the usual
cohomology): For non-compact G, the maximal compact subgroup K has
a center Z of positive dimension. By (3.1), G_

ss /K. Write the Cartan decom-
position as G=QK, so that G�G_

ss=Q_(K�G_
ss). Since Q is contractible,

Hq(X_)=H q(G�G_
ss)=H q(K�G_

ss)=Hq(k, g_
ss).

Since _/2s
c , we get z/t_ , so (2.11) implies that g_

ss & z=0. Hence for all
q�dim z, the non-zero elements of �q z*/�q (k, g_

ss)* have non-trivial
cohomology classes in Hq(k, g_

ss).
The next proposition deals with a Dolbeault cohomology taken over

(G_T_)-invariant forms, as indicated by its subscript.

Proposition 3.3. H 0, 1
GT_

(X_)=0.

Proof. The vector space (g�g_
ss)+a_ acquires the complex structure as

a tangent space for X_ . It contains h_ as a complex subspace, and so
g�(g_

ss+t_)=g�g_ is a complex vector space. Therefore, it makes sense to
define �0, 1 (g�g_)*. A basis for this space is

[ui=`i*&- &1 #i*] (:i , t_ ){0 /�
0, 1

(g�g_)*, (3.6)

where `i* , #i* # g* are the vectors in (2.9). By (2.10), for x # t,

adx*ui=- &1 :i (x) ui . (3.7)

We apply Proposition 3.1 and express the G-invariant (0,1)-forms on X_

in a manner similar to (2.12), namely

00, 1
G (X_)={:

i

f iwi # C �(A_)�\�
0, 1

(g�g_)*� �
0, 1

h_*+ ;

adx*w i=0 for all x # g_= . (3.8)

Let z # 00, 1
G (X_). We want to express z in terms of (3.8) but we omit the

harmless linear combination �i for convenience. So z= f (u+v) where
f # C�(A_), u # �0, 1 (g�g_)*, and v # �0, 1 h_*. Here u decomposes further to
ui of (3.6), indexed over (:i , t_){0. Let L and R be the left and right
actions, and let /i=exp :i be the character of :i . For all t # T_ ,

Rt*u i =Lt*Rt*ui by left invariance of ui

=Adt*ui

=/i (t) ui by (3.7).
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So each ui transforms by :i under the right T_-action. On the other hand,
since H_ is abelian, v is invariant under the right T_ -action. We conclude
that if z= f (u+v) is (G_T_)-invariant, then u=0 and so z= fv # C�(A_)
��0, 1 h_* with respect to (3.8). Indeed, since G_ commutes with H_ we get
adx*v=0 for all x # g_, so fv satisfies the requirement for 00, 1

G (X_) in (3.8).
The subcomplex C�(A_)��0, 1 h_* of (3.8) can be identified with the

T_-invariant (0, 1)-forms on H_ . Since H_ is a Stein space, its (0, 1)-Dolbeault
cohomology vanishes. Consequently, if z # C�(A_)��0, 1 h_* is �� -closed,
then z has to be �� -exact. This proves the proposition. K

Let | be a (G_T_)-invariant closed (1, 1)-form on X_ . We now apply
Propositions 3.2 and 3.3 to obtain a potential function F for |.

Proposition 3.4. Every (G_T_)-invariant closed (1, 1)-form on X_ can
be written as |=- &1 ��� F.

Proof. Since | is closed, Proposition 3.2 says that |=d; for some real
1-form ;. Since ; is real, we write ;=:+:� , where : # 00, 1

GT_
(X_). Then, |

being a (1, 1)-form implies that �� :=0. By Proposition 3.3, :=�� f for some
f # C �

G (X_)=C�(A_). Define a real-valued function F=&- &1 ( f &f� ).
Then

|=d;=�f +�� f�

=��� f +�� �f�

=- &1 ��� F.

This proves the proposition. K

We remark that in the above proposition right T_ -invariance of | is
both necessary and sufficient for the existence of the potential function F.
The necessity of right T_ -invariance is proved in [3].

Given ! # g, we let !> denote the infinitesimal vector field on X_ obtained
from the left G-action. If J is the almost complex structure and J! # a for
! # t, we let (J!)>=J(!>). Let | be a (G_T_)-invariant (1, 1)-form on X_ .
By G-invariance, it suffices to study |a for a # A_ /X_ . This is done in the
next proposition.

The G-action preserving (X_ , |) is Hamiltonian, with moment map

8: X_ � g*. (3.9)

Recall that g=t+V and V splits into Vi in (2.6).

Proposition 3.5. Let | be a (G_T_)-invariant (1, 1)-form on X_ and
a # A_ . For i{ j, |(h_

>, V >
i )a=|(V >

i , V >
j )a=0.
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Proof. The complex structure of X_ sends t>
_ to a>

_ . Since | is of type
(1, 1), it suffices to check that for all a # A_ ,

|(t>
_ , V >

i )a=|(V >
i , V >

j )a=0, i{ j. (3.10)

By the Killing form, V i* /g* satisfies (2.8). Let % i : g* � V i* be the
corresponding projection. We now prove the first part of (3.10). Let x # t_

and y # Vi . For all t # T_ ,

|(x>, y>)ta=(8(ta), [x, y])=(8(a), Adt[x, y]) (3.11)

because 8 is G-equivariant. According to (2.4), [x, y] # Vi and Adt acts on
the two-dimensional Vi by rotation. So Adt[x, y] # Vi . Then (3.11)
becomes

|(x>, y>)ta=(% i 8(a), Adt[x, y]) (3.12)

due to (2.8). On the other hand, since H_ is abelian,

|(x>, y>)ta=|(x>, y>)at=[Rt*(|(x>, y>))]a , (3.13)

where R denotes right action. Since |, x>, y> are all right T_ -invariant, the
function |(x>, y>) # C�(X_) is right T_ -invariant too. So (3.13) becomes

|(x>, y>)ta=[Rt*(|(x>, y>))]a

=|(x>, y>)a by right T_-invariance

=(8(a), [x, y])

=(%i8(a), [x, y]) by (2.8) and [x, y] # Vi . (3.14)

By (3.12) and (3.14),

(%i8(a), Adt[x, y])=(%i8(a), [x, y]). (3.15)

This equation is valid for all t # T_ , x # t_ , and y # Vi . Fix x, y with
0{[x, y] # Vi . As t varies in T_ , Adt[x, y] traces out a circle in the two-
dimensional Vi . So for (3.15) to be valid, %i8(a) # V i* has to be 0. Then
(3.15) vanishes, and this implies the vanishing of (3.11), (3.12), (3.13), and
(3.14). This proves the first part of (3.10).

Since %i 8(a)=0 for all i, by (2.8) we get 8(a) # t*. Let t=
_ be the

orthocomplement of t_ in t, via the Killing form. By (2.11), T =
_ /G_

ss . So
the left action of T =

_ fixes a and the statement 8(a) # t* can be sharpened
to

8(a) # t_*. (3.16)
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We next show the second part of (3.10). Let x # Vi and y # Vj , with i{ j.
Then

|(x>, y>)a=(8(a), [x, y]) # (t_*, V) by (2.7), (3.16)

=0 by (2.8).

This proves the second part of (3.10). The proposition follows. K

We next study the moment map (3.9). We shall describe it by the potential
function F. Since 8 is G-equivariant and X_=(G�G_

ss) A_ , 8 is determined
entirely by its restriction to A_ /X_ . By (3.16), we can write

8: A_ � t_*. (3.17)

On the other hand, the gradient of the potential function F # C�(A_) is

F $: A_ � a_*$t_*, (3.18)

where a_ $t_ by the complex structure. The maps (3.17) and (3.18) are
related by

Proposition 3.6. For a # A_ , 8(a)= 1
2 F $(a).

Proof. Let @: H_ /� X_ be the natural imbedding. By (3.16), the moment
maps of | and @*| coincide when restricted to H_ . So we may consider 8 as
the moment map for the T_-invariant form @*|. To compute 8, we introduce
coordinates

H_=T__A_=(Rr�Zr)_Rr

=[zi=[xi]+- &1 yi ; i=1, ..., r]. (3.19)

By T_ -invariance F(z)=F( y), and we get

@*|=- &1 ��� F

=- &1
�

�zi

�
�z� j

F dzi 7 dz� j

=
1
2

�2F
�yi �yj

dx i 7 dyj . (3.20)

The T_ -invariant 1-form ;=&1
2 (�F��y i ) dxi satisfies @*|=d;. Write v=

(vi) # t_ $Rr. For all y # A_ and v # t_ ,
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(8( y), v)=&(;, v>)y by [1, Theorem 4.2.10]

=\1
2

�F
�yi

dxi , v j
�

�x j+y

=
1
2

�F
�yi

( y) vi

=\1
2

F $( y), v+ .

This proves the proposition. K

Proof of Theorem 1. Let | be a (G_T_)-invariant closed (1, 1)-form
on X_ . By Proposition 3.4 we get |=- &1 ��� F, and the moment map
8= 1

2 F $ is given by Proposition 3.6. The Ka� hler and pseudo-Ka� hler condi-
tions on | remain to be studied. By G-invariance, it suffices to consider |a

for a # A_ . In view of Proposition 3.5, we can study |a on h>
_ and each V >

i

separately.
We first consider |a on h>

_ . Let @ be the imbedding of Proposition 3.6.
Then | is Ka� hler or pseudo-Ka� hler on (h_)>

a exactly when @*| is Ka� hler
or pseudo-Ka� hler. By the Hessian matrix (�2F��y i �yj ) ij from (3.20), @*| is
Ka� hler or pseudo-Ka� hler exactly when F is strictly convex or non-degenerate.

We next restrict |a to V >
i . Here i is indexed according to :i # 2+. If

(:i , t_)=0, then (2.11) says that Vi /g_
ss , so (V >

i )a=0 because G _
ss fixes a.

Therefore, it suffices to consider (:i , t_){0. By (2.5) and Proposition 3.6,
the vectors `i , #i # Vi satisfy

|(`>
i , #>

i )a=(8(a), [`i , #i])=\( 1
2 F $(a), : i). (3.21)

Recall the definition of (t_*)reg $(a_*)reg from (1.2). The last expression of
(3.21) is non-zero if and only if 1

2 F $(a) is not perpendicular to :i or equiv-
alently 1

2 F $(a) # (a_*)reg . We determine the sign \ by (2.5). If :i # 2+
c , then

(3.21) is positive if and only if ( 1
2 F $(a), : i)>0. If :i # 2+

n , then (3.21) is
positive if and only if ( 1

2 F $(a), : i)<0. So (3.21) is positive for all : i # 2+

exactly when 1
2 F $(a) # (a_*)reg & C. This proves Theorem 1. K

4. GEOMETRIC QUANTIZATION

Let | be a (G_T_)-invariant Ka� hler form on X_ . The purpose of this
section is to apply the standard scheme of geometric quantization [14] to
(X_ , |), and prove Theorem 2.

We need a nice invariant measure on X_ to perform integration later.
This is given by the next proposition.
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Proposition 4.1. There exists a (G_A_)-invariant measure on X_ which
is unique up to scalar.

Proof. Recall that X_=(G�G_
ss) A_ . Since G and G_

ss are semisimple,
they are in particular unimodular, so G�G_

ss has a G-invariant volume form
[12, p. 89]. Taking its product with the Haar measure on A_ creates a
(G_A_)-invariant measure on X_ . Further, since G_A_ acts transitively
on X_ , such a measure has to be unique up to scalar. K

By Theorem 1, | has a strictly convex potential function F. As explained
in the Introduction, | corresponds to a pre-quantum line bundle L with
compatible connection { and Hermitian structure ( , ). The (G_T_)-action
on X_ lifts to a (G_T_)-representation on the holomorphic sections on L.

Proposition 4.2. There exists a (G_T_)-invariant non-vanishing holo-
morphic section s0 on L satisfying (s0 , s0)a=e&F(a) for all a # A_ /X_ .

Proof. Since the Chern class of L is [|]=0, we can pick a (G_T_)-
invariant non-vanishing smooth section s. Let :=- &1 {s

s , so that by the
definition of the curvature form d:=|. Since s is G-invariant, so are {s
and :. Let #=&- &1 �F, so that d#=�� #=|. Hence : and # are complex
G-invariant 1-forms satisfying d(#&:)=0. By Proposition 3.2, there exists
a G-invariant complex-valued function f # C�(A_) such that

#&:=df.

Let s0=e&- &1 fs. Then

{s0={(e&- &1 fs)

=e&- &1 f df s+e&- &1 f {s

=&- &1 df s0&- &1 : s0

=&- &1 # s0 . (4.1)

It follows from s0=e&- &1 fs that s0 is non-vanishing and (G_T_)-invariant.
Since # is a (1, 0)-form, it follows from {s0=&- &1 #s0 that {s0 annihilates
anti-holomorphic vector fields. So s0 is holomorphic.

Since s0 is G-invariant, (s0 , s0) is determined by its value on A_ /X_ .
This is found by differentiating along the A_ direction. We write z=[x]+
- &1 y as in (3.19). Since #=&- &1 �F, (4.1) gives

{s0=
- &1

2
�F
�y

dz s0 . (4.2)
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We evaluate (s0 , s0) against �
�y and get

�
�y

(s0 , s0)=({���ys0 , s0)+(s0 , {���y s0)

=(- &1 {���xs0 , s0)+(s0 , - &1 {���xs0) since s is holomorphic

=\&
1
2

�F
�y

s0 , s0++\s0 , &
1
2

�F
�y

s0+ by (4.2)

=&
�F
�y

(s0 , s0).

Replacing s0 by a constant multiple if necessary, it follows that (s0 , s0)=e&F.
Hence we have the proposition. K

Let +X be the (G_A_)-invariant volume form on X_ given by Proposi-
tion 4.1. We define an L2-structure on the holomorphic sections s on L via
(1.8). The holomorphic sections which converge under this L2-structure are
said to be square-integrable and are denoted by H| . Since the L2-structure
is (G_T_)-invariant, H| is a unitary (G_T_)-representation. For an
integral weight * # t_* , let H(L)* be the holomorphic sections which trans-
form by * under the right T_ -action. We want to evaluate the conditions
on * in which H(L)* /H| and prove Theorem 2.

We think of the integral weight * as an element of h_* , t_* , or a_*. Thus
* # h_* defines a homogeneous line bundle over Y_ ,

L* � Y_ .

Let C�(Y_ , L*) be the smooth sections on L* . There is a natural assignment

s # C�(Y_ , L*) [ fs # C�(X_). (4.3)

Here fs transforms by * # h_* under the right H_ -action. Recall from (1.9)
that /=e* is a multiplicative homomorphism from H_ to C_. Its restric-
tion to A_ is

/: A_ � R+. (4.4)

The right action R of a # A_ gives

Ra*( fs f� t)=(/a fs)(/(a) ft )=/(a)2 fs f� t , (4.5)

for all s, t # C�(Y_ , L*).
Define a G-invariant function

/A # C �
G (X_)
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simply by extending (4.4) to X_ by G-invariance. The function /A is non-
vanishing, so it makes sense to consider its negative power /&2

A # C �
G (X_).

From ? of (1.4), we get ?*: C�(Y_) � C�(X_).

Proposition 4.3. A G-invariant Hermitian structure ( , )L* on C�(Y_ , L*)
is given by ?*(s, t)L*= fs f� t/&2

A . It is unique up to scalars.

Proof. We claim that fs f� t /&2
A is right H_-invariant. By (4.5), it is right

A_-invariant. So it only remains to check the right T_-action.
Since /&2

A is defined to be G-invariant, it is necessarily right T_-invariant.
So it suffices to consider fs f� t . Note that /: T_ � S 1/C_. For all % # T_ ,

R%*( fs f� t)=(/(%) fs)(/(%) ft )=/(%) /(%) fs f� t= fs f� t .

This shows that fs f� t is right T_ -invariant and so is fs f� t /&2
A . We conclude

that fs f� t /&2
A is right H_-invariant, as claimed.

This means that fs f� t/&2
A is in the image of ?*. Since ?* is injective, let

(s, t)L* be the unique function in which ?*(s, t)L*= fs f� t/&2
A . This defines a

G-invariant Hermitian structure on C�(Y_ , L*). Since G acts transitively
on Y_ , such a Hermitian structure is unique up to scalars. This proves the
proposition. K

Recall that in (1.6) we define UF /a_* to be the image of 1
2 F $. The

following proposition will be helpful in proving Theorem 2.

Proposition 4.4. The integral �A_
/(a)2 e&F(a) da converges if and only

if * # UF .

Proof. We change the variables by the diffeomorphism

e: a_ � A_ , ev=a.

By (1.9), /(a)2=exp(2*, v) whenever ev=a. Let dV be the Lebesgue
measure of a_ . We identify F(a) with F(v) via (1.5). Then

|
A_

/(a)2 e&F(a) da=|
a_

exp((2*, v)&F(v)) dV. (4.6)

Since F is strictly convex, [5, Appendix] says that the RHS of (4.6)
converges if and only if * # UF . Hence we have the proposition. K

Proof of Theorem 2. Consider the natural fibrations

?1 : X_ � G�G_
ss , ?2 : G�G_

ss � G�G_=Y_ . (4.7)

Thus we have that (1.4) is ?=?2 } ?1 .
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Let s # H(L)* . We want to determine if s is square-integrable with respect
to (1.8). By Proposition 4.2, we write s= fs0 , where f # H(X_)* . The
(G_A_)-invariant measure of Proposition 4.1 is of the form +X=dg da,
where dg is the G-invariant measure on G�G_

ss and da is the Haar measure
on A_ . We have

|
X_

(s, s) +X =|
ga # (G�G_

ss ) A_

( fs0 , fs0)ga dg da

=|
ga # (G�G _

ss ) A_

( ff� )ga e&F(a) dg da. (4.8)

Since f is holomorphic and transforms by * # t_* under the right T_-action,
it necessarily transforms by the complexified * # h_* under the right H_ -action.
So f is in the image of (4.3), i.e., f =fu for some holomorphic section u on L* .
By Proposition 4.3, Eq. (4.8) becomes

|
X_

(s, s) +X =|
ga # (G�G_

ss ) A_

?*(u, u)L*
g /A(a)2 e&F(a) dg da

=|
G�G _

ss

?2*(u, u)L*
g dg |

A_

/(a)2 e&F(a) da, (4.9)

where ?2 is the fibration in (4.7). The flag domain Y_ has a G-invariant
measure +Y [9]. The fiber of ?2 is T_ , which is compact. So by [12,
Proposition 1.13, p. 95],

|
G�G _

ss

?2*(u, u)L*
g dg=|

y # Y_

(u, u)L*
y +Y . (4.10)

By (4.8), (4.9), and (4.10),

|
X_

(s, s) +X=|
y # Y_

(u, u)L*
y +Y |

A_

/(a)2 e&F(a) da. (4.11)

We may assume that *+\ # (t*)reg , for otherwise there is no discrete
series in 3*+\ . If * � UF , then Proposition 4.4 says that �A_

/(a)2 e&F(a) da
diverges and so Eq. (4.11) diverges.

Conversely, suppose that * # UF . By Proposition 4.4, �A_
/(a)2 e&F(a) da

converges. Also, Theorem 1 says that * # UF/(a_*)reg & C. By [9], the
holomorphic sections u on L* converge in (4.11) and form the discrete
series 3*+\ . Theorem 2 follows. K
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5. HOLOMORPHIC DISCRETE MODEL

A unitary G-representation is said to be a holomorphic discrete model if
it contains every holomorphic discrete series exactly once. We now apply
Theorems 1 and 2 to construct such a representation.

Let W be a real vector space of dimension r and let *1 , ..., *r be a basis
of its dual W*. The following proposition defines a function F # C�(W)
and studies its gradient F $: W � W*.

Proposition 5.1. Let F( y)=�r
1 exp(*k , y), for y # W. Then F $(0)=�r

1 *k ,
and the image of F $ is all positive linear combinations of *1 , ..., *r . Also, F
is strictly convex.

Proof. The basis [*k] identifies W with Rr and introduces coordinates
y1 , ..., yr on W. Under such coordinates, F becomes F( y)=�r

1 exp yk .
Its gradient is F $( y)=(�F��yi) i=(exp yi) i . Since exp yi>0 the image of

F $ is (R+)r, which is identified with the positive linear combinations of
*1 , ..., *r . In particular, F $(0)=(exp y i) i |y=0=(1, ..., 1), which is identified
with the element �r

1 *k # W*.
The Hessian matrix of F is ((�2��yi �yj ) �r

1 exp yk) ij , and this is a
diagonal matrix with entries (exp y1 , ..., exp yr). It is a positive definite
matrix, so F is strictly convex.

Hence we have the proposition. K

Let _/2s
c . Recall that (t_*)reg $(a_*)reg and that C are defined in (1.2)

and (1.7). We assume that C{< in this section. Let *1 , ..., *r # a* be the
fundamental weights for the cone (a_*)reg & C, namely

(a_*)reg & C={:
r

1

ci* i ; ci>0= .

We define F_ # C�(a_) by F_( y)=�r
1 exp(*i , y). By Proposition 5.1, the

image of F$_ is (a_*)reg & C and F_ is strictly convex. By (1.5), we identify
it with F_ # C�(A_). By Theorem 1, |_=- &1 ��� F_ is Ka� hler. By
Theorem 2, the representation H|_

contains every holomorphic discrete
series 3*+\ in which * # UF=(a_*)reg & C once.

The holomorphic discrete series 3*+\ are parametrized by integral
weights * in which *+\ # (t*)reg and * lies in the region

[x # a*; (2+
c , x)�0, (2+

n , x+\)<0].
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This region is contained in C. Observe that [(a_*)reg & C]_/2 s
c

is a
partition of C. Therefore, as _ varies over all subsets of 2s

c ,

�
_

H|_

is a holomorphic discrete model of G.

6. L2-COHOMOLOGY

The space of holomorphic sections on the pre-quantum line bundle has
allowed us to construct the holomorphic discrete series of G. In this section,
we consider the L2-cohomology in order to obtain other discrete series and
prove Theorem 3. We fix _, P via (1.3) and define X_ , Y_ as before.

Since gC is semisimple, its Killing form is non-degenerate. Recall that we
let u be a compact real form of gC in (2.1). So the Killing form is negative
definite on u and positive definite on - &1 u. By making suitable sign
changes on the Killing form, we obtain a positive definite inner product
(�, �) on gC. The subspaces Vi of (2.6) satisfy

(h_ , h=
_ )=(h_ , Vi)=(h=

_ , Vi)=(Vi , Vj )=0 (6.1)

for i{ j. The parabolic subalgebra p and its commutator [p, p] are built
by piecing together the various subspaces of gC which appear in (6.1).
Therefore, the orthogonality conditions in Eq. (6.1) imply that it descends
to inner products on gC�[p, p] and gC�p. Taking their duals, we get inner
products on (gC�[p, p])* and (gC�p)*. These dual spaces can be identified
with the cotangent spaces of X_ and Y_ respectively at the identity cosets
e. We now have the inner products

( , ): Te*X__Te*X_ � C (6.2)

and

( , ): Te*Y__Te*Y_ � C. (6.3)

The Killing form is adjoint invariant. This means that if we translate (6.2)
to all of X_ by the (G_A_)-action, we get a (G_A_)-invariant Hermitian
structure on the cotangent bundle

( , )X : T*X__T*X_ � C. (6.4)
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Similarly, (6.3) leads to a G-invariant Hermitian structure on the cotangent
bundle

( , )Y : T*Y__T*Y_ � C. (6.5)

Recall that ? denotes the fibration of X_ over Y_ . We get an injection
between the Dolbeault (0, q)-forms,

?*: 00, q(Y_) � 00, q(X_). (6.6)

These Dolbeault differential forms inherit Hermitian structures from (6.4)
and (6.5). We still use the same notation and write

( , )X : 00, q(X_)_00, q(X_) � C�(X_) (6.7)

as well as

( , )Y : 00, q(Y_)_00, q(Y_) � C�(Y_). (6.8)

They are related by the injection (6.6).

Proposition 6.1. For all :, ; # 00, q(Y_), (?*:, ?*;)X=?*(:, ;)Y.

Proof. Consider the natural map ?: gC�[p, p] � gC�p. The inner
products (6.2) and (6.3) induced by the Killing form satisfy

(u, v)=(?*u, ?*v) (6.9)

for all u, v # (gC�p)*.
Since 00, q(Y_) is obtained from the linear combinations and exterior

powers of 00, 1(Y_), it suffices to prove the proposition for q=1. So let
:, ; # 00, 1(Y_). Then (6.9) says that at e,

(:, ;)Y
e =(:e , ;e)=((?*:)e , (?*;)e)=(?*:, ?*;)X

e .

By G-equivariance of ? this suffices, since checking (:, ;)Y # C�(Y_) at
another point Lg(e) # Y_ is the same as checking (Lg*:, Lg*;)Y # C �(Y_)
at e. The proposition follows. K

Let |=- &1 ��� F be a (G_T_)-invariant pseudo-Ka� hler form on X_

with F strictly convex. As before, it leads to a pre-quantum line bundle L
over X_ . Fix an integral weight * # t_*. Let 00, q

* (X_) be the (0, q)-forms on
X_ which transform by * under the right T_-action. We similarly define
00, q

* (X_ , L) for coefficients in L. This space acquires a Hermitian structure
( , )L by taking the product of (6.7) and the Hermitian structure of L. The
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holomorphic section s0 of Proposition 4.2 leads to a (G_T_)-equivariant
trivialization

00, q
* (X_) � 00, q

* (X_ , L); : [ :�s0 . (6.10)

Extend * # t_* to h_* by complex linearity, and let L* be the homogeneous
line bundle over Y_ corresponding to *. We let 00, q(Y_ , L*) be the
(0, q)-forms on Y_ with coefficients in L* . Taking the product of Hermitian
structures of Proposition 4.3 and (6.8), we obtain a Hermitian structure on
00, q(Y_ , L*) by

(:�s, ;� t)L*=(:, ;)Y (s, t)L*. (6.11)

In fact, this is the Hermitian structure discussed in [16].
Recall from Section 4 that +X and +Y are respectively the (G_A_)-invariant

measure on X_ and the G-invariant measure on Y_ . By integrating ( , )L +X we
obtain an L2-structure ( , ) L on 00, q

* (X_ , L). Similarly, by integrating
( , )L* +Y , we obtain an L2-structure ( , ) L* on 00, q(Y_ , L*).

By (4.3), a smooth section s on L* can be naturally identified with
fs # 00, 0

* (X_). We use (6.6) and (6.10) to define

?**: 00, q(Y_ , L*) � 00, q
* (X_ , L); ?**(:�s)= fs ?*:�s0 . (6.12)

For the rest of this section, we use ?** to compare the L2-structures ( , ) L

and ( , ) L*.

Proposition 6.2. Suppose that ,, . # C �
G (X_)=C�(A_) and that x, y #

00, q(Y_ , L*) are square-integrable. Then (,?**x, .?**y) L=�A_
,.� /2_

e&F da (x, y) L*.

Proof. Write x=:�s, y=;�t # 00, q(Y_ , L*). Then

(,?**(:�s), .?**(;� t)) L

=|
X_

,.� fs f� t(?*:, ?*;)X (s0 , s0) +X by (6.12)

=|
X_

,.� fs f� t?*(:, ;)Y e&F+X by Propositions 4.2 and 6.1

=|
X_

,.� ?*(s, t)L* /2
A ?*(:, ;)Y e&F +X by Proposition 4.3

=|
X_

,.� ?*(:�s, ;� t)L* /2
A e&F +X by (6.11). (6.13)
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Recall the fibrations ?1 , ?2 of (4.7) satisfying ?=?2 } ?1 . Write +X=dg da.
The last expression of (6.13) becomes

|
G�G_

ss

?2*(x, y)L* dg |
A_

,.� /2e&F da. (6.14)

Each fiber of ?2 is a copy of T_ . Since T_ is compact, ?2*(x, y)L* dg is
integrable over each fiber of ?2 . So by [12, Proposition 1.13, p. 95],

|
G�G _

ss

?2*(x, y)L* dg=|
G�G _

(x, y)L* +Y=(x, y) L*. (6.15)

The proposition follows from (6.13), (6.14), and (6.15). K

Observe that if we set ,=.#1 in the above proposition, then

(?**x, ?**y) L=|
A_

/2e&F da (x, y) L* (6.16)

for all square-integrable x, y # 00, q(Y_ , L*). Proposition 4.4 says that
�A_

/2e&F da<� if and only if * # UF . So when this happens, ?** preserves
square-integrability.

Let I q
* /00, q

* (X_ , L) denote the image of ?**. Since 00, q
* (X_ , L) consists

of differential forms which transform by * # t_* under the right T_-action,
we can write

00, q
* (X_ , L)= �

r+s=q \I r
*�\C�(A_)��

0, s

h_*++ . (6.17)

Here [Iq
*]q and [C�(A_)��0, q h_*]q are both subcomplexes under �� , so (6.17)

is a tensor product of chain complexes. The subcomplex [C�(A_)��0, q h_*]q

can be identified with the T_-invariant Dolbeault differential forms on H_ .
Since H_ is a Stein space, this subcomplex has trivial cohomology

Hq \{C�(A_)��
0, s

h_*= s+={C
0

q=0,
q�1.

(6.18)

It also follows from (6.1) that whenever (r, s){(t, u),

�I r
* �C�(A_)� �

0, s

h_*, I t
*�C �(A_)��

0, u

h_*�
L

=0. (6.19)

Against the L2-structure ( , ) L on 0*
0, *(X_ , L), we define the formal

adjoint �� * of �� . Namely, (�� x, y)L=(x, �� *y) L for all square-integrable
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x, y # 0*
0, *(X_ , L). Similarly, let �� * denote the formal adjoint of �� relative

to the L2-structure ( , ) L* on 00, *(Y_ , L*).

Proposition 6.3. ?**�� *=�� *?**.

Proof. To prove this proposition, we need to show that for arbitrary
square-integrable : # 0*

0, q(X_ , L) and ; # 00, q+1(Y_ , L*),

(:, ?**�� *;) L=(:, �� *?**;) L. (6.20)

We apply (6.17) to : and write :=�r+s=q (?**xr)�ys up to linear com-
bination. The same indices r, s apply to all � below. Note that ?**xq # I q

*

and y0 # C�(A_). Thus the LHS of (6.20) becomes

�: (?**xr)�ys , ?**�� *;�
L

=( (?**xq)�y0 , ?**�� *;) L by (6.19)

=|
A_

y0/2e&F da (xq , �� *;) L* by Proposition 6.2

=|
A_

y0/2e&F da (�� xq , ;) L*. (6.21)

On the other hand, the RHS of (6.20) becomes

�: (?**xr)�ys , �� *?**;�
L

=��� : (?**xr)�ys , ?**;�
L

=�: (�� ?**xr)�ys+(&1)r (?**xr)��� ys , ?**;�
L

.

(6.22)

Since [C�(A_)��0, q h_*]q is a subcomplex it contains �� ys , and therefore
(6.19) says that ( (?**xr)��� ys , ?**;) L=0. Then (6.22) becomes

�: (�� ?**xr)�ys , ?**;�
L

=( (�� ?**xq)�y0 , ?**;) L by (6.19)

=( (?**�� xq)�y0 , ?**;) L

=|
A_

y0/2e&F da (�� xq , ;) L* by Proposition 6.2.

(6.23)

Thus (6.20) follows from (6.21), (6.22), and (6.23). Hence we have the
proposition. K
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We have defined �� and �� * on the square-integrable differential forms in
00, q(X_ , L) and 00, q(Y_ , L*). The differential forms which are annihilated
by �� and �� * are known as the harmonic forms. The Hilbert space of square-
integrable harmonic forms are denoted by H q

|/00, q(X_ , L) and Hq(L*)/
00, q(Y_ , L*) and are called the L2-cohomology. The next proposition
considers (H q

|)*=H q
| & 00, q

* (X_ , L). Recall that ?** is defined in (6.12).

Proposition 6.4. (H q
|)* lies in the image of ?**.

Proof. Let I q
* denote the image of ?** as before, and let E q=

(H q
|)* & I q

* . So Eq is a closed subspace in the Hilbert space (H q
|)* . This

gives the direct sum and orthogonal projection

(H q
|)*=E q�E q

= , %: (H q
|)* � E q,

where E q
= is the orthogonal complement of Eq in (H q

|)* . Our goal is
obviously to show that E q

==0, so that (H q
|)* /I q

* .
Since %�� =�� %=0 on (H q

|)* , the projection % defines a map %
*

on the
Dolbeault cohomology classes. Apply the Kunneth theorem to (6.17) and
(6.18). It says that the natural inclusion @: I q

*
/�00, q

* (X_ , L) leads to an
isomorphism @

*
in Dolbeault cohomology. Note that % } @ is the identity

map on Eq. So %
*

and @
*

are inverses of each other. In particular, for all
: # (H q

|)* , : and %: are cohomologous.
Pick : # (H q

|)* . Namely, : is square-integrable and �� :=�� *:=0. Write

:=!+' # Eq�E q
==(H q

|)* .

Since : and %:=! define the same Dolbeault cohomology class, there
exists a ; such that �� ;=:&%:='. Since �� *:=0,

0=( ;, �� *:) L=(�� ;, :) L=(', !+') L=(', ') L.

Thus '=0. This means that E q
==0 and the proposition follows. K

The next proposition relates the L2-cohomology spaces (H q
|)* and

Hq(L*). Recall that UF is the image of 1
2 F $.

Proposition 6.5. If * # UF then ?** defines an isomorphism (H q
|)* $

Hq(L*). If * � UF then (H q
|)*=0.

Proof. Suppose first that * # UF . By Proposition 4.4, �A_
/(a)2 e&F(a) da

<�. Since ?** is injective, it suffices to prove that

?**(Hq(L*))=(H q
|)* . (6.24)
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Clearly ?** commutes with �� , and Proposition 6.3 says that it commutes
with �� * too. Further, by (6.16), ?** preserves square-integrability. These
observations lead to the / part of (6.24).

It remains to prove the # part of (6.24). Let : # (H q
|)* . By Proposition

6.4, :=?**;. The harmonic property of : and the injectivity of ?** imply
that ; is harmonic. Further, (6.16) says that the square-integrability of :
implies the square-integrability of ;. Hence ; # H q(L*), which implies the
# part of (6.24). This proves the proposition for * # UF .

Next suppose that * � UF . Let : # 00, q
* (X_ , L). If : # H q

| , then Proposi-
tion 6.4 says that : is in the image of ?**. Consequently, Proposition 4.4
and (6.16) say that : is not square-integrable unless :#0. We conclude
that (H q

|)*=0. Hence we have the proposition. K

Proof of Theorem 3. By Proposition 6.5, it suffices to consider (H q
|)*

for * # UF . Assuming this, Theorem 3 follows directly from Proposition 6.5
and the well-known results [16] on Hq(L*). K

7. SYMPLECTIC REDUCTION

Let |=- &1 ��� F be a (G_T_)-invariant pseudo-Ka� hler form on X_ .
In this section, we perform symplectic reduction [15] to the right T_ -action.
The moment map for this action is denoted

8r : X_ � t_*

and is called the right moment map. Recall that (t_*)reg $(a_*)reg is defined
in (1.2).

Proposition 7.1. For all ga # (G�G_
ss) A_=X_ , 8r(ga)= 1

2 F $(a) # (t_*)reg .

Proof. Since the right T_ -action commutes with the G-action, it is clear
that 8r is G-invariant. So it suffices to consider 8r(a) for a # A_ .

Let v # t_ , and let v> and vr denote the infinitesimal vector fields on X_

corresponding to the left and right actions respectively. Since T_A_ is
abelian, v>

a=vr
a for all a # A_ . Let ; be the real G_T_ -invariant 1-form

satisfying d;=|. Then

(8r(a), v)=&(;, vr)a by [1, Theorem 4.2.10]

=&(;, v>)a

=(8(a), v)

=( 1
2 F $(a), v) by Proposition 3.6.
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Finally, Theorem 1 says that the image of 1
2 F $ lies in (t_*)reg . Hence we

have the proposition. K

Let * # (t_*)reg be in the image of 8r . We consider the reduced space
R*=8&1

r (*)�T_ .

Proposition 7.2. Each connected component of 8&1
r (*)�T_ is a copy of

the flag domain Y_ .

Proof. Since | is pseudo-Ka� hler, Theorem 1 says that F is non-
degenerate. By the inverse function theorem, F $ is a local diffeomorphism.
So there exists a discrete set 1/A_ such that ( 1

2 F $)&1 (*)=1. By Proposi-
tion 7.1, 8&1

r (*)=(G�G_
ss) 1/(G�G_

ss) A_ . Consequently,

8&1
r (*)�T_=(G�G _) 1. (7.1)

A typical connected component of this space is of the form (G�G_)a, a # 1.
Hence we have the proposition. K

Consider the inclusion

@: 8&1
r (*) � X_ (7.2)

and the fibration

\: 8&1
r (*) � R* . (7.3)

The reduced form |* is defined to be the unique symplectic form on R*

such that \*|*=@*|. Since @ and \ commute with the G-action, it is clear
that |* is G-invariant. Let

�: R* � g*

be the moment map of the G-action preserving |* .
By (7.1), write a typical element of R* as ga. If g is the identity coset eG _,

we write a= ga for simplicity.

Proposition 7.3. �(a)=* # (t_*)reg .

Proof. Pick x # g. By abuse of notation, let x> be the infinitesimal
vector field for the G-action on X_ , 8&1

r (*) or R* , depending on the
context. Also, let a denote the appropriate element in any of these three
spaces. Since (7.2) and (7.3) commute with the G-action,

@(a)=a, \(a)=a, @
*

(x>
a)=x>

a , \
*

(x>
a)=x>

a .
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Since g is semisimple, up to linear combination x=[u, v]. Then

(�(a), x)=(�(a), [u, v])=|*(u>, v>)a=\*|*(u>, v>)a=@*|(u>, v>)a

=|(u>, v>)a=(8(a), [u, v])=(*, [u, v])=(*, x). (7.4)

So �(a)=* and the proposition follows. K

Since Y_ is an open set of GC�P, it is a complex manifold. Consequently
the reduced space R* is complex. Recall that C is defined in (1.7).

Proposition 7.4. The reduced form |* is a G-invariant pseudo-Ka� hler
form on R* . In particular, it is Ka� hler if and only if * # (t_*)reg & C.

Proof. The G-invariance of |* follows from the discussions in (7.2) and
(7.3). So its pseudo-Ka� hler and Ka� hler properties remain to be checked.

Consider the elements `i , #i # g from (2.3), indexed by the positive roots
:i . Here [`i , #i] (:i , t_ ){0 can be regarded as a basis of g�g_. The almost
complex structure inherited from GC�P sends `i to #i and #i to &`i . Sub-
stituting u=`i and v=#i in (7.4), we get

|*(`>
i , #>

i )a=|(`>
i , #>

i )a . (7.5)

Since | is pseudo-Ka� hler, it follows from (7.5) that |* is pseudo-Ka� hler
too.

In fact, |* is Ka� hler if and only if (7.5) is positive for all (:i , t_){0.
Following the argument in (7.4), we see from (2.5) that

|*(`>
i , #>

i )a=\(*, :i). (7.6)

Here the sign \ is positive when :i is compact and negative when :i is
non-compact. So (7.6) is positive for all (:i , t_){0 if and only if
* # (t_*)reg & C, and this is the equivalent condition for |* to be Ka� hler. K

For i=1, 2, consider the reduced spaces (R*i
, (|i)*i

), with moment maps
�i : R*i

� g*. By the previous proposition, these reduced spaces are pseudo-
Ka� hler. So we can compare them under the notions of t and = introduced
in (1.12).

Proposition 7.5. Suppose that R*i
have the same number of connected

components. Then (|1)*1
t(|2)*2

if and only if *1 t*2 , and (|1)*1
=(|2)*2

if and only if *1=*2 .

Proof. Suppose that this proposition has been proved for all connected
reduced spaces. Let R* be a reduced space, possibly non-connected. For
i=1, 2, let Y_ai be connected components of R* . By Proposition 7.3, their

46 MENG-KIAT CHUAH



moment maps satisfy �i(ai)=*. So by the present proposition for connected
reduced spaces, Y_a1 and Y_a2 are isomorphic pseudo-Ka� hler manifolds. We
conclude that all connected components of R* are isomorphic to one another,
and so the present proposition holds for non-connected reduced spaces too.

From this observation, we only have to prove the proposition for connected
reduced spaces. So assume that R*i

are connected for i=1, 2. Write
R*i

=(G�G_) ai for some ai # A_ .
Suppose that *1 t*2 . Thus there is a coadjoint orbit O/g* which

contains *1 and *2 . By Proposition 7.3, �i (ai)=*i . By Theorem 1 and
Proposition 7.1, *i # (t_*)reg /t*, so the isotropy subgroup of *i in G is G_.
Hence O=G�G_. So �i is a diffeomorphism from (G�G_) ai onto the elliptic
orbit O. In fact, since �i is G-equivariant, it identifies (|i)*i

with the
Kirillov�Kostant symplectic form |KK on O. We conclude that (|1)*1

t

|KKt(|2)*2
.

Conversely, if (|1)*1
t(|2)*2

, then �i have the same image O. By
Proposition 7.3, �i (ai)=*i # O, so *1 t*2 .

The last part of this proposition remains to be proved, where t is
replaced with =. Suppose that *1=*2 . By (7.4), for all u, v # g,

(|1)*1
(u>, v>)a1

=(*i , [u, v])=(|2)*2
(u>, v>)a2

. (7.7)

Consider the G-equivariant biholomorphic map

}: Y_ a1 � Y_a2 , }(ga1)= ga2 . (7.8)

By (7.7), }*(|2)*2
and (|1)*1

agree on a1 . By G-invariance, they agree
everywhere. So } preserves the pseudo-Ka� hler structures and (|1)*1

=(|2)*2
.

Conversely, suppose that *1 {*2 . If *i are in different coadjoint G-orbits,
then the first part of the proposition says that (|i)*i

are not symplectomorphic,
so in particular (|1)*1

{(|2)*2
. Hence we may assume that *i are in the

same orbit. Each connected component of (t_*)reg /g* intersects a G-orbit
at most once. From *i # (t_*)reg , *1 {*2 and *1 t*2 we conclude that *i are
in different connected components of (t_*)reg . The holomorphic map (7.8)
fails to preserve the pseudo-Ka� hler structures because (7.6) shows that
there is a sign problem arising from (2.5). Other symplectomorphisms
between (|i)*i

have to permute the connected components of (t_*)reg , so
they cannot be holomorphic. We conclude that (|1)*1

{(|2)*2
. This proves

the proposition. K

Proof of Theorem 4. The theorem follows directly from Propositions
7.1 through 7.5. K
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8. FLAG DOMAINS

In this section, we study the G-invariant pseudo-Ka� hler structures on the
flag domain Y_=G�G_ and their relations to symplectic reduction (1.11).
These will lead to Theorem 5.

If G is compact, then Y_ is compact and obviously the pseudo-Ka� hler
forms on Y_ are not exact. But when G is not compact some work is
needed to show that the G-invariant pseudo-Ka� hler forms on Y_ are not
exact. This is done by the next proposition.

Proposition 8.1. A G-invariant pseudo-Ka� hler form on Y_ cannot be
exact.

Proof. Recall from (3.1) that g_/k, and define the relative exterior
algebra �1 (k, g_)* from (2.12). We first claim that

�
1

(k, g_)*=0. (8.1)

Pick ; # �1 (k, g_)*. Since k is compact, k=kss+z, where kss and z are
respectively the semisimple commutator subalgebra and the center of k.
From ; # �1 (k, g_)* and z/t/g_, it is necessary that ; # k*ss /k*. Consider
kss=(kss & t)+(kss & V), where V is the space from (2.6). Since (kss & t)/g_,
we get ; # (kss & V)*.

Suppose that ;{0. Since kss is semisimple, there exists x in its Cartan
subalgebra kss & t such that adx* ;{0. Since x # (kss & t)/g_, the condition
adx* ;{0 contradicts ; # �1 (k, g_)*. So ; has to vanish and (8.1) follows.

Consider the restriction map @*: 0q(G�G_) � 0q(K�G_). Let | be a
G-invariant pseudo-Ka� hler form on G�G_. Also, let `i , #i be the vectors
from (2.6) with :i # 2+

c and (: i , t_){0. It is clear from earlier discussions
that (@*|)(`>

i , #>
i ){0, so @*|{0. Since @* commutes with the K-action,

@*| is K-invariant. Consequently,

0{@*| # �
2

(k, g_)*. (8.2)

If | is exact, then so is @*|. But this is impossible due to (8.1) and (8.2).
The proposition follows. K

As before, we let �: Y_ � g be the moment map and let e # Y_ be the
identity coset. Recall the notion of t in (1.12).

Proposition 8.2. The G-invariant pseudo-Ka� hler forms on Y_ are classified
by (t_*)reg via �(e) # (t_*)reg . If we ignore the complex structures, then the
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G-invariant symplectic forms on Y_ are classified by (t_*)reg�t up to
G-symplectomorphisms.

Proof. Let | be a G-invariant pseudo-Ka� hler form on Y_ with moment
map �. We want to show that �(e) # (t_*)reg .

Choose u # t and v # Vi from (2.6) such that 0{[u, v] # Vi . For all
g # G_, ge=e # Y_ . Since � is G-equivariant,

(�(e), [u, v])=(�(ge), [u, v])=(�(e), Adg[u, v]). (8.3)

Let g vary in T/G_, so that Adg[u, v] # AdT Vi=Vi . Let %i : g* � V i* be
the projection with respect to (2.8). Since [u, v] and Adg[u, v] are in Vi ,
(8.3) can be written as

(%i�(e), [u, v])=(%i�(e), Adg[u, v]). (8.4)

But as g varies in T, Adg[u, v] traces out a circle in the two-dimensional
space Vi . So for (8.4) to hold we need 0=%i�(e) # V i*. This happens for
all Vi , so �(e) # t*.

Pick u # Vi , v # Vj where i{ j. By (2.7), [u, v] # V. Since �(e) # t*, it
follows that

|(u>, v>)e=(�(e), [u, v]) # (t*, V)=0.

We conclude that

|(V >
i , V >

j )e=0, i{ j. (8.5)

We still have to go from �(e) # t* to the sharper �(e) # (t_*)reg . Consider
`i , #i from (2.3). By (2.5),

|(`>
i , #>

i )e=(�(e), [` i , #i])=\(�(e), :i). (8.6)

Consider (:i , t_)=0 so that Vi /g_ by (2.11). Since G_ fixes e # Y_ , (`>
i )e

=(#>
i )e=0. So (8.6) vanishes whenever (:i , t_)=0, which implies that

�(e) # t_*.
On the other hand, consider (:i , t_){0. By (2.11), Vi /3 g_. Then (`>

i )e ,
(#>

i )e {0. Since | is non-degenerate, by (8.5) |(`>
i , #>

i )e {0. So by (8.6)
(�(e), :i){0 whenever (:i , t_){0. We conclude that �(e) # (t_*)reg .

We have proved that the moment map of a G-invariant pseudo-Ka� hler
form on Y_ satisfies �(e) # (t_*)reg . The rest of the proposition on the
classifications of the pseudo-Ka� hler and symplectic forms follows essen-
tially from arguments in Proposition 7.5. Hence we have the proof. K
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We now show that every G-invariant pseudo-Ka� hler form on Y_ can be
obtained via symplectic reduction from X_ . In view of Theorem 4, the
reduction process (1.11) simplifies to (1.13).

Proposition 8.3. Every G-invariant pseudo-Ka� hler form on Y_ can be
obtained via symplectic reduction (1.13).

Proof. Let 0 be a G-invariant pseudo-Ka� hler form on Y_ with moment
map satisfying �(e)=*. By Proposition 8.2, * # (t_*)reg . Note that (t_*)reg

consists of connected components which are open cones. Let D be the
connected component containing *. Let *1 , ..., *r # t* be on the edges of D
so that D consists of positive linear combinations of *1 , ..., *r . We can
normalize them so that *=�r

1 *k . Define F # C �(a_) by F( y)=2 �r
1_

exp(*k , y). By (1.5), we identify it with F # C �(A_). By Proposition 5.1 F
is strictly convex and the image of F $ is D. So by Theorem 1 |=- &1 ��� F
is pseudo-Ka� hler. Also, Propositions 5.1 and 7.1 say that 8r(e)= 1

2 F $(0)=*.
Since F is strictly convex F $ is injective, so the reduced space R* is connected.
By Proposition 7.2 R*=Y_ . By Proposition 7.3 the moment map of (R* , |*)
sends e to *. Since the moment maps of 0 and |* agree on e, Proposition 8.2
says that 0=|* . Hence we have the proposition. K

Proof of Theorem 5. By Propositions 8.1 and 8.2 the G-invariant pseudo-
Ka� hler forms on Y_ are not exact and are classified by �(e) # (t_*)reg . By
Propositions 7.3 and 8.3 all of them can be obtained by symplectic reduction
and the one with �(e)=* is obtained from (X_ , *). K

9. QUANTIZATION COMMUTES WITH REDUCTION

The main purpose of this section is to prove Theorem 6. For convenience,
the integral weights in t_* are denoted by Z(t_*). Let | be a (G_T_)-invariant
pseudo-Ka� hler form on X_ . By Theorem 1 |=- &1 ��� F. In this section
we assume that F is strictly convex. Let * # Z(t_*). In Theorem 3, we prove
that

(H q
|)*={3*+\

0
if * # UF & Z(t_*), *+\ # (t*)reg , and q=l(*),
otherwise.

(9.1)

By Theorem 1 and Proposition 7.1, we know that UF is also the image
of the right moment map 8r . Define R*=8&1

r (*)�T_ as in Section 7 and
let |* be the reduced form on R* . We want to quantize [14] the G-action
on (R* , |*) and construct the G-representation H q

(|*) . Clearly we need
* # UF , for otherwise R*=<. For * # UF , we know that ( 1

2 F $)&1 (*) has
exactly one element because F being strictly convex implies that 1

2 F $ is
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injective. So by Proposition 7.2 R*=Y_ . The next step is to quantize the
G-action on the reduced space (Y_ , |*). By Proposition 8.1, 0{[|*] #
H2(Y_ , R). We can find a line bundle L* � Y_ with Chern class [|*] if
and only if [|*] # H 2(Y_ , Z) or equivalently * # Z(t_*). We have thus
shown that * # UF & Z(t_*) is necessary for quantization. Assuming this,
L* � Y_ is the homogeneous line bundle corresponding to the character
e* : H_ � C_. The harmonic forms on Y_ with coefficients in L* are denoted
by H q

(|*) . It is a unitary G-representation and we conclude from [16] that

H q
(|*)={3*+\

0
if * # UF & Z(t_*), *+\ # (t*)reg , and q=l(*),
otherwise.

(9.2)

Proof of Theorem 6. This follows directly from (9.1) and (9.2). K
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