
Impedance matrix compression using an effective 
quadrature filter 

J.-M.Huang, J.-L.Leou, S.-K.Jeng and J.-H.Tarng 

Abstract: An effective quadrature mirror fdter (QMF) proposed by Vaidyanathan has been used to 
solve 2D scattering problems. QMF has been popular for some time in digital signal processing, 
under the names of multirate sampling, wavelets, etc. In this work, the impulse response coefficients 
of QMF were used to construct the wavelet transform matrix. Using the matrix to transform the 
impedance matrices of 2D scatterers produces highly sparse moment matrices that can be solved 
efficiently. Such a presentation provides better sparsity than the celebrated and widely used 
Daubechies wavelets. These QMF coefficients are dependent on the filter parameters such as 
transition bandwidth and filter length. It was found that the sharper the transition bandwidth, the 
greater the reduction in nonzero elements of the impedance matrix. It also can be applied in the 
wavelet packet algorithm to further sparsify the impedance matrix. Numerical examples are given to 
demonstrate the effectiveness and validity of our finding. 

1 Introduction 

In computational electromagnetics, the method of 
moments (MOM) is a well established technique, but it pro- 
duces a dense impedance matrix. Recently, the use of wave- 
lets (or two-channel filter banks) for the solution of 
electromagnetic (EM) integral equations (IEs) has received 
attention [l-121. The term ‘wavelet’ was introduced by 
Grossman and Morlet [13] to describe a square integrable 
function, appropriate translations and dilations of which 
form a basis for L2(R). The term quadrature mirror filter 
(QMF) has been widely used in digital signal processing 
[14]. In this paper, we use these terms interchangeably. The 
most salient feature of wavelets is their ability to sparsify 
the impedance matrix. A classical basis function contains 
only magnitude/phase information, while the wavelet has 
not only magnitude/phase but also frequency (scale) infor- 
mation. Beylkin et al. [11, 121 first applied wavelets to the 
solution of IEs having smooth kernels (sirmlar to those in 
electrostatic cases). For such problems, wavelets can be 
used to obtain a solution in O(N log N) operations, where 
N is the number of unknowns in the discretised IE. How- 
ever, the kernel of IE in electrodynamics is an oscillatory 
type. Wavelets do not produce as dramatic a saving as 
smooth kernels. Most of the studies never pinpointed 
which kind of wavelet is more suitable to EM IEs with 
oscillatory kernels. Many papers use Daubeches wavelets 
to obtain matrix sparsification in MOM, but the discretion- 
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ary choice of wavelets will not fully capitalise on the poten- 
tial of the wavelet representation. The sparse moment 
matrix can be solved efficiently by sparse solvers and the 
computational cost is proportional to the nonzero ele- 
ments. Hence, many researchers use different approaches to 
sparsify the matrix in MOM. Kim et al. [15] used the spec- 
tral domain wavelet transform (KDWT) to increase matrix 
sparsity. Golik [2] and Kim et al. [5] used wavelet packets 
(WPs) to sparsify the matrix further. 

It is well known that taking the discrete wavelet trans- 
form of a signal is equivalent to filtering it by a constant-Q 
filter bank [14, 161. In this work, 2D scattering problems 
are solved by fast wavelet transform in a filter-design per- 
spective. The filter parameters such as transition bandwidth 
(TBW) and filter length determine the QMF coefficients. 
With these coefficients, wavelet transform matrix, W, can 
be constructed quickly to solve large matrix equations of 
MOM and leads to a better nonzero element reduction. 
This approach also highlights the fact that the discrete 
wavelet representation is determined solely by filter coeffi- 
cients [17]. 

The filter-design approach essentially provides the same 
methodology as wavelets, but in a simpler, practical fash- 
ion. Many wavelet construction method constraints can be 
relaxed by applying this approach to sparsify the imped- 
ance matrix. For example, by relaxing the orthogonality 
condition, Cohen et al. [18] obtained a large family of 
biorthogonal exact reconstruction filters. Golik [ 191 and 
Xiang et al. [20] used the biorthogonal filter to obtain a 
higher compression rate in solving EM problems. By relax- 
ing the minimum-phase condition of Daubechies wavelets, 
Huang et al. [21] used mix-phase wavelets to obtain better 
sparsification of the wavelet moment matrix. By relaxing 
the vanishing moment condition, Pan et al. [lo] used Coif- 
man wavelets on scattering problems. These Coifman 
wavelets and scaling function both have vanishing 
moments. However, in this study, we used Vaidyanathan 
filters [22], which do not satisfy any vanishing moment con- 
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ditions [23]. Numerical wavelet transform (WT) and wave- 
let packet (WP) experiments are given to validate the 
relaxation of these conditions. Hence, in solving EM prob- 
lems, the filter-design approach yields a greater degree of 
freedom for wavelet construction than the Daubeches 
wavelets approach. 

2 
matrices and Vaidyanathan filters 

Many EM problems can be formulated as an inhomogene- 
ous equation 

The effective construction of wavelet transform 

LCf = g (1) 
where L is a linear operator, g is a known excitation and f 
is to be determined. 

MOM can be used to solve eqn. 1. After expanding the 
unknown function in terms of N known basis and weight- 
ing procedures, the algebraic linear equation systems can be 
obtained as 

Z I  = v ( 2 )  
The discrete wavelet transform of a discrete signal is the 
signal multiplied by a unitary matrix. The unitary matrix 
arises from a wavelet basis for L2(R) in a manner which is 
addressed in the following portions of this Section. Let W 
be a unitary wavelet matrix of order N x N,  the wavelet 
domain equation is formed as 

Z j = Q  (3) 
where 2 = W Z W ,  B = WV and 7 = ( U 3 - I  I. 

Although the wavelet has no explicit analytical form, it 
can be obtained through the scaling function coefficients. 
The scaling function and wavelet function are defined as 
follows [14}: 

@(z) = fix h,@(2z - n) (4) 

*(z) = fix gn*(2z - n)  (5) 

gn = (-l)l-nhl-n n E Z (6) 
where h, and g, are the coefficients of scaling and wavelet 
functions, respectively. h, and g, are, respectively, the Vaid- 
yanathan [22] low- and highpass filter coefficients of QMF. 

To compare different orthogonal wavelets, the W matrix 
must be implemented quickly. For a vector 8 of size N = 
2", a N x N matrix W, is decomposed as 

where H, and G, are matrices of order 2"' x 2" called the 
low- and highpass filters with impulse responses h, and g,, 
respectively. For example, if n = 4 then H, and G, matrices 
are 

hi h2 h3 h4 0 ... 
0 0 hi h2 h3 h4 . . .  1 
0 ... 

. .  . .  H n =  . .  
hi h2 h3 h4 

h3 h4 ' . .  hl h2 

91 g2 93 94 0 
0 0 gr 

1 . .  

. .  . .  . .  . .  
91 92 93 94 

91 Q2 

0 . . .  

I 
I 93 g4 . * .  

G,= 

The filter coef-ficients are wrapped around to form a circu- 
lant matrix. W,po decomposes d' into a smooth (average) 
part s1 and a detailed (dlference) part d'. 

Continuing the process of recursive decomposition of 
smooth vectors s', we obtain the discrete wavelet transform 
of the vector 8. In the matrix notation, W8 = W, ... 
W,, W,so = [se, 8, ..., d'] and Wn-j is a block-diagonal 
matrix of the form 

where I N - N , i  is an identity matrix of rank N - Nl2J. 

Fig. 1 A two-chmxl QMFbank 

Fig. 1 illustrates a QMF bank that functions as a wavelet 
transform. The left-hand side of the figure corresponds to 
the wavelet transform and the right-hand side corresponds 
to the inverse wavelet transform. In the left part, the signal 
x(n) is split and passed to two channels that have a lowpass 
fiter, Ho(z), of bandwidth d2[0 s w s d2],  and a highpass 
filter, Hl(z), of bandwidth w = d 2  to x, respectively. Both 
subband signals are undersampled (or decimated) by a fac- 
tor of two. In the other part, inverse processes are shown. 
The choice 

(7) H1(z)  = z - ( N  - 1 )  Ho (-.-I) 

Fo(z) = z-(N-1)Ho(z-1) (8 )  

FI(Z) = z - ( N - W 1 ( 2 - 1 )  (9) 
results in a perfect reconstruction since aliasing is cancelled. 
For readers without a strong background in QMF, excel- 
lent discussions of the subject can be found in [14, 241. 

Obviously, &(z) and Hl(z) are crucial for the design of 
the QMF bank. These transfer functions can be imple- 
mented by a new family of lattice structures [25] as shown 
in Fig. 2. Detailed construction methods of the impulse 
response coefficients of the above transfer functions are 
available [22]. These coefficients determine the associated 
W-matrix of WT for 2D scattering problems. We briefly 
recapitulate the design procedure of the impulse response 
coefficients. 
(1) Design Ho(z) based on lattice structure and its relation 
to the halfband filters. 
(2) Th,e desired frequency responses of the transfer func- 
tions P,,(z) and QM-'(z) are shown in Fig. 3. The object 
function is formulated as 

obj  ' 
w.3 

Optimise lattice cl, so as to minimise the stopband energy, 
HobJ of the filter for various U, and order M. 
(3) Compute the impulse response coefficients from the 
given set of lattice coefficients cl,. A short program in [22] 
can be applied. 
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Fig.2 QMFIattice 

Tables 2: Impulse response coefficients for various Vaidy- 
anathan filters 

ry-1 I 

/ I \  I 

up n u s  TC 
2 

Fig -3  Desired@equency respotwes of the lattice trm@ fiorctwns 

With the filter impulse response coefficients, the W 
matrix can be formed quickly. Some filter specifications are 
given in Table 1 (summarised from Table I-VI1 [22]). Their 
associated impulse response coeficients are listed in 
Table 2. 

Tables 1: Specifications of lattice filters [221 

Transition bandwidth 
(~,-0.5~)/(2~) Filter number ws specified, a rad 

16a 0.78 

24b 0.70 

32c 0.62 

4% 0.60 

0.1 407 

0.1010 

0.0617 

0.0510 

3 Wavelet packets 

The WT tree follows the rigid constant-(2 structure that 
moves progressively towards the lowest spectral content. 
However, at each decomposition level two branches are 
possible. Either low-frequency or high-frequency or only 
high-frequency can be decomposed. There are many possi- 
ble tree structures, and correspondingly many transforma- 
tions, each producing a different set of basis functions. By 
adaptively selecting transformation bases based on a cost 
function at every node of the decomposition, the WP trans- 
form [23] can determine a basis which suits the problem. 
Note that the transformation matrix remains orthogonal. 

Many different types of basis selection algorithm (top 
down or bottom up) and cost function (entropy, log-energy 
or &' norm) can be chosen in WP. For verification of the 
QMF, we adopted the same scheme as [2]. Using the inci- 
dent wave vector as the top node of the WP decomposition 
tree, if the cost of the parent node vector is smaller than the ( 
norm of its two children, this branch is not decomposed 
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1 6A 24B 32C 48F 

-4.1 065e-04 

1.9297e-03 

-1.0154e-03 

-9.1 157e-03 

1.3238e-02 

2.151 le-02 

-5.1296e-02 

-3.2633e-02 

1.2924e-01 

4.1629e-02 

-2.6276e-01 

-1.0579e-01 

4.8664e-01 

7.0595e-0 1 

3.9334e-01 

8.3705e-02 

-6.2906e-05 

3.4363e-04 

-4.5396e-04 

-9.4490e-04 

2.8438e-03 

7.0814e-04 

-8.8391e-03 

3.1 538e-03 

1.9687e-02 

-1.4853e-02 

-3.5470e-02 

3.8742e-02 

5.5893e-02 

-7.77 1 Oe-02 

-8.3929e-02 

1.31 97e-01 

1.3508e-01 

-1.9445e-01 

-2.6349e-0 1 

2.0161e-01 

6.3560e-01 

5.7280e-01 

2.50 18e-01 

4.5799e-02 

-2.1472e-03 

1.0623e-02 

-1.9673e-02 

8.781 2e-03 

2.1905e-02 

-2.5044e-02 

-2.2323e-02 

4.3529e-02 

2.2452e-02 

-6.662 1 e42 

-2.3242e-02 

9.5931e-02 

2.7635e-02 

-1.3344e-01 

-4.3460e-02 

1.8 1 46e-0 1 

9.1260e-02 

-2.3632e-01 

-2.2922e-0 1 

2.3238e-01 

6.1712e-01 

5.5528e-01 

2.5553e-01 

5.1 651e-02 

1.1 199e-04 

-6.7839e-04 

1.6759e-03 

-1.7081 e-03 

-6.3173e-04 

3.0020e-03 

-7.01 00e-04 

-4.3027e-03 

2.6101e-03 

5.8123e-03 

-5.4870e-03 

-7.4700e-03 

9.6763e-03 

9.1201e-03 

-1.5469e-02 

-1.0582e-02 

2.3099e-02 

1.1712e-02 

-3.2754e-02 

-1.2486e-02 

4.4606e-02 

1.31 09e-02 

-5.8857e-02 

-1.4 179e-02 

7.5814e-02 

1.6973e-02 

-9.5924e-02 

-2.3979e-02 

1.1965e-01 

4.0003e-02 

-1.4669e-01 

-7.4524e-02 

1.7258e-01 

1.4637e-01 

-1.7505e-01 

-2.8850e-01 

5.607 1 e-02 

4.9411e-01 

5.9620e-01 

3.8140e-01 

1.3772e-01 

2.2736e-02 
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further. Otherwise, continue to decompose the tree from 
this node. A commonly used cost function is 

m 

where x is a vector of transfomation coefficients related to 
the node. 

Since this top-down algorithm may not expand the full 
tree, it does not guarantee finding the best tree for the given 
incident vector and cost. The selected basis is a near-best 
tree. If the best basis selection [26] is concerned, the search 
time will increase. The effect of basis selection algorithm 
and cost function is beyond the present discussion. Our 
focus is to evaluate the performance of different QMFs 
using the same WP algorithm. 

Once the tree structure has been determined, the associ- 
ated W matrix is obtained and applied to the matrix Z. 
The remaining procedure is the same as the WT procedure. 

4 Numerical results 

In this Section we use the fast construction method in Sec- 
tion 2 and WP in Section 3 to solve EM scattering IE. A 
2D perfect electric conductor (PEC) of an L-shaped scat- 
terer and cylinder are chosen to validate the QMF using 
the same discretisation size (10 points per A) and relative 
residual error. The two structures are taken from [l]. A dis- 
cretisation size of 0.1 A is often sufficient to model the cur- 
rent on the scatterer. If finer discretisation were used, a 
greater sparsity would be obtained but at the cost of more 
unknowns for a given problem. Detailed explanations can 
be found in [ I ,  41. By changing the physical size of the scat- 
terer proportionally, the MOM matrices with sizes in the 
range N = 256-2048 are obtained. To sparsify the trans- 
formed impedance matrices, the elements of the matrices 
are held at 

AT 

This level has been adopted by [12]. The advantage is that 
the relative error of the solution will appear under a pre- 
dictable limit. The relative residual error is defined by 

where j c  determined from the threshold matrix Z .  Here we 
fix the residual error at (1 2 O.l)%. 

In solving the problem of a TM (E,) polarised wave 
scattered by a 2D conducting scatterer, the scattering char- 
acteristics are obtained from the surface current density Jz 
excited by an incident wave Ezfi2(. The unknown current 
density Jz determined from an electric field integral equa- 
tion as follows: 

4: Jz(r ' )G(r ,  ~ ' ) d r '  = -EFc(r)  

where c represents the surface of the scatterer. 
Dividing the PEC body surface into subdomains and 

employing Galerkin's technique, the IE is reduced to a 
matrix equation. The matrix equation is then solved using 
the WT method in Section 2. Different QMF coefficients 
listed in Table 2 are used to generate the associated W 
matrices. Sampled QMF with different specifications are 
chosen to compare with the widely used Daubechies wave- 
let. The sparsified results for the cylindrical scatterer are 
presented in Fig. 4 for various filters matrices. The sparsity 

(14) 

258 

using these QMF is better than that of the Daubechies 
wavelet. Fig. 4 illustrates that the sharper the TBW of the 
filters, the greater the nonzero reduction element in the 
impedance matrix. The TBW of Daubechies wavelets is 41 
dN [14]. The TBW of Daubechies 16 is 1 and this is the 
largest of those filters. Therefore, the sparsity performance 
of Daubechies 16 is the worst. This suggests that TBW is 
an important factor if wavelets are chosen using the filter- 
design concept. 

16- 

I I  - 
12 - +.. ..... 

+..., 

'+.. . ........... I...... . . . . . . . .  

-x . - .  - . -. -. - . - . - . _. 

2 500 1000 1500 2000 

matrix size 

Fig. 4 
entjlters,for u cylidricul scutterer 

PercerzrLlg.e of nonzero elements us ufiiction ofmutrix size by &'r- 

+......+ Daubechies 16 
X- - - X  filter 16a 
A- -4 filter 24b 
V-V filter 32c 
0 4  filter 48f 

sampling points 

Induced surfclce airrent for u cylkkr with ku = 25.6, N = 256 
MOM solution 
WT-MOM bv 48f 
exact [27] 

Fig. 5 displays the induced surface current of a cylinder, 
which was computed by the WT MOM, conventional 
MOM and exact solution. It was found that the solution 
accuracy of the MOM and the WT MOM is almost the 
same when the residual error is fixed at 1%. The exact solu- 
tion for a circular cylinder is given by [27] 

where n = 300 in the numerical computation because the 
magnitude for n > 300 is negligible. 

A similar numerical experiment was carried out for an 
L-shaped scatterer, the sparsity is shown in Fig. 6. It is 
obvious that the filter length and TBW have important 
effects on the sparsity. Filter 32c has better Performance at 
matrix size N = 256 for its shorter length and sharper 
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TBW. Filter 48f has better sparsity with the increase of 
matrix size N. This is because the sharp TBW of the filter 
and the relative importance of the geometrical comers 
diminish. This figure also suggests that TBW is a crucial 
point in wavelet selection for large problems. Fig. 7 is the 
induced surface current, and the difference between MOM 
and WT MOM is negligible. 

14 

,\" 
Ul 

C aJ 
1 

- 5 
aJ 
0 

aJ 
N 
C 
0 C 

500 1000 1500 2000 
motrix size 

Fig. 6 
ent,filters for an L-slurped scutterer 
+ ...... + Daubechies 16 
X- - . X  filter 16a 
A- --A filter 24b 
V-V filter 32c 
0-0 filter 481' 

The percent qf nonzero elewetits LIS a function of matrix size by 

j:I 
3.5 

- /  

2.5 3'01 E 
2 . 0 -  

1.5- 

1.0- 

0.5- 

sparsity improvement. This is because the effects of geo- 
metrical bending diminish for large-scale problems. 

,\" 
VI 

C al 
1 

- 5 
0) 

0 

aJ 
N 
C 
0 C 

.......... 

. " ' ' x  n 
__n 

01 f I 

500 1000 1500 2000 
motrix size 

Fig. 8 
for a cylidricul scutterw +- ---+ 
X---  -X  
0-0 WT by filter 48f 
A-A WP by filter 48f 

Mutri-x sparsity (8 afwiction ofinatrix size by WTund WP nietliods 

WT by Daubechies 16 
WP by Daubechies 16 

d ~ e r -  

L 
al 
N 
C 
0 C 

0 50 100 150 200 250 
Fig.7 
25.6h. N = 256 
~ MOM solution 

huhced surfice current for  mi L-sluyed scattewr with contour = 

WTMoM by 48f 

The WP algorithm in Section 3 can be used to sparsify 
the impedance matrix further. The numerical results are 
shown in Figs. 8 and 9 for the cylinder and L-shaped scat- 
terers, respectively. To demonstrate the improvement in 
sparsity, the curves using WT are added in these figures. It 
is obvious that Filter 48f has better performance because its 
TBW is the sharpest. In the cylindrical case, its WT per- 
formance is even better than the WP of the Daubechies 16 
wavelet. This suggests that the discretionary choice of the 
wavelet must increase computing time to obtain the same 
sparsity using a more sophisticated algorithm like WP. In 
the L-shaped scatterer case, the sparsity is easily affected by 
the comers of scatterer at small matrix size N and better at 
larger N .  However, the direct solution of conventional 
MOM equations is prohibitively expensive for large-scale 
scattering problems. Therefore, the selection of wavelets 
with sharper TBW and shorter length is still valuable for 
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5 -  
1 f 

500 1000 1500 2000 
mat r ix  size 

Matrix- sjlNrsity UT u,fimiion ofmatrix size hi by WTnirrl WP nietli- Fig. 9 
o r l r j k  an L-shped scatterer 
+.-----+ WT by Daubechies I6 
X---  X WP by Daubechies 16 
0-0 WT by filter 48f 
A-A W by filter 48f 

5 Conclusions 

An effective QMF has been applied to solve the IE solution 
of 2D EM scattering problems. Compared with the widely 
used Daubechies wavelets and published data, the QMF 
with sharper TBW proved to perform well in matrix spar- 
sity. The filter-design approach offers an easy way to select 
better QMF for EM scattering applications. Using this 
approach to reduce nonzero elements of the impedance 
matrix, many types of QMF design can be applied and 
provide greater degrees of freedom for QMF selection. For 
electrodynamic applications, a more efficient set of wavelet 
bases should be constructed to fully capitalise on the poten- 
tial of wavelets. Some wavelet construction methods in sig- 
nalhmage processing may perform well in computational 
electromagnetics. Their further development may contrib- 
ute to the improvement of existing computational EM 
codes. 
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