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PROBABILISTIC FAILURE ANALYSIS OF TRANSVERSELY LOADED

LAMINATED COMPOSITE PLATES USING FIRST-ORDER

SECOND MOMENT METHOD

By S. C. Lin1 and T. Y. Kam2

ABSTRACT: A method for the probabilistic failure analysis of laminated composite plates with random system
parameters subject to transverse loads is presented. System parameters such as material properties, plate thick-
ness, and lamina strengths of a laminated composite plate are treated as baseline random variables. The statistics
of the baseline random variables obtained from experiments are used in a stochastic finite-element analysis for
computing the statistical moments of stresses in the laminated composite plate. An appropriate failure criterion
from which the statistical moments of first-ply failure load are derived via a first-order second moment method
is used to construct the limit state equation of the plate in the probabilistic failure analysis. The reliability of
the laminated plate is then computed using an assumed probability distribution function of the first-ply failure
load. The feasibility and accuracy of the present method are validated by the experimental data of centrally
loaded laminated composite plates with different layups. The suitability of several commonly used failure criteria
for reliability analysis of laminated composite plates is also investigated by means of several examples.
INTRODUCTION

Laminated composite panels/plates have found broad appli-
cations in the construction of automobile, mechanical, space,
and marine structures in recent years. The use of laminated
composite panels/plates in fabricating these structures has re-
sulted in a significant increase in payload, weight reduction,
speed, maneuverability, and durability. In pursuing these
achievements, the reliability analysis of laminated composite
panels/plates has thus become an important topic of research.
Recently, a number of researchers have studied the reliability
of composite laminates composed of various random param-
eters subjected to different types of loads. For instance, Sun
and Yamada (1978) and Cederbaum et al. (1990) studied the
failure probability of composite laminates with random
strength parameters subjected to in-plane loads. Cassenti
(1984) studied the first-ply failure probability and failure lo-
cation of laminated composite beams and plates on the basis
of the Weibull weakest link hypothesis. Kam and his associates
(1992, 1993) and Engelstad and Reddy (1993) studied the re-
liability of linear or nonlinear laminated composite plates with
random material properties subjected to deterministic or ran-
dom transverse loads. Gurvich and Pipes (1995) used a mul-
tistep failure approach to study the failure probability of lam-
inated composite beams subjected to bending. Lin et al. (1998)
presented a procedure for reliability analysis of laminated
composite plates with random material constants and uncertain
stacking sequences subject to the failure modes of buckling
and/or first-ply failure. In their study, the variabilities of ma-
terial strength parameters were not considered and neither was
the analytical method for reliability assessment validated by
experimental results. On the other hand, Kam and Chang
(1997) presented different methods, which were formulated on
the basis of either dependent or independent failure criteria, to
predict the failure probability of laminated composite plates
with random strength parameters subjected to transverse loads.
In their study, however, the variabilities of material constants
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and geometric parameters were not considered, and thus in
some cases significant differences between the theoretical and
experimental reliabilities had been observed (e.g., percentage
difference greater than 11%). Though much work has been
performed in this area, more efforts are still needed; in partic-
ular, the combined effects of uncertainties in lamina strengths,
material properties, and plate thickness on the reliability of
composite laminates should be studied thoroughly if highly
reliable composite structures are to be designed.

In this paper, a method is developed for the reliability anal-
ysis of laminated composite plates with random system param-
eters. Material properties, plate thickness, and strength param-
eters are treated as baseline random variables in a stochastic
finite-element analysis for determining the statistics of stresses
in a laminated composite plate. First-ply failure is chosen as
the limit state and a phenomenological failure criterion is used
to construct the limit state equation of the laminated composite
plate in the reliability analysis. Experimental first-ply failure
load data of centrally loaded laminated composite plates with
different lamination arrangements are used to verify the ac-
curacy of the proposed method. The suitability of the failure
criterion adopted in constructing the limit state equation is
investigated via the comparative study between the theoretical
and experimental reliability predictions.

UNCERTAINTY IN COMPOSITE LAMINATES

A composite laminate is a stack of layers of fiber-reinforced
laminae. The fiber-reinforced laminae are made of fibers and
matrix that are of two different materials. The way in which
the fibers and matrix materials are assembled to make a lam-
ina, as well as the layup and curing of laminae, are compli-
cated processes and may involve a lot of uncertainty. There-
fore, the material properties of a composite laminate are
random in nature. In the present stochastic finite-element
method (SFEM), the elastic moduli (E1, E2, n12, G12, G13, G23)
of the material are treated as independent baseline random var-
iables, and their statistics are used to predict the mechanical
behavior of the composite laminate. In the first-ply failure
analysis of the laminated composite plate, the lamina strengths
(XT , Xc, YT , Yc, R, S ) of the material are also treated as inde-
pendent baseline random variables. It is worth noting that,
since the determination of the degree of dependence among
the baseline random variables is a difficult though not intrac-
table task, the adoption of the independence assumption can
greatly simplify the reliability assessment procedure. In fact,
the results obtained from the following reliability assessment
0.126:812-820.
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will show that the independence assumption is acceptable. Fur-
thermore, fiber orientations and thicknesses of laminae may
fluctuate in the vicinity of the prescribed values depending on
the manufacturing process. In the previous study (Lin et al.
1998), it has been shown that the small variations of fiber
orientations have insignificant effects on the variation of the
laminate strength. Hence, without loss of generality, fiber ori-
entations are treated as constants while laminate thickness h
is considered to be random. Herein, all the lamina thicknesses
in the plate model are taken to be equal and the uncertainty
of each lamina can be expressed in the following form:

h̄
t = (1 1 j) (1)

N

where j stands for the zero mean random variable for h; =h̄
mean value of h; and N = number of layers.

From now on, ai (i = 1, 2, . . . , 13) will be used to denote
the baseline random variables in which ai (i = 1, 2, . . . , 6)
are the material properties E1, E2, n12, G12, G13, and G23, re-
spectively; ai (i = 8, . . . , 13) are the lamina strengths XT , Xc,
YT , Yc, R, and S, respectively; and a7 = h. The aforementioned
uncertainties in the mechanical properties and the thicknesses
of composite laminae can cause variations in the elements of
the constitutive matrix of the laminate, H, where

A Bij ijH = (2)F GB Dij ij

The elements Aij , Bij , and Dij are given by
h/2

(q) 2(A , B , D ) = Q (1, z, z ) dz (i, j = 1, 2, 6) (3)ij ij ij ijE
2h/2

h/2

(q)¯ ¯A = k k A , A = Q dz (l = 6 2 i, r = 6 2 j; i, j = 4, 5)ij l r ij ij ijE
2h/2

(4)

The stiffness coefficients, depend on the material prop-(q)Q ,ij

erties and orientation of the qth layer. The parameters k1 and
k2 are the shear correction factors. Definitions and descriptions
of the aforementioned elastic moduli, lamina strengths, and
stiffness coefficients can be found in Appendix I. Since the
stiffness of the laminated plate is uncertain, the stresses in-
duced in the laminated plate are also random variates of which
the statistical moments will be derived from those of the base-
line random parameters in a stochastic finite-element analysis.

STOCHASTIC FINITE-ELEMENT ANALYSIS

The present stochastic finite-element analysis of laminated
composite plates with random parameters if formulated on the
basis of the first-order shear deformation theory (Mindlin
1951) and the mean-centered second-order perturbation tech-
nique. It is noted that the spatial variability of composite lam-
inates made with prepreg tapes and fabricated via the auto-
clave molding approach is generally small and can be
neglected in the reliability analysis. Therefore, spatial vari-
ability is not considered in the following stochastic finite-el-
ement formulation. The shear deformable finite element de-
veloped by Kam and Chang (1992a,b) is used to derive the
stochastic finite element. The element can be applied to the
analyses of both thin and moderately thick laminated compos-
ite plates, and it contains five degrees of freedom (three dis-
placements and two slopes, i.e., shear rotations) per node. In
evaluating the terms in the element stiffness matrix, a quad-
ratic (8 nodes) element of the serendipity family (Cook et al.
1989) with a reduced integration of 2 3 2 Gauss rule is used
in the finite-element formulation. The load-displacement re-
lation of a laminated composite plate is expressed as
J. Eng. Mech. 20
KD = P (5)

where K = structural stiffness matrix; D = vector of nodal
displacements; and P = vector of nodal forces. Detailed deri-
vation of the stochastic finite-element method has been re-
ported in the literature (e.g., Lin and Kam 1992). A brief re-
view of the method is given as follows.

Based on the mean-centered second-order perturbation tech-
nique, the stiffness matrix, K, is expanded in terms of the
random variables ai (i = 1, 2, . . . , 7), which represent struc-
tural uncertainty in the plate, as

7 7 7
1(0) (1) (2)K = K 1 K da 1 K da da (6), ,i i ij i jO OO2i=1 i=1 j=1

where dai = ai 2 with denoting the mean value of theā āi i

random variable ai ; K (0) = zeroth-order structural stiffness ma-
trix, which is identical to the deterministic structural stiffness
matrix; = first-order structural stiffness matrix with respect(1)K ,i

to random variables ai; = second-order structural stiffness(2)K ,ij

matrix with respect to random variables ai and aj ; subscripts
,i denote the derivative of a function with respect to ai. The
nodal displacements are also influenced by the structural un-
certainty; thus, the displacement vector possesses the similar
expression

7 7 7
1(0) (1) (2)D = D 1 D da 1 D da da (7), ,i i ij i jO OO2i=1 i= 1 j=1

Substituting (6) and (7) into (5), truncating the third- and
fourth-order terms, and equating equal order terms, the
zeroth-, first-, and second-order equations are obtained, re-
spectively, as

(0) (0)K D = P (8)
7

(0) (1) (1) (0)[K D 1 K D ]da = 0 (9), ,i i iO
i=1

7 7
1 1(0) (2) (1) (1) (2) (0)K D 1 K D 1 K D da da = 0 (10), , , ,ij j i ij i jOO F G2 2i=1 j=1

The zeroth- and first-order displacement vectors are evaluated
from (8) and (9), respectively, as

(0) (0) 21D = [K ] P (11)

and
(1) (0) 21 (1) (0)D = [K ] [2K D ] (12), ,i i

The expected value of the second-order displacement vector,
is obtained by taking the expected value on both sides of(2)D ,,ij

(10):
7 7

1(2) (0) 21 (1) (1) (2) (0)E [D ] = 2[K ] K D 1 K D E [da da ], , ,j i ij i jOO F G2i=1 j=1

(13a)

where
7 7

1(2) (2)D = D da da (13b),ij i jOO2 i=1 j=1

In view of (11)–(13), the mean value vector and the covari-
ance matrix of the nodal displacements of (7) are obtained,
respectively, as

(0) (2)E [D] > D 1 E [D ] (14)

and
7 7

t (1) (1) tE [(D 2 E [D])(D 2 E [D]) ] > [D ][D ] E [da da ], ,i j i jOO
i=1 j=1

(15)
00.126:812-820.
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where > denotes an approximate equality.
Once the statistical moments of the nodal displacements

have been obtained from (14) and (15), the stress statistics can
be evaluated using the stress-strain and strain-displacement re-
lations. The second-order approximation of the expected value
of the stress vector is

(0) (2)E [s] > s 1 E [s ] (16)

and the covariance matrix of the stresses is
7 7

t (1) (1) tE [(s 2 E [s])(s 2 E [s]) ] > [s ][s ] E [da da ], ,i j i jOO
i=1 j=1

(17)

where s(0), and = zeroth-, first-, and second-order(1) (2)s , s, ,i ij

stress vectors, respectively.

FIRST-PLY FAILURE LOAD

A composite laminate is assumed to fail when any ply in
the laminate fails. The first-ply failure load of the laminate is
determined in the first-ply failure analysis in which an appro-
priate failure criterion is adopted. Let lp be defined as the
strength ratio, which is the ratio of the failure stress to the
corresponding applied stress. The failure criterion (Tsai and
Hahn 1980) at any point in the laminate can be written as

2 2 2 2 2 2l (F s 1 2F s s 1 F s 1 F s 1 F s 1 F s )p 11 1 12 1 2 22 2 44 4 55 5 66 6

1 l (F s 1 F s ) 2 1 = 0p 1 1 2 2 (18)

where strength parameters Fij and Fi = functions of lamina
strengths; s1 and s2 = normal stresses in directions 1 and 2,
respectively; and s4, s5, and s6 = shear stresses in planes 23,
13, and 12, respectively. The point that possesses the maxi-
mum strength ratio in the laminate is defined as the most crit-
ical point. The strength ratio of the most critical point denotes
a quantitative measure of the safety margin of the laminate,
i.e., if the ratio is two, it means that the applied load can be
doubled before failure occurs. Therefore, it is obvious that the
strength ratio of the most critical point in the laminated com-
posite plate subjected to a unit load is equivalent to the first-
ply failure load of the plate. In the probabilistic failure anal-
ysis, it is assumed that failure only initiates at the most critical
point in the laminate. For a laminated composite plate with
random system parameters, the first-ply failure load of the
plate is also random in nature and its statistical moments can
be inferred from those of the baseline random variables using
the mean-centered second-order perturbation technique and the
stochastic finite-element method. Following the same proce-
dure as described in the previous section, the mean and vari-
ance of the strength ratio at the most critical point in the lam-
inated plate can then be expressed, respectively, as

13 13
1(0) (2)E [l ] > l 1 l E [da da ] (19),p p p kl k lOO2 k=1 l=1

and
13 13

2 (1) (1)E [(l 2 E [l ]) ] > l l E [da da ] (20), ,p p p k p l k lOO
k=1 l=1

Since all the baseline random variables are independent, (20)
can be rewritten as

13

2 (1)2 2S = l S (21),lP P i iO
i=1

where and = variance and standard deviation of lP,2S SlP lp

respectively; and = variance of ai. The zeroth-, first-, and2S i

second-order strength ratios in the above equations can be de-
814 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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termined from the truncated Taylor series form of (18) follow-
ing the same procedure as described in the previous section.
Define the limit state function F as

2F = l V 1 l L 2 1 (22a)p p

with

2 2 2 2 2V = F s 1 2F s s 1 F s 1 F s 1 F s 1 F s (22b)11 1 12 1 2 22 2 44 4 55 5 66 6

and

L = F s 1 F s (22c)1 1 2 2

In view of (18), (22a) can be rewritten as

F = 0 (23)

Expansion of F in the truncated Taylor series gives
13 13 13

1(0) (1) (2)F = F 1 F da 1 F da da (24), ,i i ij i jO OO2i=1 i=1 j=1

where the zeroth-, first-, and second-order limit state function,
i.e., F(0), and are expressed, respectively, as(1) (2)F , F ,, ,i ij

2(0) (0) (0) (0) (0)F = l V 1 l L 2 1 = 0 (25)p p

2(1) (1) (0) (0) (0) (0) (1) (0) (1)F = l (L 1 2l V ) 1 (l L 1 l V ) = 0 (26), , , ,i p i p p i p i

(2) (2) (0) (0) (0) (1) (1) (0)F = l (L 1 2l V ) 1 2l l V, , , ,ij p ij p p i p j

(1) (1) (0) (1) (0) (2) (2)1 l (L 1 2l V ) 1 l (L 1 V ), , , , ,p i j p j p ij ij

(1) (1) (1)1 l (L 1 2V ) = 0, , ,p j i i (27)

It is noted that the zeroth-, first-, and second-order stress vec-
tors obtained in the stochastic finite-element analysis have
been used in the evaluation of those of V and L. Herein the
zeroth-order strength ratio is obtained from (25) via the solu-
tion of the following quadratic equation:

2(0) (0) (0)2V 1 V 1 4LÏ(0)l = (28)p (0)2L

The first- and second-order strength ratios, and are(1) (2)l l ,, ,p i p ij

determined directly from (26) and (27), respectively. Finally
the substitution of and into (19) and (20) gives(0) (1) (2)l , l , l, ,p p i p ij

the statistical moments (mean E[lP] and standard deviation
of the first-ply failure load.S )lP

Herein, different failure criteria, namely, the Hoffman, Tsai-
Hill, polynomial type maximum stress, and Tsai-Wu failure
criteria, will be adopted in the above probabilistic failure anal-
ysis of laminated composite plates. Expressions for determin-
ing the strength parameters Fij and Fi can be found in the
literature (Reddy and Pandey 1987). Since sensitivity analysis
is an important part of structural reliability assessments, the
effects of uncertainties of the baseline random parameters on
the variation of first-ply failure load are studied using the fol-
lowing sensitivity measure:

­S Slp i
h = (29)i

­S Si lp

where hi is defined as the relative sensitivity coefficient, which
is a measure of the fractional change of with respect to aSlP

fractional change in Si; and ­ is the differential operator. In
view of (21), the above equation can be rewritten as

2S i(1)2h = l (30),i P i 2S lp

Based on the above equation, the baseline random variables
that have significant effects on the variation of first-ply failure
load can be identified.
00.126:812-820.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 o

n 
05

/0
1/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
RELIABILITY ANALYSIS

In the present reliability study of a laminated composite
plate, it is assumed that the plate is composed of identical
laminae that possess the same material properties and fault
size. The adoption of the material uniformity assumption in
the reliability analysis excludes the consideration of size effect
and ensures that the plate always fails at the most critical point
where the failure probability is treated as that of the plate. The
reliability assessment of a composite structure in general re-
quires information on the probability distribution and not just
on the statistical moments of the strength of the structure. In
the above stochastic finite-element analysis of the composite
laminate, however, only statistical moments of the strength
ratio can be determined, while the type of probability distri-
bution of the above strength ratio is indeterminate. Therefore,
it is worth studying the effects of various probability distri-
butions on the prediction of laminate reliability before any
attempt in choosing the type of probability distributions for
the strength variables is made. Let and fp(v) be the prob-f (u)lp

ability density functions (pdf) of the first-ply failure load of
the plate and applied load P, respectively. The failure proba-
bility Pf of the laminated plate subject to first-ply failure is
determined from the following equation:

` v

P = f (u)f (v) du dv (31)f l pE E p

0 0

If P is deterministic and of magnitude Pc, then failure will
occur when lp < Pc and the above equation can be simplified
as

Pc

P = f (u) du (32)f lE p

0

In the following analysis, three types of probability distribu-
tions, namely, normal, lognormal, and Weibull distributions,
will be adopted in (31) or (32) to evaluate the failure proba-
bilities of a number of laminated composite plates.

EXPERIMENTAL INVESTIGATION

The statistics of material properties, laminate thickness, and
lamina strength parameters required in the present analytical
method were obtained from experimental measurements and
testing. The material used in the present study was graphite/
epoxy (Q-1115) prepreg tapes supplied by the Toho Co., Ja-
pan. A number of 30 3 30 cm composite laminates were made
using the vacuum bag molding method, in which the vacuum
bagged laminate was cured by a hot press machine. Each cured
laminate was then cut to make different types of specimens
used for material characterization. The material properties and
lamina strengths were determined from experiments conducted
in accordance with the relevant ASTM standards (1990). The
statistics of each lamina material parameter were determined
from a set of 17 specimens that were prepared from 17 dif-
ferent laminates. Thicknesses of different laminated plates
were measured and the results used to determine the statistics
of plate thickness as well as those of lamina thickness. The
experimentally determined statistics of material properties,
lamina strengths, and lamina thickness as well as the confi-
dence intervals for their means with 95% confidence level are
tabulated in Table 1. Spatial variabilities of the baseline ran-
dom variables within a laminated plate were also studied ex-
perimentally. Thicknesses at different locations on a laminate
were measured and a number of specimens cut from a laminate
were used to determine each of the lamina parameters. The
experimental results showed that, for the present composite
laminates, the variabilities of the baseline random variables
J. Eng. Mech. 2
TABLE 2. Experimental Statistics of First-Ply Failure Load of
Composite Plates with Various Lamination Arrangements

Layup
(1)

Statistics

95% confidence
intervals for

mean
(2)

COV
(%)
(3)

Chi-Squared Test
Statistica

Nor-
mal
(4)

Lognor-
mal
(5)

Weibull
(6)

0 0[0 /90 ]6 6 S 1,218.9 6 33.9 N 5.95 10.28 9.45 13.49
0 0[45 /245 ]6 6 S 1,296.9 6 38.8 N 6.40 7.94 7.22 11.12

0 0 0[0 /90 /0 ]2 9 S 1,841.1 6 40.4 N 4.69 13.40 12.51 18.13
0 0 0[45 /245 /45 ]2 9 S 2,092.6 6 65.2 N 6.47 7.26 6.59 10.44

aFor k = 5, m = 2, and the a risk at 0.005, x2(1 2 a; k 2 m 2 1) =
10.6.

TABLE 1. Statistics of Random Parameters

Parameters
(1)

95% confidence
interval for mean

(2)

COV
(%)
(3)

E1 138.41 6 3.38 GPa 3.60
E2 9.24 6 0.27 GPa 4.34
G12 4.52 6 0.17 GPa 5.51
G13 4.52 6 0.17 GPa 5.51
G23 1.02 6 0.04 GPa 5.51
n12 0.32 6 0.01 5.90
t 0.147 6 0.0001 mm 1.24
XT 1,537.2 6 17.5 MPa 2.21
XC 1,722.1 6 19.6 MPa 2.21
YT 44.4 6 1.0 MPa 4.30
YC 213.9 6 4.8 MPa 4.30
R 79.7 6 2.4 MPa 5.92
S 102.4 6 3.1 MPa 5.92

within each laminate were usually small [coefficient of varia-
tion (COV) less than 1%].

Tests of centrally loaded square 10 3 10 cm laminated com-
posite plates of various lamination arrangements, 0 0[0 /90 ] ,6 6 S

and were performed0 0 0 0 0 0 0 0[45 /245 ] , [0 /90 /0 ] , 45 /245 /45 ] ,6 6 S 2 9 S 2 9 S

to study the probability distribution of first-ply failure load for
the plates. The laminate orientation code adopted herein has
been reported in the composite literature (Tsai and Hahn
1980). The basis of the code is that ply angles, separated by
slashes, are listed in order from the top surface to the bottom
surface and enclosed in square brackets. The subscript S out-
side the bracket denotes symmetric lamination, and the nu-
merical subscript on a ply angle means the number of plies
having the same orientation. In preparing the plate specimens,
each 20 3 20 cm laminate fabricated by the vacuum bag mold-
ing method was trimmed along the edges to make a 15 3 15
cm plate specimen for which the width of the clamped edges
is 2.5 cm. Herein, around twenty specimens for each specific
lamination arrangement were tested. The experimental appa-
ratus for the first-ply failure testing consisted of a 10 ton In-
stron testing machine, an acoustic emission (AE) system
(AMS3 Vallen Systeme GmbH, Germany) with two AE sen-
sors, a displacement gauge (LVDT), a data acquisition system,
a steel load applicator with a spherical head of radius r = 5
mm, and a fixture for clamping the specimen. Detailed de-
scription of the experimental setup and the testing procedure
can be found in the literature (Kam et al. 1996, 1998). During
testing, the stress waves measured by the AE system were used
to identify the first-ply failure load of the laminated composite
plates and the failure locations identified by the AE system
were at the center of the laminated plates.

The variabilities of the experimental first-ply failure loads
of the above laminated composite plates have been modeled
by normal, lognormal, or Weibull distributions. The common
features of the adopted probability distributions are that they
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 815
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TABLE 3. Theoretical Statistics of First-Ply Failure Load Determined on Basis of Different Failure

Criterion
(1)

0 0[0 /90 ]6 6 S

Mean value
(N)
(2)

COV
(%)
(3)

0 0[45 /245 ]6 6 S

Mean value
(N)
(4)

COV
(%)
(5)

0 0 0[0 /90 /0 ]2 9 S

Mean value
(N)
(6)

COV
(%)
(7)

0 0 0[45 /245 /45 ]2 9 S

Mean value
(N)
(8)

COV
(%)
(9)

Maximum stress 1,156.1 (25.1%) 5.99 (0.7%) 1,251.4 (23.5%) 5.89 (27.9%) 1,789.5 (22.8%) 5.03 (7.2%) 1,967.0 (26.0%) 5.95 (28.0%)
Tsai-Wu 1,213.2 (20.5%) 6.31 (6.1%) 1,302.6 (0.4%) 6.15 (23.9%) 1,892.6 (2.8%) 5.30 (13.0%) 2,097.0 (0.2%) 6.38 (21.4%)
Hoffman 1,147.3 (25.9%) 5.99 (0.7%) 1,243.3 (24.1%) 5.90 (27.9%) 1,773.7 (23.7%) 5.06 (7.8%) 1,947.5 (26.9%) 6.00 (27.2%)
Tsai-Hill 1,179.7 (3.2%) 6.17 (3.7%) 1,279.6 (21.3%) 6.09 (24.8%) 1,934.9 (5.1%) 6.11 (30.1%) 2,042.7 (22.4%) 6.33 (22.2%)
are tractable, smooth functions commonly used by practicing
engineers and able to produce reasonable results for reliability
assessments of mechanical/structural components. The statis-
tics of the first-ply failure loads, the confidence intervals for
the mean first-ply failure loads with 95% confidence level, and
the chi-squared test statistics determined from the goodness-
of-fit tests of different expected distributions of the first-ply
failure loads for the laminated composite plates are listed in
Table 2. Furthermore, the critical value of the x2 statistic for
a significance level of a = 0.5%, which is 10.6, is also tabu-
lated in Table 2 for comparison. In general, both the confi-
dence intervals for the means and the variations (COV less
than 7%) of the first-ply failure loads of the laminated plates
are small. When comparing the chi-squared test statistics listed
in Table 2, it is obvious that among the adopted distributions
the lognormal model is the best representation of the sample
data for the plates because it always yields the smallest value
of the test statistic. By engineering judgment, it seems reason-
able to treat the lognormal distribution as the ‘‘true’’ distri-
bution of the first-ply failure load of the laminated composite
plates. Nevertheless, it is worth mentioning that the values of
the chi-squared test statistics of the adopted probability distri-
butions are quite large when compared with the critical value
of x2 = 10.6 for a = 0.5%. The above hypothesis test results
imply that without the expense of engineering judgment, it is
difficult to determine the true distribution for the first-ply load
of the laminated plates. Therefore, it is recommended that ex-
tensive tests of laminated composite plates and more sophis-
ticate statistical analysis of the test data be performed in the
future studies if a higher confidence level on the identified
distribution of the first-ply failure load of the laminated com-
posite plates is desired. The parameters of the experimental
distributions of the first-ply failure loads of the laminated com-
posite plates were determined from the sample data using the
maximum likelihood method (Neter et al. 1988). Visual in-
spection of the failed specimens was performed. A large matrix
crack was always observed at the center of the lower surface
of each specimen. The fact that all the plate specimens failed
at the center of the plates validated the assumptions that these
laminated plates only failed at the most critical point in the
plates and that spatial variability was insignificant.

RESULTS AND DISCUSSION

The aforementioned probabilistic method for first-ply failure
analysis is used to study the strength distribution and reliability
of the laminated composite plates that have been tested. A 6
3 6 mesh in a full plate and clamped conditions at all edges
are adopted in the stochastic finite-element analysis of the
plates. The accuracy of the adopted stochastic finite-element
method and the convergence of the finite-element mesh for
first-ply failure analysis have been verified previously (Lin and
Kam 1992; Kam et al. 1996). Different failure criteria are first
used in turn to construct the limit state equation of the lami-
nated plates in the probabilistic failure analysis. The theoreti-
cally predicted statistical moments for the first-ply failure load
of the laminated composite plates are listed in Table 3 for
comparison. The negative signs ahead of the percentage dif-
816 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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TABLE 4. Relative Sensitivity Coefficients Determined on Ba-
sis of Tsai-Wu Criterion

Parameter
(1)

0 0[0 /90 ]6 6 S

(2)

0 0[45 /245 ]6 6 S

(3)

0 0 0[0 /90 /0 ]2 9 S

(4)

0 0 0[45 /245 /45 ]2 9 S

(5)

h(E1) 0.1E100 0.1E100 0.8E201 0.1E100
h(E2) 0.1E100 0.1E100 0.9E201 0.1E100
h(n12) 0.2E201 0.1E201 0.2E201 0.2E201
h(G13) 0.2E201 0.1E201 0.2E201 0.1E201
h(G23) 0.3E202 0.3E202 0.3E201 0.1E202
h(h) 0.3E100 0.3E100 0.3E100 0.3E100
h(XT) 0.2E201 0.2E201 0.4E201 0.3E201
h(XC) 0.2E201 0.2E201 0.3E201 0.3E201
h(YT) 0.2E100 0.2E100 0.1E100 0.1E100
h(YC) 0.5E202 0.4E202 0.1E203 0.8E202
h(R) 0.7E202 0.2E216 0.5E201 0.3E216
h(S ) 0.3E203 0.1E201 0.2E203 0.2E201

ferences between the experimental and theoretical statistics
specified within parentheses indicate that the theoretical pre-
dictions are less than the experimental ones. It is noted that,
irrespective of the type of failure criterion adopted in the prob-
abilistic failure analysis, the present stochastic finite-element
method can predict reasonably accurate mean first-ply failure
loads of the laminated composite plates when compared with
the experimental results. In particular, the differences between
the theoretical and experimental mean first-ply failure loads
for the cases using the Tsai-Wu criterion are less than 3%.
Conversely, the differences between the theoretical and ex-
perimental coefficients of variation may be small or large de-
pending on the layup of the laminated composite plate and the
type of failure criterion adopted in the analysis. In general, the
polynomial type maximum stress criterion and Hoffman fail-
ure criterion can yield reasonably accurate coefficients of var-
iation (error less than or equal to 8%) for the laminated com-
posite plates. At this point, it is not clear which failure criterion
is the most suitable one to be used in the reliability analysis.
Next consider the sensitivity analysis of the variation of the
first-ply failure load for the laminated composite plates. The
relative sensitivity coefficients derived from (30) are listed in
Table 4. It is noted that the random parameters E1, E2, h, and
YT have more significant effects on the variation of the first-
ply failure load for the laminated composite plates than the
other random parameters. Therefore, it is important to have
tight control on the Young’s modulus of fiber, matrix proper-
ties, plate thickness, and tensile strength of the matrix if higher
reliability for the laminated composite plates is desired.

The probability distribution of first-ply failure load and the
suitability of the failure criterion adopted in the reliability
analysis of laminated plates are studied using the experimental
first-ply failure load data. Based on the theoretically deter-
mined statistical moments of the first-ply failure loads in Table
3, different probability density functions, namely, normal, log-
normal, and Weibull, are adopted to simulate the distributions
of the first-ply failure loads of the plates. The theoretically
determined probability distributions of the first-ply failure
loads of the plates are shown in Figs. 1–16 in comparison
with the experimental results. It is noted that, irrespective of
the type of probability distribution assumed for the first-ply
000.126:812-820.
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FIG. 1. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Polynomial Type Maximum Stress0 0[0 /90 ]6 6 S

Criterion)

FIG. 2. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Wu Criterion)0 0[0 /90 ]6 6 S

FIG. 3. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Hoffman Criterion)0 0[0 /90 ]6 6 S

FIG. 4. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Hill Criterion)0 0[0 /90 ]6 6 S
J. Eng. Mech. 
FIG. 5. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Polynomial Type Maximum Stress0 0[45 /245 ]6 6 S

Criterion)

FIG. 6. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Wu Criterion)0 0[45 /245 ]6 6 S

FIG. 7. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Hoffman Criterion)0 0[45 /245 ]6 6 S

FIG. 8. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Hill Criterion)0 0[45 /245 ]6 6 S
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 817
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FIG. 9. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Polynomial Type Maximum Stress0 0 0[0 /90 /0 ]2 9 S

Criterion)

FIG. 10. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Wu Criterion)0 0 0[0 /90 /0 ]2 9 S

FIG. 11. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Hoffman Criterion)0 0 0[0 /90 /0 ]2 9 S

failure load, the experimental first-ply failure load data of the
plates with different layups can be well fitted by the theoretical
probability distributions if the Tsai-Wu criterion is used in the
first-ply failure analysis of the plates. As has been manifested
in Table 3, the suitability of the Tsai-Wu criterion is attributed
to the fact that it can accurately predict the mean-first-ply fail-
ure loads of the plates. As for the and0 0 0[45 /245 ] [45 /26 6 S

plates, the use of the Tsai-Hill criterion can also pre-0 045 /45 ]2 9 S

dict reasonably accurate probability distributions of the first-
ply failure load when compared with the experimental data.

Next consider the suitability of the assumed probability dis-
tributions for reliability analysis. For real structures, the reli-
ability of the structures is usually high, i.e., greater than 0.9.
Since the addition of reliability and failure probability is equal
to 1, it is thus worth studying the lower tails of the theoretical
distributions in Figs. 1–16. It is noted that in general the dif-
818 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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FIG. 14. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Wu Criterion)0 0 0[45 /245 /45 ]2 9 S

FIG. 13. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Polynomial Type Maximum0 0 0[45 /245 /45 ]2 9 S

Stress Criterion)

FIG. 12. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Hill Criterion)0 0 0[0 /90 /0 ]2 9 S

ferences among the assumed probability distributions in reli-
ability prediction are small. Nevertheless, the Weibull distri-
bution always produces the lowest reliability (or highest failure
probability) for the laminated plates when the case of a plate
reliability greater than 0.9 is considered. This can be further
illustrated by comparing the numerical values of the reliability
of the laminated plates. Tables 5–7 list the reliabilities of the
laminated plates determined on the basis of different failure
criteria and various assumed probability distributions for the
first-ply failure load. The experimental reliabilities given in
these tables were determined from the experimental distribu-
tions listed in Table 2. It is noted that, irrespective of the type
of the assumed probability distribution, the use of the Tsai-Wu
criterion can produce very accurate reliabilities for the plates
with absolute difference less than 0.008 when compared with
000.126:812-820.
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FIG. 16. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Tsai-Hill Criterion)0 0 0[45 /245 /45 ]2 9 S

FIG. 15. Theoretical Probability Distributions of First-Ply Fail-
ure Load of Plate (Hoffman Criterion)0 0 0[45 /245 /45 ]2 9 S

the experimental results. The other failure criteria, however,
may produce results for the plates with absolute difference up
to 0.09. In the previous section, it has shown that the lognor-
mal model can well fit the experimental first-ply failure load
data. Here, it is also shown that the combined use of lognormal
distribution and the Tsai-Wu criterion in the probabilistic fail-
J. Eng. Mech. 20
FIG. 17. Coordinate Systems for Composite Lamina

ure analysis can well simulate the distribution of the first-ply
failure loads of the plates, as shown in Figs. 2, 6, 10, and 14,
and produce reasonably accurate reliabilities for the plates, as
given in Table 6. On the other hand, it is again noted that
amongst the assumed probability distributions, the Weibull dis-
tribution usually produces the most conservative results for the
plate reliability. For purpose of comparison, failure probabil-
ities at other ponts in the laminated composite plates have been
computed in this study. It has been found that, except at the
most critical point, the failure probabilities at other locations
are insignificant and have no eminent effect on the reliability
of the plates. It is also worth noting that the theoretical reli-
abilities in Tables 5–7 may vary slightly (less than 0.5%) if
first-order rather than second-order approximations to the
mean values of the displacements, stresses, and first-ply failure
load are used in the reliability analysis.

CONCLUSIONS

A method was presented for probabilistic failure analysis
and reliability assessment of laminated composite plates with
random system parameters. The stochastic finite-element
method, the first-order second moment methods, and a phe-
nomenological failure criterion were used in the formulation
of the present method, which only required statistical infor-
mation on the material properties, lamina strengths, and plate
thickness in the probabilistic failure analysis of composite lam-
inates. Statistical moments of the baseline random variables
and probability distributions of first-ply failure loads of lami-
TABLE 5. Reliabilities of Laminated Composite Plates Predicted by Different Failure Criteria Based on Normal Distribution

Layup
(1)

Load
(N)
(2)

PLATE RELIABILITY

Theoretical

Maximum
stress

(3)
Tsai-Wu

(4)
Hoffman

(5)
Tsai-Hill

(6)
Experiment

(7)
0 0[0 /90 ]6 6 S 1,050 0.937 (0.053)a 0.983 (0.007) 0.922 (0.068) 0.963 (0.027) 0.990

0 0[45 /245 ]6 6 S 1,110 0.972 (0.016) 0.992 (20.004) 0.965 (0.023) 0.973 (0.015) 0.988
0 0 0[0 /90 /0 ]2 9 S 1,650 0.939 (0.048) 0.992 (20.005) 0.916 (0.071) 0.992 (20.005) 0.987

0 0 0[45 /245 /45 ]2 9 S 1,800 0.923 (0.062) 0.987 (20.002) 0.897 (0.088) 0.970 (0.015) 0.985
aDifference between experimental and theoretical reliability.

TABLE 6. Reliabilities of Laminated Composite Plates Predicted by Different Failure Criteria Based on Lognormal Distribution

Layup
(1)

Load
(N)
(2)

PLATE RELIABILITY

Theoretical

Maximum stress
(3)

Tsai-Wu
(4)

Hoffman
(5)

Tsai-Hill
(6)

Experiment
(7)

0 0[0 /90 ]6 6 S 1,050 0.943 (0.005)a 0.988 (0.005) 0.927 (0.066) 0.968 (0.025) 0.993
0 0[45 /245 ]6 6 S 1,110 0.978 (0.014) 0.995 (20.003) 0.971 (0.021) 0.979 (0.013) 0.992

0 0 0[0 /90 /0 ]2 9 S 1,650 0.944 (0.046) 0.995 (20.005) 0.920 (0.070) 0.995 (20.005) 0.990
0 0 0[45 /245 /45 ]2 9 S 1,800 0.928 (0.061) 0.991 (20.002) 0.900 (0.089) 0.975 (0.014) 0.989

aDifference between experimental and theoretical reliability.
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 819
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TABLE 7. Reliabilities of Laminated Composite Plates Predicted by Different Failure Criteria Based on Weibull Distribution

Layup
(1)

Load
(N)
(2)

PLATE RELIABILITY

Theoretical

Maximum stress
(3)

Tsai-Wu
(4)

Hoffman
(5)

Tsai-Hill
(6)

Experiment
(7)

0 0[0 /90 ]6 6 S 1,050 0.924 (0.050)a 0.966 (0.008) 0.911 (0.063) 0.945 (0.029) 0.974
0 0[45 /245 ]6 6 S 1,110 0.954 (0.017) 0.977 (20.006) 0.948 (0.023) 0.954 (0.017) 0.971

0 0 0[0 /90 /0 ]2 9 S 1,650 0.925 (0.044) 0.977 (20.008) 0.907 (0.062) 0.977 (20.008) 0.969
0 0 0[45 /245 /45 ]2 9 S 1,800 0.912 (0.056) 0.970 (20.002) 0.891 (0.077) 0.952 (0.016) 0.968

aDifference between experimental and theoretical reliability.
nated composite plates with different layups were determined
from experiments. The experimental results were then used to
verify the accuracy of the proposed method, to study the prob-
ability distribution of first-ply failure load, and to investigate
the suitability of the commonly used failure criterion. It was
shown that the present method could produce reasonably ac-
curate predictions of reliability for the laminated composite
plates. This implies that the present method may have the po-
tential to become a useful tool for the reliability design or
assessment of laminated composite structures. Furthermore, it
was found that, irrespective of the type of the failure criterion
adopted in the reliability analysis, amongst the adopted prob-
ability distributions, the use of the Weibull distribution in sim-
ulating the distribution of first-ply failure load would yield a
conservative prediction of reliability for the laminated com-
posite plates. In contrast, irrespective of the types of the prob-
ability distribution used for modeling the distribution of the
first-ply failure load, the use of the Tsai-Wu criterion would
yield excellent reliability predictions for the laminated com-
posite plates. Since amongst the adopted probability distribu-
tions the lognormal distribution can fit the experimental first-
ply failure load data well, it seems appropriate to choose both
the lognormal distribution and the Tsai-Wu failure criterion in
the reliability analysis of laminated composite plates. Never-
theless, it is recommended that extensive tests of laminated
composite plates and more sophisticated statistical analysis of
the test data be performed so that the suitability of the use of
lognormal distribution in simulating the distribution of the
first-ply failure load can be further validated. In the present
study, a sensitivity analysis of the variation of the first-ply
failure load was also performed. It was found that Young’s
moduli of fiber and matrix, plate thickness, and the tensile
strength of the matrix had significant effects on the variation
of the first-ply failure load. Tight control on these parameters
is required if high reliability of laminated plates is desired.

APPENDIX I. PROPERTIES OF COMPOSITE LAMINA

The material coordinate (1-2-3) system in Fig. 17 is used to
describe the properties of a composite lamina.

1. Material constants:
• Ei = modulus of elasticity associated with the i direc-

tion
• nij = Poisson’s ratio
• Gij = shear modulus associated with the ij plane

2. Strengths:
• XT , XC = tensile and compressive strengths associated

with direction 1
• YT , YC = tensile and compressive strengths associated

with direction 2
• R = shear strength associated with planes 12 or 13
• S = shear strength associated with plane 23
820 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000

J. Eng. Mech. 20
3. Stiffness coefficients:
• Q11 = E1/(1 2 n12n21)
• Q12 = n12E2/(1 2 n12n21) = Q21

• Q22 = E2/(1 2 n12n21)
• Q44 = G23

• Q55 = G12 = Q66
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