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ACTIVE PULSE STRUCTURAL CONTROL USING ARTIFICIAL

NEURAL NETWORKS

By Shih-Lin Hung,1 C. Y. Kao,2 and J. C. Lee3

ABSTRACT: Increasing interest has focused on applying active control systems to civil engineering structures
subjected to dynamic loading. This study presents an active pulse control algorithm, termed the adaptive neural
structural active pulse (ANSAP) controller, to control civil engineering structures under dynamic loading. The
ANSAP controller minimizes structural cumulative responses during earthquakes by applying active pulse control
forces. The effect of pulses is assumed to be delayed until just before the next sampling time so that the control
force can be calculated in time and applied; the newly developed control strategy circumvents the effect of time
delay due to the computation time. The ANSAP controller also circumvents the difficulty of obtaining system
parameters of a real structure for the algorithm for active structural control. Illustrative examples reveal signif-
icant reductions in cumulative structural responses, which demonstrates the feasibility of using the adaptive
artificial network for controlling civil engineering structures under dynamic loading.
INTRODUCTION

The control of civil engineering structures subjected to dy-
namic loadings, such as those attributed to earthquakes, heavy
winds, and high waves, can be classified into passive and ac-
tive controls. A passive control system does not require an
external power source. On the other hand, an active control
system is one in which an external source powers one or more
control actuators that apply forces to the structure in a pre-
scribed manner. Active control devices are used in civil en-
gineering structures to modify the structural parameters (stiff-
ness and damping), allowing them to more favorably respond
to the external excitation (Soong 1990). Passive and active
control largely differ in that the former does not make any
real-time changes in the system.

Recent advances in the use of active control devices in civil
engineering structures have been achieved not only in the con-
trol algorithms used but also in the experimental studies of
laboratory scale-model and full-scale structures (Chung et al.
1988; Reinhorn et al. 1993). Among the several control
algorithms used for active control of civil engineering struc-
tures are standard optimal control, instantaneous optimal con-
trol, pole assignment, and pulse control (Masri et al. 1981;
Udwadia and Tabaie 1981a,b; Pantelides and Nelson 1995).

Standard optimal control requires the entire time history of
a structural response to compute the necessary external applied
force. Hence, optimization in the standard optimal control ap-
proach aims to minimize the objective function in the global
sense. Another approach, an instantaneous optimal control al-
gorithm (Yang et al. 1987), has been developed to achieve on-
line control for civil engineering structures. In this approach,
optimization is achieved only within each small time interval
rather than globally. The pole assignment control algorithm
has been extensively studied in control literature (Sage and
White 1977). Its applications to the study of civil engineering
structural control have been fruitful only when a few vibration
modes contribute significantly to the response. Udwadia and
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Tabaie (1981b) developed an optimal pulse control algorithm
for a linear system. It is heuristic in nature and requires con-
tinuous monitoring of the system state; when the system re-
sponse exceeds some specified threshold, an open loop pulse
control is applied at a set of preassigned actuator locations.

Despite their many attractive features, conventional control
techniques may encounter difficulties when controlling sys-
tems that are difficult to model. Besides, complex conventional
control laws increase the computational time in the loop, re-
sulting in poor control. Housner et al. (1994) indicated that
the control strategies deemed appropriate for civil engineering
structural control should be simple, but robust and fault tol-
erant; in addition, they do not need to be optimal controls, and
they must be implemented. Notably, the artificial neural net-
work (ANN) model is robust and fault tolerant (Rumelhart et
al. 1986; Adeli and Hung 1995; Johan et al. 1996). In addition,
ANN can effectively deal with qualitative, uncertain, and in-
complete information. Therefore, ANN is highly promising for
active structural control.

Nikzad and Ghaboussi (1991) first applied multilayered
feedforward networks (MFN) to the problem of digital vibra-
tion control of mechanical systems. The comparison between
conventional control and the controller using a trained MFN
clearly shows the superior performance of the neural network
control. Wen et al. (1992) used two ANNs: one to predict the
structural response subjected to the control force alone, and
the other to predict ground accelerations. That same investi-
gation introduced the concept of a time delay since the control
force was applied at the next time step. Tang (1995) proposed
a simple heuristic-based control strategy capable of applying
the control force to cancel the system velocity at the preceding
time step for a single-degree-of-freedom system. The under-
lying notion of the heuristic-based control strategy is pulse
control (Udwadia and Tabaie 1981a).

In light of the above developments, this work presents a
novel ANN active pulse control model, the adaptive neural
structural active pulse (ANSAP) controller, to control civil en-
gineering structures under dynamic loadings. The proposed
model is based on an artificial neural network active control
model with a pulse control strategy. Instead of using a standard
back-propagation (BP) ANN learning algorithm, the proposed
ANN active control model uses a more effective limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) ANN learn-
ing algorithm (Hung and Lin 1994) with a modified BP ANN
learning algorithm. The proposed control strategy attempts to
reduce the structural cumulative responses during earthquakes
by applying the active pulse control force. The ANSAP con-
troller has two components: (1) A neural emulator network to
represent the minimized cumulative structural responses under
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 839
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both the seismic loading and the pulse control force; and (2)
a neural control network to determine the pulse control force
on the structure. The control effectiveness of the ANSAP con-
troller using the L-BFGS and a modified BP algorithm in neu-
ral emulator network and the instantaneous optimal control
algorithm is first investigated for a single-degree-of-freedom
(SDOF) structure subjected to the El Centro earthquake. Fur-
thermore, the feasibility of the ANSAP controller is evaluated
by a sample three-story structure subjected to the El Centro
and the Pacoima earthquakes.

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) form a class of systems
that are inspired by biological neural networks. The topology
of an ANN model consists of a number of simple processing
elements, called nodes, that are interconnected to each other.
Interconnection weights that represent the information stored
in the system are used to quantify the strength of the inter-
connections; these weights hold the key to the functioning of
an ANN. Among the many different types of ANN, the feed-
forward, multilayered, supervised neural network with the er-
ror back-propagation algorithm, the so-called back-propaga-
tion (BP) network (Rumelhart et al. 1986), is by far the most
commonly applied neural network learning model, due to its
simplicity. Before an ANN can be used in the application, it
needs to learn or be trained from an existing database con-
sisting of pairs of input-output patterns. The topology of BP
networks consists of an input layer, one or more hidden layers,
and an output layer. The training of a supervised neural net-
work usually involves three stages. The first stage is the data
feedforward. The output of each node is defined as follows:

n

net = W X 1 u (1)j ij i jO
i=1

o = f (net ) (2)j j

where Wij is the weight associated with the ith node in the pre-
ceding layer to the jth node in the current layer; Xi is the output
of the ith node in the preceding layer; uj is the threshold value
of node j in the current layer; oj is the output of node j in the
current layer; and function f is the activation function, which has
to be differentiable. Herein, the hyperbolic tangent function is
used as the activation function and is defined as follows:

x 2xe 2 e
f (x) = (3)x 2xe 1 e

The second stage is error back-propagation through the net-
work. In the training process, system error function is used to
monitor the learning performance of the network. This system
error function is defined as follows:

P K
1 2E = (d 2 o ) (4)pk pkOO2P p=1 k=1

where P is the number of instances in the training set and dpk

as well as opk are the desired and calculated output of the k th
output node for the p th instance, respectively. The final stage
is the adjustment of the weights. The standard BP algorithm
uses a gradient descent approach with a constant step length
(learning ratio) to train the network.

(k11) (k)W = W 1 DW (5)ij ij ij

­E
DW = 2h (6)ij

­Wij

where h is the learning ratio, a constant in the range of [0, 1].
The superscript index (k) denotes the k th learning iteration.
840 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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BP supervised neural network learning models, however, al-
ways take a long time to learn (Adeli and Hung 1995). More-
over, the convergence of a BP neural network is highly de-
pendent upon the use of a learning rate (h). Thus, several
different approaches developed to enhance the learning per-
formance of the BP learning algorithm have been applied
(Adeli and Hung 1995).

Hung and Lin (1994) developed a more effective adaptive
L-BFGS learning algorithm based on the approach of an L-
BFGS quasi-Newton second-order method (Nocedal 1980)
with an inexact line search algorithm. In the conventional
BFGS method, the approximation Hk11 to the inverse Hessian
matrix of function E(W) is updated by

T T TH = (I 2 r s y )H (I 2 r y s ) 1 r s s (7a)k11 k k k k k k k k k k

T TH [ V H V 1 r s s (7b)k11 k k k k k k

where
Tr = 1/y s (8)k k k

TV = I 2 r y s (9)k k k k

s = W 2 W (10)k k11 k

y = g 2 g (11)k k11 k

­E
g = (12)k

­W

Instead of forming the matrix Hk in the BFGS method, we
save the vectors sk and y k. These vectors first define and then
implicitly and dynamically update the Hessian approximation
using information from the last few iterations, say, m in the
work. Therefore, the final stage of the adjustment of the
weights is modified as follows:

(k11) (k)W = W 1 a d (13)k k

The search direction is given by

d = 2H g 1 b d (14)k k k k k21

where
Ty H g(k21) (k21) (k21)

b = (15)k Ty d(k21) (k21)

The step length, ak, is adapted during the learning process
through a mathematical approach: the inexact line search al-
gorithm. This is used in the L-BFGS learning algorithm in-
stead of a constant learning ratio (Hung and Lin 1994; Adeli
and Hung 1995). The inexact line search algorithm is based
on three sequential approaches: bracketing, sectioning, and in-
terpolation. Consequently, the step length ak is required to sat-
isfy the following conditions in each iteration (Hung and Lin
1994):

E(W 1 a d ) # E(W )k k k k

T1 ba (=E(W ) d ) b [ (0, 1) and a > 0k k k k (16)

T T=E(W 1 a d ) d $ u(=E(W ) d ) u [ (b, 1) and a > 0k k k k k k k

(17)

T=E(W 1 a d ) d < 0 (18)k k k (k11)

Hence, the problem of trial-and-error selection of a learning
ratio in the standard BP algorithm is circumvented in the adap-
tive L-BFGS learning algorithm.

CLASSICAL CLOSED-LOOP OPTIMAL
CONTROL ALGORITHM

Active control in civil engineering structures is based on
closed-loop control, implying that the structural response is
00.126:839-849.
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continually monitored and this information is used to contin-
uously modify the applied control forces. The responses of a
system with a linear n-degree-of-freedom structure, when the
system is subjected in an external excitation in configuration
space, can be described by the following equation:

¨ ˙Mx(t) 1 Cx(t) 1 Kx(t) = B u(t) 1 E w(t) (19)1 1

where constant matrices M, C, and K are, respectively, the
mass, damping, and stiffness matrices with n 3 n entities;

is the n-dimensional displacement vector with respect tox(t)
the ground; is the p-dimensional control force vector;u(t)

is the q-dimensional external excitation vector; and thew(t)
n 3 p matrix B1 and n 3 q matrix E1 are location matrices
that define the locations of the control force and the excitation,
respectively. While assuming that the control force and exter-
nal excitation are constants in any sampling period Dt, (19)
can be written in a discrete state equation as follows:

z[k 1 1] = A z[k] 1 B u[k] 1 E w[k] (20)d d d

where Ad = e ADt; Bd = A21(Ad 2 I)B; and Ed = A21(Ad 2 I)E.
Index k is an integer number; k = 0, 1, 2, . . . , N;

x[k 1 1]
z[k 1 1] = F Gẋ[k 1 1]

2n31

is a 2n-dimensional state vector of the structure response at
time t = (k 1 1)Dt, and Dt is the time length of the sampling
period. The matrices A, B, and E can be determined by the
following:

0 I
A = (21)21 21F G2M K 2M C

2n32n

0
B = (22)21F GM B1 2n3p

0
E = (23)21F GM E1 2n3q

The control force, in general, is designed to be a function of
the measured displacement and velocity vectors and can be
expressed as a linear combination of measured structure re-
sponse in a discrete state equation as follows:

u[k] = G x[k] 1 G ẋ[k] = Gz[k] (24)1 2

where G1 and G2 are the feedback gain matrices of displace-
ment and velocity, respectively, and G is a constant gain ma-
trix.

ACTIVE PULSE CONTROL ALGORITHM

In the active pulse control algorithm, the pulse control force
applied to the structure is reduced in a Dtu(Dtu < Dt) period,
as displayed in Fig. 1. Furthermore, the effect of pulses is
assumed to be postponed to just before the next sampling time.
Consequently, there is time to calculate the control force dur-
ing the former Dt 2 Dtu period and to apply it to the structure
during the later Dtu period of each time step Dt. Thus, the
problem of time delay effect due to the computation time was
circumvented in the proposed control strategy. According to
Fig. 1, assuming that the external seismic force and the control
force are piecewise-linear and piecewise-constant interpolation
functions, respectively, they can be expressed in the following
forms:

u(t) = 0, kDt # t < [(k 1 1)Dt 2 Dt ] (25)u

u(t) = u[kDt], [(k 1 1)Dt 2 Dt ] # t < (k 1 1)Dt (26)u

t 2 kDt
w(t) = {w[(k 1 1)Dt] 2 w[kDt]} 1 w[kDt],

Dt

kDt # t < (k 1 1)Dt (27)
J. Eng. Mech. 20
FIG. 1. Basic Assumptions of Applying Pulse Control Force

Therefore, (20) can be rewritten as follows:

z[k 1 1] = A z[k] 1 B Bu[k] 1 E Ew[k 1 1]p p p1

1 E E(w[k 1 1] 2 w[k])p2 (28)

where Ap = e ADt, Bp = 2 I), Ep1 = A21(Ap 2 I), and21 ADtuA (e
Ep2 = A21[(Ep1/Dt) 2 Ap].

The main notion of an active pulse control system is to
destroy the gradual rhythmic buildup of the structural response
by applying pulses of suitable magnitude and proper direction.
Thus, the proposed control strategy is to apply the control
force to minimize the system response that carries over from
the current time step to the next time step. The first two terms
in the right-hand side of (28) represent the structural response
at time k(Dt) after the active pulse force has been applied.u[k]
That is, the structural response at any time k(Dt) shouldz[k]
be eliminated by applying a pulse control force u[k].

z*[k] = A z[k] 1 B Bu[k] = 0 (29)p p

The control force can be obtained as
T 21 T 21u[k] = 2(B B) B B A z[k] = Gz[k] (30)p p

The matrix G is called a state feedback gain matrix and
equates to

T 21 T 21G = 2(B B) B B A (31)p p

ADAPTIVE NEURAL STRUCTURAL ACTIVE PULSE
(ANSAP) CONTROLLER

For simplicity, assume that only one active tendon controller
is used and that it can be used on any floor. After controlling
each degree of freedom, all the relative displacements and rel-
ative velocities of the structure cannot be kept at zero by a
single pulse control force, but minimizing the cumulative
structural responses allows us to apply the single pulse control
force. Hence, modifying the control strategy is an attempt to
minimize the cumulative structural responses, in (29),z*[k]
by applying the pulse control force. The simplest way to
achieve this aim is to minimize the sum of the square of the
cumulative structural responses, which happens to be an un-
constrained optimization problem, solved most effectively us-
ing supervised ANN models.

The ANSAP controller, schematically presented in Fig. 2,
consists of two components: (1) A neural emulator network to
represent the minimized cumulative structural responses under
both the seismic loading and the pulse control force; and (2)
a neural control network to determine the pulse control force
on the structure. The details of these two components of the
ANSAP controller are presented in the following.
00.126:839-849.
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FIG. 2. Structure and Training of ANSAP Controller
Neural Emulator Network

This network is modeled by an adaptive L-BFGS neural
network model, which models the dynamic behavior of the
structure described by (29). To minimize the sum of the square
of the cumulative structural responses, vectors andu[k] z[k]
are the inputs, and vector is the corresponding output ofz*[k]
the neural emulator network. The input data of the training
instances are generated randomly and are substituted into (29)
to generate the desired outputs of the training instances. The
computed outputs are then generated by feeding the inputs
forward through the network. The difference between the de-
sired and computed outputs, and of the neuralz*[k] z*[k],e s

emulator network is then measured. Finally, the weights of the
network are adjusted based on the error function Ee(k). After
the system error converges to a desired value, the neural em-
ulator network can model the dynamic behavior of the real
structure.

Neural Control Network

The neural control network searches for a proper state feed-
back gain matrix G to get a suitable pulse control force to
minimize the cumulative structural responses Eq. (30)z*[k].e

indicates that the pulse control force is proportional to the state
feedback gain matrix G and the state of structure thusz[k];
the input and the corresponding output to the neural control
network are vectors and respectively. In this study,z[k] u[k],
a modified BP (a conventional BP with an inexact line search
algorithm) neural network is adopted as the neural control net-
work for computational and memory storage efficiency.

Before the neural control network can be trained, the neural
emulator network has to be trained to represent the perfor-
mance of a real structure. The training process of the neural
control network is also demonstrated in Fig. 2. First, the input
vector is presented to the neutral control network to com-z[k]
pute the pulse control force which is then applied to theu[k],
pretrained neural emulator network to obtain the minimized
cumulative response The error function Ec(k) can bez*[k].s

formulated as follows:
P

1 o o 2E (k) = [z* [k] 2 z* [k]] (32)c pd psOO2P p=1 0

where P is the number of instances in the training set; and
is the desired minimized cumulative responses of the[k]z*pd

structure to be controlled, chosen to be zero in this work. The
superscript o represents the oth element of the output vectors.
Second, the weights in the neural control network are thenCWij

updated as follows:
842 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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TABLE 1. System Parameter Values for SDOF Example

Parameter
(1)

Quantity
(2)

Mass (m) 2,923.38 kg
Structure stiffness (k) 1,391.06 kN/m
Natural frequency ( f0) 3.47 Hz
Damping factor (z) 5%
Damping coefficient (c) 6,373.74 N ? s/m

­EcCDW = 2h (33)ij C­W ij

­E ­uc kCDW = 2h (34)ij O S D S DC­u ­Wk ijk

Herein, the learning ratio h is dynamically determined via the
inexact line search algorithm. Term uk is the kth component
of the pulse control force, Eq. (34) indicates that the ad-u.
justment of the weight during the training process is splitCWij

into two steps: First back-propagating the system error func-
tion Ec through the pretrained neural emulator network without
any changes in the weights to calculate the correspondingEWij

error Du of the pulse control force then back-propagatingu;
the error Du through the neural control network to adjust the
weights The training process is terminated as the mini-CW .ij

mized cumulative structural responses converge to the desired
responses within the predetermined tolerance.

NUMERICAL EXAMPLES

Example 1

Herein, an SDOF system was chosen as the structure to be
controlled in order to compare the control effectiveness of the
following four cases:

• Case 1: ANSAP controller using modified BP learning
algorithm in both the neural control network and neural
emulator network.

• Case 2: ANSAP controller with neural control network
using modified BP learning algorithm and neural emulator
network using L-BGFS learning algorithm.

• Case 3: The neurocontroller proposed by Tang (1995).
• Case 4: Instantaneous optimal closed-loop control algo-

rithm (Soong 1990).

This structure is an approximately 1:4 scale model of a 1:2
scale model of the prototype structure. The properties of the
SDOF system are given in Table 1. Response spectra for the
000.126:839-849.
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FIG. 3. (a) Time History; (b) Acceleration Spectrum of Base Motion One
1940 El Centro earthquake record, referred to as base motion
one, were used as the external excitation, but scaled to 25%
of the intensity of the original earthquake. The sampling pe-
riod Dt is 0.01 s. Fig. 3 displays the time history and the
corresponding acceleration spectra of base motion one.

First, case 1 is compared with case 2. The pulse duration
Dtu is assumed to be half of Dt. The training data set of both
the neural emulator and the control networks is the first 1,000
records of base motion one for the two cases. Fig. 4 displays
the flow chart of the processes of training and analyzing
the ANSAP controller. The neural emulator network trained
consists of three, seven, and two nodes in the input layer,
hidden layer, and output layer, respectively, and denoted as
NENoBP(3-7-2) for case 1 and NENoL-BFGS(3-7-2) for case
2. The three input data are the structural relative displacement

relative velocity and one control force The˙x[k], x[k], u[k].
two outputs are the cumulative structural relative displacement

and relative velocity The complete off-line train-˙x*[k] x*[k].
ing process takes approximate 400 cycles, and the system error
converges to 0.000354 for case 1, compared with 30 cycles
and system error converging to 0.000042 for case 2. Results
show that L-BFGS is considerably faster than modified BP.

After the neural emulator network is obtained, the neural
control network is then trained. The neural control network in
this example is constructed with two, two, and one nodes in
the input, hidden, and output layers, respectively, and denoted
as NCNoBP(2-2-1) for both cases. The two input data of the
network are designated to be the structural relative displace-
ment and relative velocity The only output of the˙x[k] x[k].
J. Eng. Mech. 2
neural control network is the control force The entireu[k].
off-line training process takes about 500 cycles, and the system
error converges to 0.000268 for both cases.

After the ANSAP controller is trained, it is then tested. The
testing data set is the 2,000 records of base motion one. Fig.
5 presents the relative displacements of controlled and uncon-
trolled excitation under base motion one. It reveals that both
cases destroy the gradual rhythmic buildup of the structural
response, and case 2 is slightly more efficient than case 1.

Second, the last two cases are compared with the first two
cases. Case 3 is the neurocontroller proposed by Tang. The
neurocontroller is a simple heuristic-based control strategy ca-
pable of applying the control force to cancel the system ve-
locity at the preceding time step for a single-degree-of-free-
dom system. Case 4 is the instantaneous optimal closed-loop
control algorithm (Soong 1990) in which the structure re-
sponses and active control force depend on the weighting ma-
trices Q and R. Table 2 lists the controlled relative displace-
ments of all the four cases at the peak of uncontrolled
displacements. In this example, the maximum uncontrolled rel-
ative displacement is 0.46 cm (at 1.11 s). After control, the
displacement is reduced to 0.064, 0.055, 0.058, 0.053, and
0.075 cm for cases 1, 2, 3, 4-1, and 4-2, respectively. These
data indicate that all four cases can significantly reduce the
structural responses at the peak of the displacements (PD). The
control effectiveness of case 3 is almost as effective as that of
the first two cases, while whether that of case 4 may be better
or worse than the first two cases depends on the choice of the
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 843
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FIG. 4. Flow Chart for Control Strategy of ANSAP Controller

FIG. 5. Comparison of Uncontrolled and Controlled Relative Displacements of Case 1 and Case 2 (Input: Base Motion One)
TABLE 2. Controlled Relative Displacements of All Four
Cases at Peak of Uncontrolled Displacements

Cases
(1)

Parameter R
(2)

Parameter Q
(3)

Controlled relative
displacement

at PD
(cm)
(4)

Case 1 — — 0.064
Case 2 — — 0.055
Case 3 — — 0.058

Case 4
Case 4-1 1 0 0F G120,000 120,000

0.053

Case 4-2 1 0 0F G80,000 80,000
0.075
844 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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weighting matrices Q and R. Notably, the first three cases
consider time delay effect, but the last one doesn’t.

Example 2

ANSAP Controller Training

In this example, a three-degree-of-freedom linear structure
system is chosen to explore the control effectiveness of the
proposed control strategy and the feasibility of the active struc-
tural control using the ANSAP controller in MDOF structure
systems. Fig. 6 depicts the three-story structure, with an active
tendon controller installed on the first floor. The structural
properties are listed in Table 3. The responses of the structure
are the displacements and velocities with respect to the ground
of each floor. The base motion one is used for training both
000.126:839-849.
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TABLE 3. System Parameter Values for MDOF Example

Parameter
(1)

Quantity
(2)

Mass matrix (M) 2,923.38 0 0
0 2,923.38 0 kgF G
0 0 2,923.38

Structure stiffness matrix (K) 2,782.12 21,391.06 0
21,391.06 2,782.12 21,391.06 kN/mF G

0 21,391.06 1,391.06

Damping matrix (C) 12,747.48 26,373.74 0
26,373.74 12,747.48 26,373.74 N ? s/mF G

0 26,373.74 6,373.74

FIG. 6. Three-Story Structure System

the neural emulator and control networks. The pulse duration
Dtu is also half of sampling period Dt; that is, Dtu = 0.005 s.

The training data set of both the neural emulator and the
control networks is the 2,000 records of base motion one. The
topology of the neural emulator network trained in this ex-
ample is seven, seven, and six nodes in the input, hidden, and
output layers, respectively, and denoted as NENoL-BFGS(7-
7-6). The seven input data are the relative displacements and
relative velocities of each floor x1[k], x2[k], x3[k], ˙ ˙x [k], x [k],1 2

and and one control force The six outputs are theẋ [k] u[k].3

cumulative relative displacements and relative velocities of
each floor and The˙ ˙ ˙x*[k], x*[k], x*[k], x*[k], x*[k], x*[k].1 2 3 1 2 3

complete off-line training process takes approximate 300 cy-
cles, and the system error converges to 0.00027.
J. Eng. Mech. 2
After the neural emulator network is obtained, the neural
control network is then trained. The neural control network in
this example is constructed with six, three, and one nodes in
the input, hidden, and output layers, respectively, and denoted
as NCNoBP(6-3-1). The six input data are the relative dis-
placements and relative velocities of each floor x1[k], x2[k],
x3[k], and The output of the neural control˙ ˙ ˙x [k], x [k], x [k].1 2 3

network is the control force The entire off-line trainingu[k].
process takes about 1,000 cycles, and the system error con-
verges to 0.0496. Figs. 7–9 display the relative displacements,
with controlled and uncontrolled excitation, for each floor of
the three-story structure. The maximum uncontrolled relative
displacements of the first, second, and third floors of the three-
story structure are 0.385 cm (at 3.08 s), 0.685 cm (at 3.07 s),
and 0.880 cm (at 3.05 s), respectively. After control, these
relative displacements are reduced to 0.0275, 0.244, and 0.439
cm, respectively. The example results indicate that the struc-
tural responses are significantly reduced at the peak of the
relative displacements. Fig. 10 illustrates the time history of
the external applied pulse control force.

ANSAP Controller Testing

After the ANSAP controller is trained using the El Centro
earthquake, another earthquake motion, the Pacoima earth-
quake, is used to verify the control ability of the ANSAP con-
troller in handling the uncertainty about the time history of
the excitation. For the sake of factorization, the Pacoima earth-
quake, referred to as base motion two, is also scaled to 25%
of the intensity of the El Centro earthquake. Fig. 11 displays
the time history and the corresponding response spectra of
base motion two. The testing data set of the control network
is the 1990 records of base motion two. Figs. 12–14 present
the relative displacements of controlled and uncontrolled ex-
citation for each floor of the three-story structure under base
motion two. In this case, the maximum uncontrolled displace-
ments of the first, second, and third floors of the three-story
structure are 0.435 cm (at 2.50 s), 0.773 cm (at 2.50 s), and
0.977 cm (at 2.16 s), respectively. After control, these relative
displacements are reduced to 0.0127, 0.144, and 0.108 cm,
respectively. These data also indicate that the structural re-
sponses are significantly reduced at the peak of the relative
displacements, even though the ANSAP controller is trained
on base motion one. Fig. 15 illustrates the time history of the
computed pulse control force. The acceleration response spec-
tra of the El Centro earthquake and the Pacoima earthquake,
displayed in Figs. 3 and 11, respectively, are entirely different.
Remarkably, the performance of the ANSAP controller trained
using the recorded data of the El Centro earthquake is also
practical for addressing the Pacoima earthquake, although
FIG. 7. Controlled and Uncontrolled Relative Displacements of First Floor of Three-Story Structure Subjected to Base Motion One
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 845
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FIG. 8. Controlled and Uncontrolled Relative Displacements of Second Floor of Three-Story Structure Subjected to Base Mo-
tion One

FIG. 9. Controlled and Uncontrolled Relative Displacements of Third Floor of Three-Story Structure Subjected to Base Motion One

FIG. 10. Time History of Pulse Control Force for Three-Story Structure Subjected to Base Motion One
there are many differences in the peak, shape, and amplitude
of the spectra of the two earthquakes.

Control Effectiveness of ANSAP Controller

To evaluate the control effectiveness of the ANSAP con-
troller, the term control index is defined as

N

2(x [k])cO
k=1

I = 1 2 (35)c N

2(x [k])uO
K=1
846 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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where = controlled relative displacements of the struc-x [k]c

ture; and = uncontrolled relative displacements of thex [k]u

structure.
For the range of values of Ic may vary from ax # x ,c u

minimum of 0 for no control to a maximum of 1 for the op-
timum control condition = 0 during the entire time history).(xc

If is half of during the entire time history, the controlx xc u

index Ic equals 0.75. A larger Ic implies a better control effec-
tiveness.

In the numerical examples, the control indices Ic equal
0.987, 0.805, and 0.692 for the first, second, and third floors
of the structure, respectively, subjected to base motion one.
00.126:839-849.
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FIG. 11. (a) Time History; (b) Acceleration Spectrum of Base Motion Two

FIG. 12. Controlled and Uncontrolled Relative Displacements of First Floor of Three-Story Structure Subjected to Base Motion Two
Likewise, the control indices are 0.992, 0.915, and 0.860 for
the first, second, and third floors of the structure, respectively,
subjected to base motion two. Notably, results in this study
indicate that the structural responses are significantly reduced
for the first and second floors. The third (upper) floor displays
less control effectiveness during the former period of the time
history, while good control effectiveness is achieved during
the later period of the time history. Less control effectiveness
on the third floor during the former period of the time history
occurs because only one active tendon controller is used and
installed on the first floor. We believe that the control effec-
J. Eng. Mech. 2
tiveness for the upper floor is improved if the active tendon
controller is installed on the third floor.

SUMMARY AND CONCLUSIONS

In this work, we present an active pulse control algorithm.
The underlying notion of the active pulse control algorithm
largely rests on the physical realization that the accumulation
of a series of small responses always causes large structural
responses under dynamic loading. In addition, a pulse control
force in the active pulse control algorithm aims to eliminate
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000 / 847
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FIG. 13. Controlled and Uncontrolled Relative Displacements of Second Floor of Three-Story Structure Subjected to Base Mo-
tion Two

FIG. 14. Controlled and Uncontrolled Relative Displacements of Third Floor of Three-Story Structure Subjected to Base Motion Two

FIG. 15. Time History of Pulse Control Force for Three-Story Structure Subjected to Base Motion Two
the cumulative structural responses. The effect of pulses is
postponed to the time that is a small interval before the next
sampling time so that the control force can be calculated in
time and applied. Therefore, the problem of time delay due to
the computation time is circumvented in the proposed control
strategy.

For simplicity, assume that only one active tendon controller
is used. However, all the relative displacements and relative
velocities cannot be kept after controlling each degree of free-
dom at zero by a single pulse control force. Therefore, mini-
mizing the cumulative structural responses allows us to apply
the pulse control force. To reduce or alleviate the limitations
of the conventional control algorithm, an ANN model is in-
corporated into the active pulse control algorithm, referred to
848 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2000
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herein as the adaptive neural structural active pulse (ANSAP)
controller to control civil engineering structures under dy-
namic loadings. The control strategy of the ANSAP controller
aims to minimize the structural cumulative responses during
earthquakes by applying the active pulse control force. Anal-
ysis of the linear SDOF system reveals that the active control
algorithm destroys the gradual rhythmic buildup of the struc-
tural response and reduces the structural responses signifi-
cantly at the peak of the relative displacements. In addition, a
three-degree-of-freedom linear system demonstrates the con-
trol effectiveness of the ANSAP controller. Notably, the per-
formance of the ANSAP controller trained using the recorded
data of the El Centro earthquake is also practical for address-
ing the Pacoima earthquake, which was never used in training
00.126:839-849.
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the ANSAP controller. Although this example shows less con-
trol effectiveness on the upper floor, the structural responses
are significantly reduced at the later period of the time history.
The above issue can be resolved by installing an active tendon
controller on the upper floor or installing active tendon con-
trollers on every floor. We believe that the ANSAP controller
is also useful when extended to a system with many more
degrees of freedom and nonlinear systems.
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