
*Corresponding author.
E-mail address: sgchen@cc.nctu.edu.tw (Sau-Gee Chen).

Signal Processing 80 (2000) 1591}1596

Design of "nite-word-length FIR "lters with least-squares error

Yung-An Kao, Sau-Gee Chen*

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan

Received 25 May 1998; received in revised form 5 January 2000

Abstract

This paper proposes a new algorithm for designing "nite word length linear-phase FIR "lters. The new algorithm
produces "nite-precision least-squares error (LSE) solutions with much reduced search time than the brute-force full
search algorithm. It is di!erent from the full search algorithm that tries all possible combinations directly. The new
algorithm utilizes geometric properties of a hyper-space to pinpoint potential solutions in a much more restricted way.
Accordingly, a much smaller search space is generated. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit wird ein neuer Entwurfsalgorithmus fuK r linearphasige FIR-Filter bei endlicher WortlaK nge vorges-
chlagen. Der neue Algorithmus liefert LSE (kleinstes Fehlerquadrat)-LoK sungen mit endlicher Genauigkeit bei sehr
verkleinerter Suchdauer gegenuK ber der vollstaK ndigen Suche. Er ist verschieden von einer vollstaK ndigen Suche, die alle
moK glichen Kombinationen direkt ausprobiert. Der neue Algorithmus nutzt geometrische Eigenschaften eines Hyper-
raumes aus, um potentielle LoK sungen in einer eingeschraK nkten Weise festzulegen. Dadurch wird ein viel kleinerer
Suchraum erzeugt. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous proposons dans cet article un algorithme nouveau pour la conception de "ltres FIR à phase lineH aire en preH cision
"nie. Cet algorithme produit des solutions aux monidres carreH s (LES) avec un temps de recherche bien plus reH duit que
l'approche de recherche exhaustive. II est di!eH rent de l'alogorithme de recherche exhaustive qui essaye directement toutes
les combinaisons possibles. Cet algorithme utilise les proprieH teH s geH omeH triques d'un hyperspace pour mettre en eH vidence
less solutions potentielles d'une manière beaucoup plus restrictive. De ce fait un espace de recherche beaucoup plus petit
est geH neH reH . ( 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In practice, "lters are realized by "xed-point
arithmetic. In designing "nite word length or

powers-of-two linear-phase FIR "lters there are
many algorithms based on integer programming
[5] and the modi"ed integer programming algo-
rithms [4,6}8,10,11,13]. Solutions of these algo-
rithms are found by searching the regions con"ned
by some linear constraints subject to minimizing
objective functions. The computation load of the
linear/integer programming approach [5] is very
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Nomenclature

u frequency in radian
D(u) desired frequency response
u

p
passband cuto! frequency

u
s

stopband cuto! frequency
h(n) "lter coe$cient
h
0

optimal coe$cient vector
D system matrix for solving h

0
C vector for solving h

0
, i.e., h

0
"D~1C

h
3

Rounded vector of h
0

E(h) square error function due to coe$cient
vector h

h
0$

optimal "nite-precision coe$cient vector
producing the least-squares error

h
$

"nite-precision version of the coe$cient
vector h

h
$
(n) "nite-precision version of the coe$cient h(n)

h
-
(n) lower bound of h

$
(n)

h
6
(n) upper bound of h

$
(n)

S(n) number of all the candidate "nite-precision
coe$cients of h(n) for the full search algo-
rithm

¸(n) number of all the candidate "nite-precision
coe$cients of h(n) for the new optimization
algorithm

heavy, and it is intended for minimizing the
min}max error norm. In implementation, all these
algorithms need to sample the target "lter spectrum
for testing constraints, instead of ideally testing the
whole continuous frequency band. This results in
computation penalty, as well as error. The algo-
rithms in [4,10] provided fast search algorithms to
reduce computation time. Some of the local search
algorithms [6,13] reduce search time, at the expense
of performance. There are the e!ective but computa-
tion-intensive simulated annealing technique [1,2].
Simulated annealing methods require very intensive
computation. The near least-squares error ap-
proaches [9,12] reduce computation time consider-
ably, but only get the suboptimal solutions.

In summary, the existing algorithms either pro-
duce optimal results at the cost of intensive compu-
tation, or produce suboptimal results at a much
reduced computation load. In this paper, we will
propose a new LSE optimization algorithm for
"nite word length "lters. For each coe$cient, the
new algorithm utilizes the geometric projection
property of a hyper-space to locate potentially dis-
crete solutions, subject to the LSE constraint. From
these possible solutions, an e$cient tree path
search method is introduced to pinpoint the "nal
optimal LSE solution. Doing this way, a much
smaller search space than that of brute-force search
algorithm is generated, and accordingly a much
reduced search time.

2. The new algorithm

The new algorithm starts with the optimal in"-
nite-precision LSE solution [3] to the given ideal
response D(u), where D(u)"1, for 0)u)u

p
,

D(u)"0, for u
4
)u)n. Without loss of generality,

we consider an N-tap, symmetric, zero-phase, odd-
length "lter, with the frequency response, H(e+u)"
h(0)#2+(N~1)@2

n/1
h(n) cos (nu), h(n)"h(!n). The op-

timal LSE solution h
0
"[h

0
(0)h

0
(1)2h

0
((N!1)/2)]T

can be solved as h
0
"D~1C [3], by setting the

gradient of the square-error cost function

E(h)"
p

u
p
P

up

0

[D(u)!H(e+u)]2 du

#

s

u
s
P

n

us

[H(e+u)]2 du

to zero, where C and D are vector and matrix,
respectively, depending upon u

p
, u

s
, p and s.

De"ne h
3
"round(h

0
2b)2~b, with b#1 the num-

ber of bits, we can get a square error k"E(h
3
).

Note that k is very close to the least-squares error
E(h

0
) and the error surface E(h)"k encloses h

0
. As

will be shown later in the simulations h
3
is a good

initial value for locating the optimal discrete
h
0$

and occasionally h
0$
"h

3
. Therefore, we can

"nd some discrete coe$cient vectors whose square
errors are smaller than k if they are inside the error

1592 Y.-A. Kao, S.-G. Chen / Signal Processing 80 (2000) 1591}1596



surface E(h)"k. On the other hand, h
3
is the opti-

mal discrete solution when there is no discrete
coe$cient vector inside the error surface E(h)"k.
The design problem then reduces to: how do we
locate these discrete points which are inside the
error surface E(h)"k in an e$cient way? To solve
the design problem, we will iteratively use a projec-
tion algorithm in "nding potential discrete coe$-
cients, in combination with an e$cient tree-path
search algorithm. The projection algorithm utilizes
the geometric properties of an LSE surface. Before
introducing the new algorithm, we "rst introduce
the projection algorithm.

2.1. The projection algorithm

Given a hyper-ellipse described by E(h)"k, if
there exits a discrete coe$cient vector enclosed by
the hyper-ellipse, then the coe$cient vector will
produce a square error smaller than k. From geo-
metric point of view, to "nd all the potential "nite-
precision solutions of a particular coe$cient h(m),
one can project the hyper-ellipse onto the h(m)
axis. This results in a line segment enclosed by
h(m)"h

-
(m) and h(m)"h

6
(m), h

-
(m)(h

6
(m). All

the discrete h(m) points within the line segment
potentially lead to a smaller square error than k.
Obviously, the projection process is done by locat-
ing two surfaces tangent to the hyper-ellipse. Geo-
metrically, the projection is required to be tangent
to the hyper-ellipse, and parallel to all h(n) axes,
n"0,2, (N!1)/2 and nOm, but perpendicular
to the h(m) axis. Hence, the two tangent points
must satisfy the condition that LE(h)/Lh(n)"0,
n"0,2, (N!1)/2, nOm. The condition results
in a set of (N!1)/2 linear equations. From these
equations, the coe$cients h(0),2, h((N!1)/2)
excluding h(m) can be solved in terms of h(m). That
is, they can be solved as h

0m
"(D

m
)~1C

m
, where

h
0m

is the coe$cient vector excluding h(m), D
m

is
the system matrix of the set of linear equations, and
C
m

is a vector whose elements are composed of
linear combinations of h(m) and constants. Since
the tangent points are on the hyper-ellipse, we can
substitute all h(n)'s, which are all linear functions of
h(m), n"0,2, (N!1)/2, nOm, into the quadratic
hyper-ellipse function E(h)"k. As a result, we have
a quadratic equation of h(m) whose roots are h

-
(m)

and h
6
(m), which are the end points of the projected

line segment of the hyper-ellipse. In between these
two points there are S(m) discrete values of h(m).

2.2. The new xnite-precision LSE algorithm based on
the projection algorithm

Assume that the "nite-precision solutions
h
$
(0),2, h

$
(m!1) for coe$cients h(0),2,

h(m!1) have been temporarily found and "xed in
a manner as described in the following treatment
for h

$
(m) of h(m) similar to the projection method

introduced before, then all the potential "nite-pre-
cision LSE solutions h

$
(m)'s for h(m) can be found

by setting the gradient of E(h) to zero as

LE(h)

Lh(n)
"0, n"m#1,2, (N!1)/2,

which results in a set of (N!1)/2!m linear equa-
tions. From these equations, the coe$cients
h(m#1),2, h((N!1)/2) can be solved in terms of
h(m). By plugging these solutions into equation
E(h)"k, one can solve two real roots h

-
(m) and

h
6
(m) of h(m), h

-
(m)(h

6
(m). In between these two

points there are ¸(m) discrete values of h(m). By
combining the projection algorithm iteratively with
an e$cient tree search scheme, one has the follow-
ing optimization algorithm.

2.2.1. The optimization process of the new algorithm

Step 1. Solve the in"nite-precision LSE solution
h
0
.

Step 2. Get h
3

by directly rounding h
0
. Let

m"0, E
.*/

"k"E(h
3
) and let the optimal

discrete solution h
0$
"h

3
.

Step 3. Find all the ¸(m) potential discrete values
h
$
(m) of h(m) using the projection algo-

rithm. Reset the index j(m) (of the candidate
discrete values) of h(m) to j(m)"0. Note
that all the coe$cients h(0),2, h(m!1)
here have been replaced with some discrete
values in the cost function E(h).

Step 4. Let j(m)"j(m)#1. Replace h(m) with its
j(m)th discrete value in E(h

5
), where h

5
is the

coe$cient vector consisting of h
$
(0),2,

h
$
(m) obtained in the previous steps, while
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Table 1
Speed and LSE comparisons between new algorithm and the Shyu and Lin algorithm [12], and the full search algorithm

Filter
length

Square error Computation time (s) No. of all possible solutions
for the full search algorithm

New
algorithm

Algorithm
of [12] Due to h

3

New
algorithm

Algorithm
of [12]

*19 9.6157e!4 9.6157e!4 9.6157e!4 2.100e!1 1.800e!1 3.2000e#1
21 4.3243e!4 4.3243e!4 4.3244e!4 3.200e!1 2.000e!1 4.6080e#3
23 4.3077e!4 4.3077e!4 4.3086e!4 1.630e#0 2.300e!1 3.1104e#5
25 2.0633e!4 2.0634e!4 2.0637e!4 1.560e#0 2.700e!1 3.4992e#5

*27 1.8500e!4 1.8500e!4 1.8500e!4 5.600e!1 3.100e!1 1.8662e#5
29 1.0632e!4 1.0632e!4 1.0636e!4 1.860e#0 3.500e!1 3.7791e#7
31 7.7723e!5 7.7723e!5 7.7734e!5 8.900e!1 4.000e!1 1.0078e#7

*33 5.6581e!5 5.6581e!5 5.6581e!5 1.080e#0 4.900e!1 1.7916e#8
35 3.3187e!5 3.3187e!5 3.3221e!5 2.110e#0 5.700e!1 3.2249e#9
37 2.9730e!5 2.9730e!5 2.9806e!5 7.900e#0 6.400e!1 5.6435e#11
39 1.5046e!5 1.5103e!5 1.5127e!5 2.847e#1 7.200e!1 2.4079e#13
*41 1.4977e!5 1.4977e!5 1.4977e!5 5.170e#0 8.100e!1 9.2096e#12
43 7.3998e!6 7.4425e!6 7.4665e!6 2.600e#1 9.100e!1 8.2591e#14
45 7.1164e!6 7.1331e!6 7.2659e!6 2.274e#2 1.020e#0 2.8400e#18
47 3.9814e!6 3.9957e!6 4.0026e!6 2.529e#1 1.140e#0 2.5142e#17
49 3.2726e!6 3.3374e!6 3.3374e!6 3.657e#1 1.260e#0 5.8078e#19
51 2.2629e!6 2.2955e!6 2.3479e!6 2.301e#2 1.370e#0 1.0061e#23

discrete values of h(m#1),2, h((N!1)/2)
remain to be determined.

Step 5. Cases:
(i) h(m) is not the last coe$cient and at least

one of the discrete values of h(m) has not
been tested (that is, j(m))¸(m)), let
m"m#1 and go to Step 3.

(ii) h(m) is the last coe$cient and at least one of
the discrete values of h(m) has not been
tested (that is, j(m))¸(m)), then the bottom
level is reached and a complete discrete
vector h

5
is obtained, do the operations:

h
0$
"h

5
and E

.*/
"E(h

5
) if E(h

5
)(E

.*/
,

go to Step 4.
(iii) Here, all the discrete values of h(m) have

been tested (that is, j(m)'¸(m)). Let
m"m!1, go to Step 4 if m*0 (regardless
of whether h(m) is the last coe$cient or not),
otherwise go to step 6.

Step 6. All the h
5
's have been searched and the LSE

solution is obtained, end the optimization
process.

According to simulations, most of search paths
did not go to the bottom coe$cient level, because

in most cases the projection algorithm produces
null discrete solutions in higher levels. This prop-
erty greatly reduces the optimization time.

3. Simulations

A low-pass "lter design problem is simulated. All
the simulations were performed on UltraSPARC
using MATLAB 5.1. Here, the "lter length N
is varied from 19 to 51 (where N is an odd num-
ber), u

p
"0.4p, u

s
"0.5p, p"0.5, s"0.5, and

wordlength"12 bits. The detail simulation data is
summarized in Table 1, where the mark &*' indicates
the cases when h

0$
"h

3
. In the table, we only list

the numbers of all possible solutions for the full
search algorithm, because the computation times of
full search algorithm greatly increase with N and
far exceed those required by non-full search algo-
rithms. The full search algorithm is also based on
the projection algorithm de"ned in subsection 2.1
of Section 2. Speci"cally, there are S(0)S(1)2
S((N!1)/2!1)S((N!1)/2) coe$cient vectors to
be simulated. The number of combinations in-
creases exponentially with "lter length.
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Fig. 1. Frequency response comparison, "lter length"39, word
length"12 bits.

To compare the new optimal algorithm with the
existing e$cient (however, non-optimal) algo-
rithms, we simulated the fast but suboptimal algo-
rithm by Shyu and Lin [12] (which we consider the
most e$cient algorithm in the literature), using the
same design example. Parameter ¸ in [12] is set to
3. The frequency responses of new algorithm and
the algorithm of [12] are shown in Fig. 1 for
N"39. As shown, for smaller N, Shyu and Lin's
algorithm can obtain the same optimal results as
those of the new algorithm in most cases, within
shorter time duration than those of the new algo-
rithm. However, for larger N, Shyu and Lin's algo-
rithm fail to locate the optimal solutions. Also,
notice that, for o!-line and "xed-coe$cient ap-
plications, "lter design time is generally not an issue
as long as one can "nd the optimal solution within
an allowable amount of time. This argument puts
the new algorithm in a more appealing position
than the highly cost-e!ective (but suboptimal) algo-
rithm of [12].

Table 1 also shows the square errors due to h
3
.

As shown, h
3
's are good initial values for locating

the optimal h
0$
's, that give square errors close to

the LSE's produced by h
0$
's. In some cases h

3
is

equal to h
0$

. In this situation, the new algorithm
can solve the optimal solution very quickly. As can
be seen, the square errors generally reduce and
computation times increase with the increasing "l-

ter length. To roughly compare the min-max ap-
proach [5], we also simulated the example of [5]
with the speci"cations: u

p
"0.4p, u

s
"0.5p,

N"21, and wordlength"6 bits. In this case,
h
0$
"h

3
and E(h

0$
)"E(h

3
)"7.7119e!4 which

is predictably smaller than the square error
E(h

.*/}.!9
)"12.8863e!4 due to the min-max

solution h
.*/}.!9

from [5]. On the other hand, the
max error due to h

3
is 0.1094, which is also predict-

ably larger than the min-max error 0.0711 due to
h
.*/}.!9

. For other design examples, similar com-
parison results can be concluded as this one.

4. Conclusion

An e$cient "nite-precision "lter optimization al-
gorithm generating LSE results is proposed. It is
di!erent from the brute-force search algorithm that
tries all possible combinations directly. The new
algorithm utilizes geometric properties of a hyper
space to pinpoint potential solutions in a much
more restricted way, and accordingly a much small-
er search space is generated. The future work is to
extend the algorithm to weighted LSE "lters and
2-D "lters.
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