
392 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

ALTO: An Iterative Area/Performance
Tradeoff Algorithm for LUT-Based FPGA

Technology Mapping
Juinn-Dar Huang, Student Member, IEEE, Jing-Yang Jou, Member, IEEE, and Wen-Zen Shen, Member, IEEE

Abstract—In this paper, we propose an iterative area/perfor-
mance tradeoff algorithm for look-up table (LUT)-based field pro-
grammable gate array (FPGA) technology mapping. First, it finds
an area-optimized, performance-considered initial network by a
modified area optimization technique. Then, an iterative algorithm
consisting of several resynthesizing techniques is applied to trade
the area for the performance in the network gracefully. Experi-
mental results show that this approach can efficiently provide a
complete set of mapping solutions from the area-optimized one to
the performance-optimized one for the given design. Furthermore,
these two extreme solutions produced by our algorithm outperform
the results provided by most existing algorithms. Therefore, our
algorithm is very useful for the timing-driven, LUT-based FPGA
synthesis.

Index Terms—Critical-path, performance tradeoffs, pro-
grammable gate array, technology mapping.

I. INTRODUCTION

F IELD programmable gate arrays (FPGAs) are modern
logic devices that can be programmed by the users to

implement their own logic circuits. Because of the short turn-
around time compared with that of the standard ASIC process,
they have become very popular in rapid system prototyping
recently. Many FPGA architectures have been proposed and
the look-up table (LUT)-based architecture is the most popular
one. It consists of many configurable-LUTs, and a -LUT
can implement an arbitrary function with up toinputs. For
example, in Xilinx XC3000 architecture [1], is equal to 5.

Many FPGA technology mapping algorithms have been pro-
posed in previous studies. According to the objectives, they can
be roughly classified into three categories.

1) Area optimization [2]–[10]:These algorithms minimize
the number of LUTs used to implement the given circuit
based on the assumption that the number of LUTs in the
FPGA design is a good measurement of the area of FPGA
implementations.

2) Performance optimization [11]–[21]:These algorithms
minimize the circuit delay time of the specified design.
Because the propagation delay for every LUT is almost
identical, the most popular delay model used in FPGA

Manuscript received September 10, 1998; revised December 29, 1998. This
work was supported by the R.O.C. National Science Council under Grant
NSC87-2215-E-009-040.

The authors are with the Department of Electronics Engineering, Na-
tional Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
jyjou@bestmap.ee.nctu.edu.tw).

Publisher Item Identifier S 1063-8210(00)00757-5.

synthesis is the unit delay model. That is, the circuit delay
is estimated by the maximum level of LUTs in the syn-
thesized circuit. In general, the smaller number of levels
always results in the better performance, though some al-
gorithms take the extra interconnection delay into account
to get the more precise estimation [12]–[14], [17], [18].

3) Routability optimization [22], [23]: These algorithms
maximize the routability for easy placement and routing
at the later stage of the technology mapping. It works
well for the FPGA architectures, which lack routing
resources.

The common limitation of the previously described algo-
rithms is that only one extreme mapping solution is produced.
That is, these algorithms can provide relatively good results
for their own objectives. but may not provide a solution based
on designers’ specific requests. In general, the area-optimized
mapping solution has more levels while the performance-op-
timized solution uses more LUTs. So, an area-optimization
algorithm may provide a compact solution but may not meet
the performance specification, and a performance-optimization
algorithm may provide a fast solution but uses too many
LUTs. Therefore, a set of mapping solutions positioned at the
comprehensive area/level tradeoff curve should be generated to
provide the maximum flexibility for the designers.

An algorithm calledFlowMap-r has been proposed to pro-
vide such capability [24]. It starts from a level-optimal1 map-
ping solution produced byFlowMap [16]. Then, it performs
a number ofdepthrelaxation operations to get the area/level
tradeoff curve. In this paper, we will use an alternative approach
to achieve this goal. Instead of beginning from a level-optimal
solution, our new approach starts from an area-optimized solu-
tion with level consideration. Then, it applies a series of resyn-
thesizing operations to gradually reduce the number of levels
without increasing too many LUTs. Our strategy seems more
similar to the typical approaches used in the timing-driven logic
synthesis targeting for standard cells or gate arrays [25]. Ex-
perimental results show that our algorithm can provide better
solutions than those ofFlowMap-r. Moreover, our approach
not only can produce a comprehensive area/level tradeoff curve
but also can provide competitive level-optimized solutions com-
pared with those produced by current existing performance-op-
timization algorithms.

This paper is organized as follows. Section II introduces
some basic terminologies and definitions used in this paper.

1The optimality is achieved under some assumptions. See [16] for details.

1063–8210/00$10.00 © 2000 IEEE

HUANG et al.: ALTO: AN ITERATIVE AREA/PERFORMANCE TRADEOFF ALGORITHM 393

Section III describes how we get the area-optimized initial so-
lution with level consideration for a given circuit. In Section IV,
our iterative area/performance tradeoff algorithm is presented
in detail. Section V shows the extensive experimental results,
and the concluding remarks are given in Section VI.

II. PRELIMINARIES

Some basic terminology and definitions used in this paper are
given in this section. A combinational Boolean network can be
represented by a directed acyclic graph (DAG), . Each
node, , represents a logic function and each directed edge,

, and , represents that nodeis a fanin of
node . A fanin of a node is a node which the function of

explicitly depends on. is the set consisting of all
fanins of . A fanout, , of is a node where .

is the set consisting of all fanouts of. A primary
input (PI) of the network is a node without any incoming edge,
and aprimary output (PO) of the network is a node without
any outgoing edge. Nodeis a transitive fanin of node if
there exists at least one path from nodeto node . A node
is -feasible if the number of its fanins is no more than. A
network is -feasible if all nodes are-feasible in the network.
The level of a node , is the number of nodes in the longest
path from a PI node to. So the level of a PI node is defined to be
0. The level of the other node,, is defined to be the maximum
level of its fanins plus 1, i.e.,

Thus, the level of each node in the network can be computed in
the topological order. The level of the network , is de-
fined to be the maximum level of the PO nodes. Therequired
level of a network , which is user-specified and denoted as

, indicates the maximum level of the desired resultant net-
work. Thus, for each PO nodeof the network , the required
level, , is defined to be . The required level of any
other node is defined to be the minimum required level of its
fanouts minus 1, i.e.,

Thus, the required level of each node in the network can be
computed in the reverse topological order. A nodeis critical
if is less than . A critical fanin of is a fanin of ,
which is critical. is the set containing all critical fanins
of . A cone, , is a subset of , which contains the
root node as well as its transitive fanins whose level are no
less than .

III. I NITIAL NETWORK GENERATIONS

As mentioned in Section I, our area-performance tradeoff al-
gorithm starts from an area-optimized mapping solution with
level consideration. To generate such a good initial network, two
key points have to be concerned.

1) The initial network should also be as compact as the
one obtained by other area-optimization algorithms and
should be generated as fast as possible.

2) The level should also be considered while generating the
area-optimized initial network.

Considering these two reasons, thechortle-crfalgorithm [3]
is selected to be enhanced. It can generally produce a good
area-optimized solution in a short time. Moreover, though it is
a pure area-optimization algorithm, we will show later that it is
relatively easy to be enhanced to take the level information into
account.

The chortle-crf algorithm first performs the AND–OR de-
composition to transform the original network into the one con-
taining nodes representing AND or OR functions only. Then, it
traverses all nodes in the network in the topological order. For
each node, two major decompositions, namely, the two-level de-
composition and the multilevel decomposition, are applied. In
the two-level decomposition phase, the bin-packing technique
with the heuristic reconvergent path optimization is applied to
pack the fanin nodes into a set of-feasible nodes (bins with
the maximum size). Then, it applies the multilevel decom-
position to further reduce the number of-feasible nodes re-
quired to implement the function represented by this node. In
these two phases, minimizing the number of-feasible nodes
is the only objective, i.e., no attempt on level-optimization is
made. For example, consider two mapping results for the same
function shown in Fig. 1, where the number labeled outside the
gate represents the level and the number labeled inside the gate
represents the ID of the node. Both of them could be generated
by thechortle-crfalgorithm2 because these two results are iden-
tical in terms of the number of LUTs. But they are quite different
from the performance point of view. The level of Fig. 1(a) is 6,
while the level of Fig. 1(b) is 4. Thus, if the level information
is properly considered during area-optimized mapping, the per-
formance could also be improved at the same time. Fig. 1 gives
such an example that the level can be reduced without paying
any extra LUT.

To achieve this kind of level reduction, two modifications
should be made to the originalchortle-crfalgorithm.

1) In the two-level decomposition phase, the bin-packing al-
gorithm incorporated with the heuristic maximum sharing
decreasing (MSD) algorithm3 is used. The MSD algo-
rithm selects the fanin nodes to be packed under some
criteria targeting for the area optimization. At this time, if
two candidate fanin nodes have the same priority, the one
with the lower level is chosen. Thus, the resultant nodes
are potentially with the smaller level.

2) In the multilevel decomposition phase, the modifications
are as follows.

a) An ordered list of packed fanin nodes is obtained
by sorting the number of their fanin nodes in de-
creasing order. When two candidates have the same
number of fanin nodes, the one with the smaller
level is ordered before the one with the larger level.

b) The first node in the list is moved out to connect to
the first -feasible packed fanin node with the
maximum number of fanins in the list.

c) Repeat a) and b) until only one node is in the list.

2Details about the mapping procedures can be found in [26].
3Details about MSD algorithms can also be found in [26].

394 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

Fig. 1. Two possible mapping results ofchortle-crf.

3) In order to evaluate the quality of our modifiedchortle-crf
algorithmMODIFIED,severaldifferentapproachesarein-
troduced forextensivecomparisons. ThealgorithmORIG-
INALrepresents the originalchortle-crf, which ignores the
level information. The resultant network produced by this
approach will have the average performance in terms of
levels. The approachWORSTis specially designed to find
the possibly worst case ofORIGINAL. It is modified in the
opposite directions we propose.

The algorithms described above have been implemented in
an SIS environment developed by the University of California,
Berkeley [2], [27], [28]. An experiment over a set of MCNC and
ISCAS benchmark circuits is performed to evaluate all these
approaches. All benchmark circuits are first optimized by the
MIS standard multilevel optimization script [27]. Then, all ap-
proaches are independently applied to make them five-feasible.
Thus, each node in the network can be implemented by a 5-LUT.
The mapping results of different approaches are shown in the
first three columns of Table I. Over 25 benchmark circuits, all
three approaches use almost the same number of LUTs. That
is because all three implement the identicalchortle-crf algo-

rithm from the area point of view. However, from the perfor-
mance point of view, they produce quite different results. On
average,MODIFIED uses 10% fewer levels than that ofORIG-
INAL. Moreover,MODIFIED uses 15% fewer levels than that
of WORST. By the way, the amounts of CPU time consumed by
these three approaches are almost identical.

According to previous experiments, some circuits must be
collapsed into the two-level form, then be decomposed by
Roth–Karp decomposition to get the better mapping solu-
tions both in area and performance [2]. However, the time
complexity of the collapsing could be exponential for the
circuits with the large number of PIs. So we only apply this
collapsing operation to small circuits with a limited number
of PIs, e.g., ten. Therefore, we develop an approachMIXED,
which applies not only the modifiedchortle-crfalgorithm, but
also a modified Roth–Karp decomposition algorithm [9], [10]
to those collapsed circuits. The results of the initial network
generation are shown in columnMIXED of Table I. In order
to evaluate the quality of our level-considered area-optimized
initial networks, the mapping results generated by one of the
most popular area-optimization algorithms, mispga [2], are

HUANG et al.: ALTO: AN ITERATIVE AREA/PERFORMANCE TRADEOFF ALGORITHM 395

TABLE I
EXPERIMENTAL RESULTS OF OBTAINING

INITIAL NETWORKS BY DIFFERENTALGORITHMS

shown at column mispga of Table I.4 On average, ourMIXED
algorithm uses slightly fewer LUTs and 17% fewer levels than
that of mispga, respectively. Moreover,MIXED only takes 521
s to complete this experiment, while mispga takes 4215 s on a
Sun SPARC 20 workstation. The experimental results clearly
show that ourMIXED algorithm can efficiently provide an
excellent area-optimized starting point of a given circuit for the
later area/performance tradeoff operations.

IV. I TERATIVE AREA/PERFORMANCETRADEOFFALGORITHM

After introducing the algorithm to get the level-considered
area-optimized initial network, we will present our iterative
area/performance tradeoff algorithm. Starting with an area-op-
timized -feasible network, our goal is to reduce the level of the
network without increasing too many extra-feasible nodes.
The delay model used here is the unit delay model, i.e., the
delay time is estimated by the level of the resultant network.
The outline of our algorithm is presented in Fig. 2.

Given a network, our algorithm reduces its level by one each
time until the desired target level is achieved or no further im-
provement can be made. If an unachievable low value is set as
the target level, say 0, then the complete set of area/level tradeoff
mapping solutions from the area-optimized one to the level-op-
timized one can be obtained. In the following, we will describe
this algorithm in detail.

In our algorithm, the required level of the given network is
assigned to its current level minus 1 at each iteration while
the current level is still larger than the target level. The level
of each node in the network is labeled in the topological

4The resultant networks are obtained by applying the optimization script rec-
ommended in [28].

Fig. 2. Iterative area/level tradeoff algorithm.

order. Then, under the given required level of the network,
the required level of each node is calculated in the reverse
topological order. Hence, critical nodes can be easily identified.
A function is then defined to calculate the
gain for each critical node. Conceptually, this gain is designed
to represent how much the performance of the entire network
can be improved if the level of the corresponding node can
be reduced by one. Hence, the critical node with the largest
gain will be selected to be resynthesized first. The principle
of is based on the fact that reducing the
level of each critical fanin by one for a nodeis equivalent to
reducing the level of by one. So, the gain of a critical nodeis
distributed to all of its critical fanins by the following formula:

Note that the gain of a node does not directly propagate back-
ward to all of its critical fanins. That is because if the gain is
just simply propagated backward to its critical fanin nodes, the
node with the largest gain will always appear near PI nodes, and
obviously, those nodes are not always the best candidates. Con-
ceptually, those critical nodes that fanout to more critical nodes
will have higher priority to be chosen for level reduction.

396 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

The gain of each critical PO node is assigned to one by de-
fault. Then, the gain of each other critical node can be calculated
in the reverse topological order. All critical nodes are then sorted
by their gains in decreasing order. If two nodes have the same
gain, the one with smaller level is selected first. That is because
the effect of the level reduction on nodes near PI could poten-
tially have a bigger impact.

For each critical node in the sorted list, a number of perfor-
mance optimization techniques are applied to reduce its level.
Unfortunately, most performance optimization techniques de-
veloped for the semicustom design, such as buffer insertion, gate
sizing and fanout replication, etc., cannot be directly applied to
the LUT-based FPGA architecture under the unit delay model.
Thus, the partial resynthesis is the best possible way to reduce
the level of a node, i.e., to resynthesize the critical node and
some of its transitive fanin nodes together targeting for level re-
duction. In our algorithm, a greedy strategy is used to select the
transitive fanin nodes to be resynthesized. At first, only the can-
didate node and its critical fanin nodes, i.e., ,
are resynthesized to reduce the level of. If the attempt fails,

is selected to be resynthesized next. This
process is not terminated until the level ofis reduced or the
attempt fails even for .

Currently, three performance-driven resynthesizing tech-
niques are applied to the selected partial network for level
reduction. Detailed discussions on these three techniques are
shown in Section IV-A–C.

After applying all resynthesizing techniques, the best map-
ping solution, in which the level of the root node is minimum, is
selected. If the level of the root node is identical in two different
solutions, the one with smaller number of increasing nodes is
selected. If the level of the root node in the newly synthesized
cone is not smaller than that of the original root node, the
next candidate node in the critical node list is selected and the
process is repeated. Otherwise, the level of the root node in the
newly synthesized cone is smaller than that of the original root
node , the new cone replaces the old one in the duplicated net-
work , and a local success is marked. If a local success results
in a global success, i.e., the level of the modified networkis
smaller than that of the original network net, then the original
network is updated. After a local or a global success, the whole
procedure starting from the level labeling is repeated because
the network has been modified. This process is continued until
the level of the final resynthesized network is no more than the
target level, or is terminated after an iteration in which no local
success can be obtained by resynthesizing all candidate critical
nodes. Finally, the algorithm returns the last saved network as
the resultant network as well as a status flag, which is set ac-
cording to the given target level, the level of the original net-
work, and the level of the resultant network.

The next three sections describe the resynthesis techniques
currently employed in our algorithm.

A. Modified Chortle-d Algorithm

The first technique is based onchortle-dalgorithm [11]. It
performs the AND–OR decomposition first. For each node
in the topological order, its fanin nodes of the same level are
grouped into separate strata. The bin packing technique with

the reconvergent path optimization is then applied to minimize
the number of nodes in each stratum. Finally, it connects
the outputs of nodes in stratumto unused inputs of nodes
in stratum . Note that additional nodes may be added
to stratum to provide unused inputs. This process is
completed when there is only one node in the highest stratum.5

Fig. 3 shows an example of this approach. The level of the
root node in Fig. 3 is five while the level of the root node
synthesized bychortle-crf is six. To avoid increasing the level
of the network, some additional nodes are added, e.g., the node
marked with the asterisk in Fig. 3. However, we find out that
some of those extra nodes can be collapsed to its fanout nodes
while the network is still -feasible. Therefore, an extra pass,
which finds those nodes and collapses them into their fanout
nodes, is appended to the originalchortle-dalgorithm to reduce
the number of nodes required. Thus, the major drawback of
chortle-d, using too many nodes to trade the levels, is partially
improved.

B. Modified Chortle-crf Algorithm

The second technique is our modifiedchortle-crfalgorithm,
MODIFIED, described in Section III. The area overhead is gen-
erally smaller than that ofchortle-dbased algorithm if it can
successfully reduce the level of the candidate node.

C. Timed Roth–Karp Decomposition

The third technique is a newly developed technique called
the timed Roth–Karp decomposition. As we described before,
some networks should be collapsed into the two-level form,
then be decomposed by Roth–Karp decomposition to get the
better mapping solutions. So if the number of PI nodes of the se-
lected partial network is smaller than a predefined upper bound,
it is first collapsed into a two-level logic, then decomposed to
a -feasible network by the timed Roth–Karp decomposition
algorithm. Our timed Roth–Karp decomposition is based on a
modified Roth–Karp decomposition algorithm [9], [10] and is
enhanced with the level-minimization technique.

The original Roth–Karp decomposition can decompose a
function into several subfunctions. For example,

where is called the bound set and is called the free set.
Thus, if and , Roth–Karp decompo-
sition breaks a function with a large number of fanins into
several subfunctions, and ’s, with fewer fanins.6 From the
area point of view, should be made as small as possible—es-
pecially for the LUT-based FPGA architecture. In general,
strongly depends on what the bound set is. Therefore, a modi-
fied algorithm that selects a good bound set for area optimization
is developed [9]. However, this modified algorithm only focuses
on minimizing and ignores the level information during the
decomposition. Thus, our timed Roth–Karp decomposition is
then developed to minimize the level of. The outline of this
algorithm is presented in Fig. 4.

5 Details about thechortle-dalgorithm can be found in [26].
6 Details about Roth–Karp decomposition can be found in [9], [10], [29].

HUANG et al.: ALTO: AN ITERATIVE AREA/PERFORMANCE TRADEOFF ALGORITHM 397

Fig. 3. Example ofchortle-dalgorithm.

The objective of this algorithm is to minimize the level of
as well as to reduce the number of LUTs required for decom-
position. One might intuitively select a set of fanins with the
smallest level as the bound set. However, as we mentioned be-
fore, Roth–Karp decomposition works only if . Thus,
in our algorithm, an initial bound set is first selected for area
minimization by using the approach proposed in [9]. The target
level of nodes in the bound set, , is set to the th
smallest level of the fanin node . Then, a procedure
that properly exchanges the variables between the bound set

Fig. 4. Timed Roth–Karp decomposition algorithm.

and the free set is repeatedly invoked to reduce the largest level
of nodes in the bound set to . In order to calculate
the estimated level of under a specific bound set, an ad-
ditional procedure, , which calculates the worst-case esti-
mated delay for a function , is needed. Procedure is de-
fined as

(Fanin_Number , LUT_Size) {
if()

return 1;
else

return ;
}

where is set to and is the maximum number of
inputs for a LUT. That is, if , only a -LUT is required
to implement and the estimated delay is one. But if , it
might require another iterations of Shannon cofactoring to
decompose into several -feasible subfunctions in the worst
case. So the estimated delay is in such a case. Thus,

398 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

TABLE II
EXPERIMENTAL RESULTS OFOUR AREA/LEVEL TRADEOFFALGORITHMS

an estimated level of the correspondingnode for a specific
bound set can be calculated as

estimated level

For the initial bound set, , the estimated level
is calculated. Then, for each candidate variable

of the initial free set, , whose level is less than
the largest level of the node , and are
exchanged to get the new bound set . For

, the estimated level of the corresponding
after Roth–Karp decomposition, , is also calculated.
If , then replaces

and the variable exchange process is restarted. This
process is not terminated until the largest level of the node
bound set is reduced to or all variable exchange
attempts fail in the last iteration.

V. EXPERIMENTAL RESULTS

Our area/level tradeoff algorithm has been implemented in an
SIS environment. In order to evaluate its quality, a set of compre-
hensive mapping solutions from the area-optimized one to the
level-optimized one is produced for each benchmark circuit de-
scribed in Section III. All solutions should retain the condition
of being five-feasible to be implemented by the five-LUT FPGA
architecture. The results are shown in Table II. The column

shows the level of the area-optimized initial network.
The remaining columns represent the numbers of five-feasible
nodes required to implement the circuit for the designated level.
From Table II, it is found that our algorithm can really provide a
wide range of mapping solutions to be chosen by the designers.
Some benchmark circuits, such as 5xp1, 9sym, and 9symml,
etc., do not have many tradeoff design points because the best
designs are found for both area and level. The most dramatic

Fig. 5. Various mapping results of the benchmark circuit e64.

TABLE III
COMPARISONSBETWEENOUR ALGORITHM AND FlowMap-r

case is the mapping results of the benchmark circuit e64 shown
in Fig. 5. The levels of mapping results produced by our algo-
rithm vary from 17 to 3. Table III shows the comparisons be-
tween the results produced by our algorithm, denoted asALTO
(area/level tradeoff), with those produced by another area/level
tradeoff algorithm namedFlowMap-r [24], denoted asFmap-r.
For most of the benchmark circuits, the mapping solutions of
ALTOoutperform those ofFlowMap-r on the same level.

Finally, in order to show how good the level-optimized results
ALTOcan achieve, the results produced by previously proposed
level optimization algorithms, includingchortle-d[11], mispga-
delay [12], TechMap-D[13], FlowMap [16], FlowSYN[15],
DOGMA [20], andBoolMap-D[21], are listed in Table IV for
extensive comparisons. For 18 benchmark circuits,ALTOon av-
erage requires 22% and 56% fewer levels and LUTs than those
of chortle-d, respectively. For 24 benchmark circuits,ALTOon
average requires 23% fewer levels and 34% fewer LUTs than
those ofmispga-delay. For 23 benchmark circuits,ALTO on
average requires 13% and 38% fewer levels and LUTs than
those ofTechMap. For 17 benchmark circuits,ALTOon average
requires 17% and 28% fewer levels and LUTs than those of
FlowMap. For 17 benchmark circuits,ALTOon average requires
3% and 20% fewer levels and LUTs than those ofFlowSYN. For
16 benchmark circuits,ALTOon average requires 16% and 17%
fewer levels and LUTs than those ofDOGMA. The only excep-
tion is thatBoolMapon average requires 10% and 5% fewer
levels and LUTs than those ofALTOfor 17 benchmark circuits.
For 25 benchmark circuits,ALTOtakes a total of 5412 s to obtain
the level-optimized networks from their area-optimized ones on
a Sun SPARC 20 workstation. The time varies from 2 to 1906 s
for various circuits.

HUANG et al.: ALTO: AN ITERATIVE AREA/PERFORMANCE TRADEOFF ALGORITHM 399

TABLE IV
COMPARISONSAMONG OUR ALGORITHM AND OTHER LEVEL OPTIMIZATION ALGORITHMS

The experimental results clearly show thatALTOcan effec-
tively produce a better set of area/level tradeoff mapping solu-
tions than those ofFlowMap-r for most circuits. Moreover, the
level-optimized solutions produced byALTOoutperform those
produced by all existing level-optimization algorithms except
BoolMap-D. BecauseALTO is iterative in nature and is orig-
inally designed to produce the area/level tradeoff curve for a
given design efficiently, it is not expected to find better solu-
tions all the time than those produced by other algorithms, which
take a global view of the whole circuit and target only for the
level-optimized solution. So, it is very surprising thatALTOcan
outperform most existing level-optimization algorithms. Fur-
thermore,ALTOprovides a framework to resynthesize the crit-
ical part of the network. Although only three techniques are uti-
lized currently, later developed techniques can be easily incor-
porated into this framework to further improve the quality of the
algorithm.

VI. CONCLUSIONS

In this paper, we propose an iterative area/level tradeoff al-
gorithm for LUT-based FPGA technology mapping. The ap-

proach begins with finding a level-considered area-optimized
initial network for the given circuit by performing the modified
chortle-crfalgorithm and modified Roth–Karp decomposition.
Our iterative area/level tradeoff algorithmALTOis then applied
to get the set of complete area/level tradeoff mapping solutions.
Experimental results show thatALTO can provide not only an
excellent area/level tradeoff curve, but also the level-optimized
solutions, which compete favorably with those provided by most
existing level optimization algorithms. Thus, this algorithm is
working well on the timing-driven technology mapping for the
LUT-based FPGA architecture.

REFERENCES

[1] The Programmable Logic Data Book. San Jose, CA: Xilinx, 1993.
[2] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,

“Improved logic synthesis algorithms for table look up architectures,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1991, pp. 564–567.

[3] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: fast technology
mapping for lookup table-based FPGA’s,” inProc. 28th Design Automa-
tion Conf., June 1991, pp. 227–233.

[4] D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli, “Technology mapping
for a two-output RAM-based field-programmable gate arrays,” inProc.
Eur. Design Automation Conf., Feb. 1991, pp. 534–538.

400 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 4, AUGUST 2000

[5] Y. T. Lai, M. Pedram, and S. B. K. Vrudhula, “BDD based decompo-
sition of logic functions with application to FPGA synthesis,” inProc.
30th Design Automation Conf., June 1993, pp. 642–647.

[6] T.-T. Hwang, R. M. Owens, and M. J. Irwin, “Logic synthesis for field-
programmable gate arrays,”IEEE Trans. Computer-Aided Design, vol.
13, pp. 1280–1287, Oct. 1994.

[7] B. Wurth, K. Eckl, and K. Antreich, “Functional multiple-output decom-
position: Theory and an implicit algorithm,” inProc. 32nd Design Au-
tomation Conf., June 1995, pp. 54–59.

[8] H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis for look-up
table based FPGA’s using functional decomposition and support mini-
mization,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1995, pp.
353–358.

[9] W.-Z. Shen, J.-D. Huang, and S.-M. Chao, “Lambda set selection in
Roth–Karp decomposition for LUT-based FPGA technology mapping,”
in Proc. 32nd Design Automation Conf., June 1995, pp. 65–69.

[10] J.-D. Huang, J.-Y. Jou, and W.-Z. Shen, “Compatible class encoding in
Roth–Karp decomposition for two-output LUT architecture,” inProc.
Int. Conf. Computer-Aided Design, Nov. 1995, pp. 359–363.

[11] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping of look-up
table-based FPGA’s for performance,” inProc. Int. Conf. Computer-
Aided Design, Nov. 1991, pp. 568–571.

[12] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance directed synthesis for table lookup programmable gate
arrays,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1991, pp.
572–575.

[13] P. Sawkar and D. Thomas, “Performance directed technology mapping
for look-up table based FPGAs,” inProc. 30th Design Automation Conf.,
June 1993, pp. 208–212.

[14] C.-S. Chen, Y.-W. Tsay, T.-T. Hwang, A. C.-H. Wu, and Y.-L. Lin,
“Combining technology mapping and placement for delay-optimization
in FPGA designs,” inProc. Int. Conf. Computer-Aided Design, Nov.
1993, pp. 123–127.

[15] J. Cong and Y. Ding, “Beyond the combinatorial limit in depth optimiza-
tion for LUT-based FPGA designs,” inProc. Int. Conf. Computer-Aided
Design, Nov. 1993, pp. 110–114.

[16] , “FlowMap: An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs,”IEEE Trans. Com-
puter-Aided Design, vol. 13, pp. 1–12, Jan. 1994.

[17] H. Yang and D. F. Wang, “Edge-Map: Optimal performance driven tech-
nology mapping for iterative LUT based FPGA designs,” inProc. Int.
Conf. Computer-Aided Design, Nov. 1994, pp. 150–155.

[18] N. Togawa, M. Sato, and T. Ohtsuki, “Maple: A simultaneous tech-
nology mapping, placement, and global routing algorithm for field-pro-
grammable gate arrays,” inProc. Int. Conf. Computer-Aided Design,
Nov. 1994, pp. 156–163.

[19] H. Shin and C. Kim, “Performance-oriented technology mapping for
LUT-based FPGAs,”IEEE Trans. VLSI Syst., vol. 3, pp. 323–327, June
1995.

[20] J. Cong and Y.-Y. Hwang, “Structural gate decomposition for depth-op-
timal technology mapping in LUT-based FPGA design,” inProc. 33rd
Design Automation Conf., June 1996, pp. 726–729.

[21] B. Wurth, K. Eckl, and K. Antreich, “A Boolean approach to perfor-
mance-directed technology mapping for LUT-based FPGA designs,” in
Proc. 33rd Design Automation Conf., June 1996, pp. 730–733.

[22] N. Bhat and D. Hill, “Routable technology mapping for LUT FPGAs,”
in Proc. Int. Conf. Computer Design, Oct. 1992, pp. 95–98.

[23] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology
mapping for lookup table-based FPGA’s,”IEEE Trans. Computer-Aided
Design, vol. 13, pp. 13–26, Jan. 1994.

[24] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA tech-
nology mapping,”IEEE Trans. VLSI Syst., vol. 2, pp. 137–148, June
1994.

[25] J. P. Fishburn, “LATTIS: An iterative speedup heuristic for mapped
logic,” in Proc. 29th Design Automation Conf., June 1992, pp. 488–491.

[26] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic,Field Pro-
grammable Gate Arrays. Norwell, MA: Kluwer, 1992.

[27] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multi-level logic optimization system,”IEEE Trans. Computer-
Aided Design, vol. CAD–6, pp. 1062–1081, Nov. 1987.

[28] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Steven, R. K. Brayton, and A. Sangiovanni-Vin-
centelli, “SIS: A system for sequential circuit synthesis,” Electron. Res.
Lab. Memo. UCB/ERL M92/41, May 1992.

[29] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,”IBM J.
Res. Develop., pp. 227–238, Apr. 1962.

Juinn-Dar Huang (S’99) received the B.S. and
Ph.D. degrees in electronics engineering from
National Chiao Tung University, Hsinchu, Taiwan,
R.O.C., in 1992 and 1997, respectively.

His current work at Global Unichip Corporation,
Taiwan, involves reusable soft silicon IP creation
and system-on-a-chip (SoC) integration. His current
research interests include IP reuse methodology and
SoC design.

Jing-Yang Jou (S’82–M’83–S’84–M’85) received
the B.S. degree in electrical engineering from
National Taiwan University, Taipei, Taiwan, R.O.C.,
and the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana-Champaign.

He is Professor in the Department of Electronics
Engineering, National Chiao Tung University,
Hsinchu, Taiwan. He has worked at GTE Laborato-
ries and at Bell Laboratories. His research interests
include behavioral and logic synthesis, VLSI
designs and CAD for low power, design verification,

synthesis and design for testability, and hardware/software codesign. He has
published more than 70 papers.

Dr. Jou is a Member of Tau Beta Pi, and the recipient of the Distinguished
Paper Award of the IEEE International Conference on Computer-Aided Design,
1990. He served as Technical Programmer Chair of the Asia-Pacific Conference
on Hardware Description Languages (APCHDL’97).

Wen-Zen Shen(S’80–M’88) was born in Hsinchu,
Taiwan, R.O.C., in 1950. He received the M.S. and
Ph.D. degrees in electronics engineering from the Na-
tional Chiao Tung University (NCTU), Hsinchu, in
1977 and 1982, respectively.

Upon his graduation, he joined the Department
of Electronics Engineering, NCTU, where he has
served as Director of the University Computer
Center and Chairman of the Department of Elec-
tronics Engineering. In 1992, he initiated the Chip
Implementation Area (CIC) at the National Science

Council, where he has been Program Director of CIC since 1992. Currently, he
is Professor and Dean of the College of Electrical Engineering and Computer
Science, NCTU. His current research interests focus on VLSI designs and
CAD for low-power, logic synthesis, and low-voltage, low-power mixed-mode
integrated circuit designs.

Dr. Shen is a Member of Phi Tau Phi. He is the recipient of the 1985 Dis-
tinguished Teaching Award of the NCTU and the 1988 Distinguished Teaching
Award of the Ministry of Education, R.O.C.

